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Tailored ensembles of neural networks optimize sensitivity to stimulus statistics
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The capability of a living organism to process stimuli with nontrivial intensity distributions cannot be
explained by the proficiency of a single neural network. Moreover, it is not sufficient to maximize the dynamic
range of the neural response; it is also necessary to tune the response to the intervals of stimulus intensities that
should be reliably discriminated. We derive a class of neural networks where these intervals can be tuned to
the desired interval. This allows us to tailor ensembles of networks optimized for arbitrary stimulus intensity
distributions. We discuss potential applications in machine learning.
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I. INTRODUCTION

Living organisms are constantly exposed to sensory stimuli
with nontrivial intensity distributions that can cover multiple
orders of magnitude [1–3]. Properly encoding these distribu-
tions is essential for an organism to survive. Stimulus intensity
can be faithfully encoded in neural firing rates, with stronger
intensities eliciting higher firing rate responses. Examples
of such reliable encoding can be found for hearing [4–7],
odor discrimination [8,9], or motion detection [10]. However,
typical neural responses show a steep increase in firing rate,
resulting in a narrow range of discriminable intensities. This
raises the question of how organisms can process broad inten-
sity distributions.

In principle, the capability to process a broad distribution
of stimulus intensities can be quantified by the dynamic
range. The dynamic range of a neural network is defined
as the log-ratio between the strongest and weakest stimulus
intensities that are reliably encoded by the neural firing rate.
For example, the dynamic range in cat primary auditory nerve
fibers has been experimentally measured to extend from 40
to 50 dB [11]. This, however, clearly does not cover the full
range of hearing (for humans approximately 0–120 dB sound
pressure level), resulting in the so-called dynamic-range prob-
lem [3,12].

How can the organism increase its dynamic range? One
line of solutions argues that the dynamic range of a single
recurrent neural network, driven by external stimuli, is max-
imal at the critical point of the nondriven network [13] or
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close to the bifurcation in an inhibitory network [14]. This
theoretical concept is supported by experiments on cultured
cortical slices [15] and somatosensory cortex in rats [16].
Thereby criticality would foster flexible information process-
ing [17,18], while leaving freedom to adjust the dynamic
range through network topology [19,20] or inhibition mod-
ulation [16]. In another line of argument, it is proposed that
the dynamic range could be increased by combining networks
with different responses to stimulus intensities, as suggested
for the olfactory system [9,21], or by directly adjusting the
neurons’ response to a temporal intensity distribution, as
observed in the auditory midbrain [7].

However, a large dynamic range is not sufficient to effi-
ciently process stimulus intensities from nontrivial distribu-
tions, e.g., from bimodal distributions. An efficient encoding
would represent relevant intensity intervals by more sensitive
neural responses manifested in a larger slope of the network
response function. Indeed, it was found in auditory mid-
brain that neurons adjust their response to the statistics of
the sound level distribution [7]. Finding the neural network
implementation of such an optimized response is crucial to
explaining how an organism can deal with arbitrary intensity
distributions. At the same time this mechanism can be used by
an organism for tuning its sensory processing system to focus
on specific elements required for a given computational task.

In this paper we show that, in general, processing capabil-
ity cannot be optimized by a single homogeneous recurrent
network, but instead requires an ensemble of specialized neu-
ral networks that is tailored to stimulus statistics. We derive a
class of neural network implementations that allow tuning the
interval of stimulus intensities that are reliably discriminated
by the network (the discriminable interval). Combining these
networks in an ensemble can generate optimal sensitivity to
arbitrary intensity distributions.

II. RESULTS

No matter what type of system one analyzes, the dynamic
range � and the discriminable interval are response measures
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FIG. 1. Dynamic range � and discriminable interval [h0.1, h0.9] for several models (lines are analytic solutions and data points with error
bars are results from numerical simulations). (a) Typical network spike rate as a function of the external input rate with the definition of the
dynamic range � as the width of the discriminable interval. (b) Branching network on a fully connected network (N = 104). (c) Branching
network on a sparse ER network (N = 104, p = 10−3, and K = 10). (d) Dynamic range as a function of the branching parameter for the
branching network (BN) and the coalescence-compensating network (CNN) on a fully connected network (see Appendix A). The inset shows
the dynamic range as a function of distance to the critical point (m = 1) in logarithmic scale. (e) Coalescence-compensating network on a fully
connected network (N = 102). (f) Probabilistic integrate-and-fire (PIF) network on a sparse ER network (N = 103, p = 10−2, and K = 10).
For log-log plots of (b) and (e), see Appendix B.

defined in terms of the range of stimulus intensities that can
be reliably discriminated in the systems’ output [Fig. 1(a)].
For a neural network, we consider as input Poisson activity
with rate h (per neuron). The response is measured by a
network spike rate A(h). For a zero input rate, the network
typically produces its minimal baseline rate Amin, whereas
for very high input rates the network response saturates.
Hence, the network rate covers the interval [Amin, Amax]. The
discriminable interval is defined as the 10th to 90th percentiles
[h(A0.1), h(A0.9)] = [h0.1, h0.9]. Then the dynamic range is
defined as � = 10 log10[h(A0.9)/h(A0.1)] in decibels. These
response measures characterize the range of input rates that
can be discriminated by the system, in contrast to response
measures that characterize how well a system can detect
changes in the input rate [22].

To start, we show for branching networks, the prime exam-
ple for a network with maximal dynamic range at criticality
[13,23,24], that the discriminable interval cannot be tuned.
The network consists of N binary units that are updated at
discrete time steps �t . Each neuron i can be either silent
(si = 0) or excited to spike (si = 1). It can be excited by (i)
an external Poisson input with rate h, such that the transition
probability is λ(h) = 1 − exp(−h�t ), or (ii) a presynaptic

neuron j (which was excited in the previous time step) with
transition probability wi j . If no external or internal input
reaches an excited neuron, it returns to a silent state in the
next time step (no refractory period). In this model, the control
parameter is the branching parameter m, which is sometimes
said to characterize the average number of excitations cre-
ated by a single excited neuron. For analytical tractability,
we focus on a fully connected [all-to-all (AA)] network
such that wi j = w = m/N . In addition, we consider a sparse
random Erdős-Rényi (ER) network, where connections are
randomly drawn with probability p resulting in a distribution
of outgoing/incoming connections Kout/Kin with average de-
gree K . For the ER branching network, wi j = w j = m/K j

out.
The network activity at each time step, At = ∑

i si
t , is thus

determined by both internal (m) and external (h) activation.
For the fully connected branching network, we can an-

alytically derive the neuron spike rate as a function of ex-
ternal input rate [Fig. 1(b)]. In the following, we sketch the
main steps and refer to Ref. [25] for a detailed derivation.
Given a network activity At at time t , the probability for
any neuron to be excited in the next time step is given
by P[si

t+1 = 1|At ,w, h] = 1 − (1 − w)At [1 − λ(h)] = p(At ).
The network activity At+1 is then binomially distributed with
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expectation value 〈At+1|At 〉 = N p(At ). Demanding stationary
activity A = 〈At 〉 = 〈〈At+1|At 〉〉 and neglecting fluctuations in
a mean-field approximation 〈(1 − m/N )At 〉 ≈ (1 − m/N )〈At 〉
implies

A = N − N (1 − w)A[1 − λ(h)]. (1)

Using the Lambert-W function defined as W (z)eW (z) = z
[26], Eq. (1) is solved by A(h) = N − W ((1 − w)N ln(1 −
w)N[1 − λ(h)])/ ln(1 − w). For w = m/N and N → ∞,
we can identify (1 − m/N )N → e−m and expand ln(1 −
m/N )N = −m + O(N−1) to obtain the solution for the ex-
pected neuron spike rate

aBN(m, h) = A(h)

N
= 1 + W (− me−m[1 − λ(h)])

m
, (2)

which turns out to be system-size independent for sufficiently
large N . This solution describes our numerical results for
fully connected networks accurately [Fig. 1(b)] and describes
our numerical results for sparse ER networks approximately
[Fig. 1(c)]. As expected for the universality class of directed
percolation, the spike rate scales with the external input as
a ∼ h (m < 1) and a ∼ h0.5 (m = 1) (see Appendix B).

From the neuron rate, we readily obtain mean-field so-
lutions for the dynamic range and discriminable interval.
Inverting Eq. (2) yields

hBN(m, a) = − 1

�t
ln[(1 − a)ema], (3)

which allows us to compute h(a0.1) and h(a0.9). In agreement
with previous results, we find that the dynamic range is
maximal at criticality [Fig. 1(d)]. However, it does not diverge
for ε = 1 − m → 0 [19], which can be seen clearly from the
figure inset.

Importantly, the discriminable interval of branching net-
works is constrained, i.e., the location barely changes for
small ε = 1 − m [Fig. 1(b)]. We can derive the end points
of the discriminable interval h(ax ), ax ∈ {a0.1, a0.9}, by ex-
panding ln(1 − a) = −∑∞

n=1 an/n and rewriting Eq. (3) as
hBN(m, ax ) ≈ (axε + ∑∞

n=2 an
x/n)/�t (see also Appendix A).

For all ε sufficiently smaller than a0.1, which holds in the
vicinity of the critical point, the end points are barely dis-
tinguishable (Fig. 2). This result is valid for sufficiently large
system sizes and limits the discriminable interval (and thereby
the dynamic range) even in the infinite system limit. As
a consequence, cortical networks with identified branching
parameters varying around m ≈ 0.98 [27,28] would have
strongly overlapping discriminable intervals.

In the following, we propose a framework that allows us to
tune the discriminable interval. We notice that the constrained
discriminable interval is a result of the nonlinearity in the exci-
tation probability p(At ) [cf. Eq. (1)]. This nonlinearly, in turn,
is a result of coalescence (the simultaneous excitation of the
same neuron from multiple sources) in the branching network
[25]. Coalescence violates the assumption that each excited
neuron on average excites m new neurons in the next time
step, i.e., the autoregressive representation 〈At+1|At 〉 = mAt is
not strictly true for the branching network. This autoregressive
representation, however, is the basis of the branching process
[29], which has been shown to approximate spike propagation
in neuronal tissue well [13,23,27,30–33] and was the historic

FIG. 2. Influence of compensating coalescence on the discrim-
inable interval. For the branching network, the discriminable interval
barely changes, especially for branching parameters close to critical-
like dynamics (m = 1). For the coalescence-compensating network,
the discriminable interval becomes a function of the branching
parameter.

motivation to model neural spiking activity with a branching
network. For the fully connected branching network, we in-
stead find 〈At+1|At 〉 = N p(At ) = meff (w, At )At + Nλ(h) with
an effective branching parameter

meff (w, At ) =
(

N

At

)
[1 − (1 − w)At ][1 − λ(h)]. (4)

For sparse ER networks, a similar result can be derived
[13,25], which coincides to leading order with Eq. (4). In
short, coalescence reduces the effective branching parameter
meff (w, At ) < m = wN .

Next we show that the bounds of the discriminable interval
[h0.1, h0.9] can be fine-tuned in models without coalescence.
We assume that the network may at most compensate coa-
lescence with internal sources, because compensating coales-
cence with external sources would require knowledge of the
external input rate h (a logical contradiction as one of the
network’s tasks is to infer this rate). Then we can set λ(h) = 0
and compensate coalescence by inverting Eq. (4) for a target
branching parameter meff (wCC, At ) = m, obtaining adaptive
(coalescence-compensating) synaptic weights

wCC(m, At ) =
[

1 −
(

1 − mAt

N

)1/At
]
. (5)

For finite networks in the close vicinity of the critical point,
we need to introduce a finite-network cutoff at wCC(m, N ) =
ln(N )/N , which avoids an additional absorbing boundary at
A = N (see Appendix C). Compensating internal coalescence
with adaptive weights [Eq. (5)] implies meff (wCC(At ), At ) =
m[1 − λ(h)], such that for small input h we approximate the
target branching parameter.

The resulting coalescence-compensating network retains a
maximal dynamic range at criticality [Fig. 1(d)] but allows
us to fine-tune the discriminable interval via the branch-
ing parameter m [Fig. 1(e)]. To show this we compute the
neuron spike rate for an autoregressive representation with
meff = m[1 − λ(h)]. For stationary activity we obtain A =
〈〈At+1|At 〉〉 = m[1 − λ(h)]A + Nλ(h), which is linear in A and
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h [cf. Eq. (1)]. For the neuron spike rate we obtain

aCC(m, h) = λ(h)

1 − m[1 − λ(h)]
. (6)

This solution describes our numerical results for fully con-
nected networks accurately [Fig. 1(e)] and further shows that
the coalescence-compensating model with external input is
only nontrivial for m < 1, because for m → 1 the average
spike rate aCC(1, h) → 1 for all values of h. Similarly, for all
m > 1 we would observe a fully excited network even for h →
0. The saturation is caused by the divergence of correlation
length and time for m → 1, as expected for a driven branching
process [29], and no longer allows us to define a dynamic
range for m � 1 [Fig. 1(c)]. When we invert Eq. (6), we
obtain hCC(m, a) = − log[1 − (1 − m)a/(1 − ma)]/�t such
that the bounds of the discriminable interval hCC(m, ax ) ≈
(1 − m)ax/(1 − max )�t 	 ax(1 − m) can be tuned as a func-
tion of m (Fig. 2).

Our result that the discriminable interval can be tuned
when compensating coalescence on fully connected networks
can be generalized to any network structure by compensating
coalescence locally. For this we define a local linear autore-
gressive representation for neuron i in terms of the average
activity ai = 〈P[si

t+1 = 1]〉 = mai
in + h, where ai

in is the av-
erage number of excited neurons that project to neuron i. A
straightforward solution for such a local linear autoregressive
representation is a probabilistic integrate-and-fire mechanism
with a linear transfer function [34], defined by P[si

t+1 = 1] =∑
wi j s j

t , where wi j = m/Ki
in for all Ki

in neurons projecting
to i and wi j = 0 otherwise. The neuron spike rate for this
dynamics on sparse ER networks is accurately described by
our analytical solution for coalescence-compensating dynam-
ics [Fig. 1(f)]. We conclude that the discriminable interval can
be controlled in a biologically plausible manner, namely, by
linear probabilistic integrate-and-fire neurons, where only the
local presynaptic strength of each neuron needs to be adjusted.

The advantage of the coalescence-compensating model can
be further illustrated by an extended power-law scaling of
the avalanche-size distributions at criticality (Fig. 3). In the
branching network the power law is cut off at s ≈ N , for
which typical avalanches (Fig. 3, inset, blue) with a bell
shape A(t, d ) = dF (t/d ) [35] and avalanche duration d imply
that the avalanche peak value scales as Apeak ∼ d ∼ √

N (see
Appendix D). In the coalescence-compensating network, this
maximum is now extended to the nonabsorbing boundary
Apeak ∼ d ∼ N (Fig. 3, inset, red) such that the power-law
characteristics extend until s ≈ N2. This means that for the
convergence-compensating network the avalanche-size distri-
bution covers twice as many orders of magnitude as for the
branching network. Similarly, the power-law scaling of the
avalanche-duration distribution is extended from

√
N to N

(see Appendix D).

III. CONCLUSION

Our results show that an ensemble of coalescence-
compensating networks can be tailored to optimize sensi-
tivity to arbitrary stimulus intensity distributions. For ex-
ample, a bimodal distribution of stimulus intensities can
be well processed by at least two networks with disjoint

BN
CCN

FIG. 3. Avalanche-size distribution of a branching network and a
coalescence-compensating network with N = 100 (cf. Fig. 7 for N =
104) in the separation of timescale regime, i.e., each avalanche is trig-
gered manually (h → 0 limit). The inset shows example avalanches
at the typical upper bounds of the power-law distribution (vertical
dashed line in main plot).

discriminable intervals (Fig. 4), consistent with the hetero-
geneous single-neuron responses observed in auditory mid-
brain when presented with bimodal sound level intensities
[7]. Processing a bimodal distribution of stimulus intensi-
ties may also be relevant for higher cortical areas that re-
ceive input from areas with up and down states [36–39]
or that react to complex behavior such as bimodal escape
sequence duration of drosophila [40]. If, however, stimu-
lus statistics cannot be anticipated, surprises are best dealt
with by assuming a uniform broad distribution of stimulus
intensities. In this case, a good strategy is to maximize
the dynamic range by an ensemble of networks with suffi-
ciently overlapping discriminable intervals [Figs. 1(e) and 4].
For our models, logarithmically spaced choices of ε = 1 −
m yield a homogeneous overlap of discriminable intervals
[Fig. 1(e)].

FIG. 4. Responses for tailored ensembles of coalescence-
compensating networks to particular stimulus statistics. A broad
uniform distribution of intensities can be represented by networks
with overlapping discriminable intervals. A bimodal distribution
of intensities can be represented by networks with discriminable
intervals around the peaks of the distribution.
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The optimized sensitivity of the ensemble to arbitrary
stimulus intensity distributions can be exploited in machine-
learning applications. A potential application could be a tai-
lored ensemble of coalescence-compensating recurrent net-
works for reservoir computing [41–47]. Stacking these reser-
voirs will perform optimal separation of stimulus intensities
within the union of discriminable intervals of participating
networks.

Our results suggest an alternative strategy to solve the
discrepancy between the dynamic range of a single network
compared to the large range of sensory stimulus intensities.
First, networks probably normalize the input statistics, as ob-
served in the early stages of the visual pathway [48]. Second,
a single coalescence-compensating network could implement
an adaptable discriminable interval (see, e.g., Ref. [7]) by
tuning its distance to criticality (1 − m) [28]. Supporting
this possibility, rapid adjustment of neuronal sensitivity to
stimulus intensity was demonstrated in a recent study of the
Drosophila hearing system [49]. We hypothesize that the brain
combines all strategies for maximal robustness.

In summary, we have shown for coalescence-compensating
networks that the discriminable intervals can be tuned by
tuning m (see Fig. 2). That offers a flexible manner to extend
the dynamic range, either by tuning networks to task or
by combining multiple networks, in general. The necessary
compensation of coalescence can be achieved fully locally
with probabilistic integrate-and-fire neurons even in sparse
networks. We believe that this is relevant for both biology and
artificial intelligence.
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APPENDIX A: ADAPTIVE-WEIGHT NETWORKS HAVE
DYNAMIC RANGE AND DISCRIMINABLE INTERVALS
WITH PROPERTIES FROM BOTH THE BRANCHING

PROCESS AND BRANCHING NETWORK

If compensating for coalescence extends the range of
avalanche statistics (cf. Fig. 3), one could conclude that the
resulting coalescence-compensating model is “more critical”
than the branching network. Intuitively, one may expect that
this leads to more optimal information processing and other
benefits that come with operating with critical dynamics. For
example, one could expect that the dynamic range, which
is maximal for critical-like dynamics [13], is even larger in
coalescence-compensating networks with critical dynamics.
In the following, we will show that on the level of a single
network, the dynamic range is not improved when we com-
pensate for coalescence.

To analytically calculate the dynamic range of the branch-
ing network, we start with the mean-field approximation (1)
and solve for the external input

hBN(m, A) = − 1

�t
ln

[
1 − A

N(
1 − m

N

)A

]
. (A1)

For sufficiently large N , we approximate (1 − m/N )A → e−ma

with neuron rate a = A/N and find the system-size indepen-
dent result

hBN(m, a) = − 1

�t
ln[(1 − a)ema]. (A2)

Recalling our result for the system-size independent
neuron rate aBN(m, h), Eq. (2), we continue with the
bounds amin = a(m, h → 0) = 1 + W (−me−m)/m and
amax = a(m, h → ∞) = 1 + W (0)/m = 1 such that
ax = 1 + (1 − x)W (−me−m)/m. Inserting this into Eq. (A2),
we obtain

hBN(m, ax ) = − 1

�t
ln[(1 − x)e−xW (−me−m )] (A3)

= xW (−me−m) − ln(1 − x)

�t
. (A4)

With this we can calculate the dynamic range of the branching
network

�BN(m) = 10 log10

[
0.9W (−me−m) − ln(0.1)

0.1W (−me−m) − ln(0.9)

]
. (A5)

For the coalescence-compensating network, we first need
to calculate the neuron rate as a response to the external input
rate. Assuming stationary activity A ≈ 〈〈At+1|At 〉〉, we can use
Eqs. (4) and (5) to write down the mean-field approximation

ACC = m[1 − λ(h)]ACC + Nλ(h). (A6)

Solving this for the neuron rate, we obtain

aCC(m, h) = λ(h)

1 − m[1 − λ(h)]
. (A7)

This rate is only finite and non-negative for m < 1. In this
range, amin = 0 and amax = 1 always, such that ax = x. Cal-
culating the inverse of Eq. (A7),

hCC(m, a) = − 1

�t
ln

[
1 − (1 − m)a

1 − ma

]
, (A8)

we find the dynamic range for coalescence-compensating
networks (m < 1)

�CC(m) = 10 log10

[
ln

(
1 − (1−m)0.9

1−m0.9

)
ln

(
1 − (1−m)0.1

1−m0.1

)]
. (A9)

For coalescence-compensating networks the interval of dis-
criminable input rates is a function of the branching parameter
(Fig. 2).

The results for the coalescence-compensating network are
consistent with a modified branching process. Consider a
branching process with upper-bound population activity At �
N and external input per time step Nh�t . The stationary ac-
tivity is ABP(m, h) = Nh�t/(1 − m) [29]. The discriminating
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activity is defined as Ax = xN such that the inverse of the
activity yields

hBP(Ax ) = (1 − m)x/�t (A10)

and the dynamic range is independent of the branching param-
eter

�BP(m) = 10 log10(0.9/0.1) ≈ 9.5. (A11)

Importantly, the discriminable interval [hBP(A0.1), hBP(A0.9)]
is highly dependent on m.

APPENDIX B: POWER-LAW BEHAVIOR OF RESPONSE
CURVES FOR DIFFERENT MODELS

Figure 5 shows the response curves from Fig. 1 in log-log
scale. As expected [13], subcritical response curves scale
as a ∼ h and only at the critical point (m = 1) we observe
a ∼ h0.5 up to finite-size effects. The different scalings can be
explained by a Taylor expansion of Eq. (3), i.e.,

hBN(m, a) = − 1

�t
ln[(1 − a)ema] (B1)

≈ − 1

�t
(ma − a − a2 + · · · ) (B2)

= 1

�t
[a(1 − m) + a2 + · · · ]. (B3)

Only for m = 1 the leading linear term vanishes such that h ∼
a2 or a ∼ h0.5; otherwise h ∼ a or a ∼ h.

(a) (b)

(c) (d)

BN-AA BN-ER

CCN-AA PIF-ER

FIG. 5. Power-law behavior of response curves for different
models. (a) Branching network (with coalescence) on an all-to-all
connected network (N = 104). (b) Branching network (with coales-
cence) on a sparse random network (N = 104 and p = 10−3). Results
are very similar to [13]. (c) Coalescence-compensating networks
on an all-to-all connected network (N = 100). (d) Probabilistic
integrate-and-fire networks with linear firing probability on a sparse
random network (N = 103 and p = 10−2).

APPENDIX C: ADAPTIVE WEIGHTS COMPENSATE
INTERNAL COALESCENCE

Internal and external coalescence reduce the effective
branching parameter for static transition probabilities (con-
nection weights) w = m/N [25]. Thereby, macroscopic
branching parameters m̂, estimated from the network rate,
differ from the model branching parameter m. For a detailed
discussion, we refer the reader to Ref. [25]. We will now ex-
ploit the analytical insight on coalescence to construct micro-
scopic dynamics that compensates for internal coalescence.
The basic idea is simple: Adjust the microscopic dynamics
w such that the effective branching parameter matches the
desired macroscopic branching parameter.

To compensate for coalescence, we adjust the weights w

such that meff (w, At ) = m for all At and thereby tune the
model parameter equal to the macroscopic branching param-
eter m = m̂. Inserting Eq. (4), we obtain activity-dependent
weights

w̃CC(At ) = 1 −
(

1 − mAt

N[1 − λ(h)]

)1/At

, (C1)

which would compensate for internal and external coales-
cence. We now assume that the network has a mechanism to
communicate the current activity At to each neuron but that it
cannot have information about the external input rate h. As a
result, we neglect the factor [1 − λ(h)] and obtain the adaptive
(coalescence-compensating) weights

wCC(m, At ) = 1 −
(

1 − mAt

N

)1/At

, (C2)

which compensate only for internal coalescence. Inserted as
weight in Eq. (4), the remaining external coalescence leads to

meff (wCC(m, At ), At ) = m[1 − λ(h)], (C3)

which determines the N → ∞ limit of linear-regression esti-
mates [25].

The adaptive (activity-dependent) weight (C2) bridges the
gap to the macroscopic description (Fig. 6). The conditional
expectation value 〈At+1|At 〉 for coalescence-compensating
networks with adaptive weights now coincides with that of
a branching process (dashed line), which is different from
the conditional expectation value of the branching network
subject to coalescence (solid line) (see Ref. [25]).

We note that Eq. (C2) is well defined only for m < 1, be-
cause for m = 1 the adaptive weights diverge at At = N . This
is explained by the fact that for critical-like dynamics (m = 1)
the compensation of coalescence induces an avalanche-size
distribution with a perfect power-law behavior. A perfect
power law, however, includes avalanches of all sizes. For a
finite network with coalescence compensation, this mathe-
matically results in a second absorbing state at full network
activity.

We need to avoid the absorbing state at full network activ-
ity for m → 1, because the microscopic dynamics would not
allow us to ever leave this state again. For this we will derive
a cutoff weight wCC(m, N ) = w

†
CC such that the probability to

transition away from At = N is nonzero.
To derive the cutoff weight, we need to calculate the

probability that all neurons are activated if in the previous
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FIG. 6. Universal scaling function for effective spreading of
network activity as discussed in Ref. [25] [m = 1 in the separation-
of-timescale (STS) regime]. For the branching network (solid line),
the scaling function is nonlinear, causing a bias in linear estimates
of the branching parameter through the network rate. However, for
coalescence-compensating networks (data points), the conditional
expectation value is again linear and is described by the scaling
function of a branching process (dashed line).

time step already all neurons were active. Recall that P[si
t =

1|At ,wCC, h] = 1 − (1 − wCC)At [1 − λ(h)] for the probabil-
ity to activate a single neuron given that At neurons are active.
Now we restrict our discussion to the divergent case mAt =
N in Eq. (C2) [defining, for m = 1, w

†
CC = wCC(1, N )] and

further neglect the external input rate (h → 0), because the
divergence only occurs for m → 1, where the external input
rate has to be small for persistent activity. Then the probability
to activate all neurons in the network, given that all neurons
were activated already in the previous time step, is

pall = [1 − (1 − w
†
CC)N ]N . (C4)

The probability to transition away from At = N is given by the
probability to not activate at least one neuron, i.e., by 1 − pall.

We now ask how to choose w
†
CC such that once the network

is fully active, there is a nonvanishing probability to transition
away from At = N , i.e., that pall < 1. For this we solve
Eq. (C4) for w

†
CC and obtain

w
†
CC = 1 − (

1 − p1/N
all

)1/N = 1 − (1 − eα/N )1/N , (C5)

where we have introduced α = ln(pall ) < 0. Next we aim
for an asymptotic expansion around N → ∞. For large N
we can expand the exponential function eα/N = 1 + α/N +
(α/N )2/2 + · · · such that

(1 − eα/N )1/N = (1 − 1 − α/N − (α/N )2/2 + · · · )1/N

= (−α/N )1/N [1 − (α/N )/2 + · · · ]1/N . (C6)

Restricting ourselves to the leading order, we get

w
†
CC 	 1 − (−α/N )1/N = 1 − eln(−α/N )/N . (C7)

Ensuring that limN→∞ 1
N ln(−α/N ) = 0 according to

l’Hôpital’s rule and expanding ex 	 1 + x, we obtain

w
†
CC 	 1

N
ln

(
N

− ln(pall )

)
. (C8)

Equation (C8) allows us to set the probability to transition
away from the state of full network activity. We choose

w
†
CC = ln(N )

N
such that 1 − pall = 1 − e−1 ≈ 0.632, (C9)

such that the state of full network activity is guaranteed
not to be absorbing. Our explicit choice for w

†
CC has sev-

eral motivations: First, it is the simplest choice; second,
for m = 1, Eq. (C2) yields wCC(m = 1, N − 1) = 1 − (1 −
N−1

N )1/(N−1) = 1 − exp[ 1
N−1 ln(1/N )] ≈ ln(N )/N such that

w
†
CC ≈ wCC(m = 1, N − 1); and last, w

†
CC highlights the in-

terpretation in terms of a random Erdős-Rényi network,
namely, that in the limit N → ∞ weights with probability
ln(N )/N set us at the transition between disconnected graphs
(pall = 0) and fully connected graphs (pall = 1).

APPENDIX D: ADAPTIVE WEIGHTS EXTEND THE
RANGE OF CRITICAL BRANCHING STATISTICS

Above we argued that compensating for internal coales-
cence extends the range over which a finite network re-
produces the statistics of a true branching process. In the
following, we show that this is indeed the case even for critical
dynamics (m = 1).

We here complement Fig. 3 (N = 100) by large networks
with N = 104 neurons and critical dynamics (m = 1) in
the separation-of-timescale regime (Fig. 7). Compared to a
branching network of the same size, the avalanche-size distri-
bution and avalanche-duration distribution in the coalescence-
compensating model show a drastically extended power law.
In particular, it appears that the power-law regime is extended
from avalanche size s ∼ N to s ∼ N2 and from avalanche
duration d ∼ √

N to d ∼ N . The results are preserved in
the driven regime with small external input rate h � 1 (not
shown).

We can understand the extended range of critical branching
statistics by considering the universal shape of avalanches.
It was shown that the average time development A(t, d ) of
neural avalanches with the same duration d collapses on a uni-
versal shape F (x), if properly rescaled as A(t, d ) = dF (t/d )
for our model [35]. It can be anticipated that the power-
law characteristics in finite-size branching networks extend
up to smax = O(N ). Considering any reasonable parabolic
avalanche shape F (x) between rectangular and triangular,
the area always scales as s ∼ d Apeak where the peak itself
scales as Apeak ∼ d (according to the universal avalanche
shape where Fpeak = const) such that s ∼ d2. With a maxi-
mal avalanche size smax = O(N ), we thus expect a maximal
avalanche duration dmax = O(

√
N ). This expectation nicely

agrees with our numerical observation (Figs. 7 and 3). In par-
ticular, this means that, due to coalescence, typical avalanches
of duration dmax have a maximum number of simultaneously
activated neurons that scales as Apeak

max ∼ dmax ∼ √
N .
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FIG. 7. (a) Avalanche-size and (b) avalanche-duration distributions for a branching network and a coalescence-compensating network with
critical dynamics (m = 1) in the separation-of-timescale regime. Compensating coalescence extends the power-law behavior of the avalanche-
size distribution from s ∼ N to s ∼ N2 and the power-law behavior of the avalanche-duration distribution from d ∼ √

N to d ∼ N .

Compensating coalescence now shifts the potential max-
imum number of simultaneously activated neurons from
Apeak

max ∼ √
N to Apeak

max ∼ N . Because of the universal avalanche

shape, the maximum duration consequently scales as dmax ∼
Apeak

max ∼ N and the maximal size then scales as smax ∼
dmaxApeak

max ∼ N2.
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