
PHYSICAL REVIEW RESEARCH 2, 013114 (2020)

Comparison of mechanisms of kinetochore capture with varying number of spindle microtubules
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The biophysical mechanisms of kinetochore capture by spindle microtubules within cells are stochastic
processes with a moving target searched by multiple walkers inside a confined volume. We study and compare
two such mechanisms: dynamic instability-driven search and capture, common in many eukaryotes, and angular
diffusion of pivoted microtubules reported in fission yeast. Characteristic times associated with the rare events
of capture scale as a power law with the microtubule number, and their comparison provides a physical basis for
the selection of one mechanism over another.
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I. INTRODUCTION

An essential function of a living cell is to segregate chro-
mosomes between the two daughter cells [1]. The mother cell
achieves this by forming a spindle: a microscopic structure
made of cytoskeletal filaments and cross-linking proteins,
stretching across its length between the poles [2,3]. One
important aspect of spindle morphogenesis is the attachment
of microtubules (MTs) to kinetochores (KCs) [4], which are
protein complexes on the chromosomes [see Fig. 1(a)]. How
does a MT attach to a KC? This question has been raised and
studied before, and the mechanism by which this attachment
takes place can vary across cell types [5–9]. One such mecha-
nism, known as search-and-capture (S&C), involves dynami-
cally unstable MTs growing out of the centrosome in different
random directions [10–13]. The KC attaches to one of the
MTs when they both hit each other. S&C has been well stud-
ied using simplified theoretical approaches [12,14–16] as well
as detailed computational models [7,15,17]. Recent in vivo
experiments have found that the actual capture processes may
be influenced by other factors [5,7,8,15,18–30] beyond simple
S&C.

The biophysical problem of KC capture by multiple MTs
maps to a problem in a stochastic process where a moving
target is searched by multiple diffusing entities. Further-
more, the process takes place under confinement (cellular
volume). While for a static target in confined space there
exist several studies in the literature [31–36], for a moving
target only a few exact results are known in 1d open space
[37–39]. All these studies consider point-particle random
walkers. On the other hand, MTs are extended objects ex-
hibiting complex stochastic dynamics [7,15,16]. Therefore a
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detailed study of this complex biophysical problem in rela-
tion to the above stochastic process problem motivates this
work.

A second motivation is related to the spindle assembly
in fission yeast [6,8,40–44], and more specifically, to an
experiment [8] which reported an exception to the usual S&C
mechanism in Schizosaccharomyces pombe (fission yeast).
Here a diffusing KC inside the nucleus is captured by MTs
executing rotational diffusion (RD) [8,40,42], being pivoted
at the spindle pole body (SPB) [see Figs. 1(a) and 1(b)]. The
pivoting motion appears during a state of pause [Fig. 1(b)]
interrupting the dynamic instability of the MTs. This mech-
anism is driven by thermal noise, unlike S&C, which is
chemically driven. This raises an intriguing question as to
why, unlike many other organisms, fission yeast prefers a
passive mechanism over an active one and whether there is
a physical basis for the choice.

Does the number of spindle MTs decide the choice of a
capture mechanism? In fission yeast, fewer spindle MTs are
available (∼3–5 MTs per KC) [8,45], unlike more complex
eukaryotes (e.g., human cells have ∼17 MTs per KC [4,46]).
This question requires a systematic study of capture times
comparing the two mechanisms (S&C and RD) as a function
of MT number N . Although this has been done for fixed
number of MTs [7,15,17,40], a study by varying N for a
moving KC is lacking, and the scaling of the capture times
with N is unclear. Earlier studies on capture of a static target
by N MTs suggested a heuristic form of the mean capture
time ∼1/N [15,47]. For a static target, the characteristic time
(associated with the tail of the capture time distributions)
∝ 1/N exactly, as the problem simplifies to N independent
capture events [36,48,49]. However for a moving KC, which
is biologically more relevant, this conclusion is no longer
valid—the relative coordinates of the MTs with respect to
the KC are correlated, thus leading to nontrivial dependence
of the capture times on N . As commented earlier, this is
analogous to a classic problem of N lions chasing a moving
lamb [37–39] in the stochastic process literature, albeit in
confined volume. A deviation from the 1/N behavior is known
for a special scenario of an evasive target on a lattice which
starts moving only when the predators are close by [50].
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FIG. 1. (a) Schematic of a fission yeast cell. Here the spindle is formed inside the nucleus. (b) Length variation with time is schematically
shown for a spindle MT (top). The timescales of growth, shrinkage, and pause states as known from experiments [8] are indicated. The
schematic (below) shows the capture of a KC by a MT. (c) The four different models studied in this paper are schematically shown here.
The pause state is indicated in blue, while growth and shrinkage is indicated in green. Straight and curved arrows represent the linear
growth/shrinkage and angular diffusion, respectively. (d) Fraction of lost KCs or survival probability S(t ) curves for three different mechanisms
are shown for different MT numbers N . Fits to the asymptotic tails are shown with solid lines. The timescales of models RD and RD+S&C
are close, while that of S&C are comparatively larger.

In this paper we numerically study the statistics of first-
passage times [33,39,51] of KC capture by multiple MTs
and show that the characteristic times of capture ∼N−β with
β �= 1. We estimate the characteristic times using an algo-
rithm [52,53] which obtains survival probabilities of KC very
precisely, as well as propose a method based on extreme
value statistics [54,55]. Using this temporal measure, we
demonstrate that depending on the available number of MTs,
one mechanism may be preferred over another.

II. MODELS AND METHODS

Our primary aim here is to compare the efficiency of
different capture mechanisms as a function of MT number N .
To this end we compare four different models [Fig. 1(c) and
Appendix A] to identify the relative contributions of active
growth-shrinkage versus passive angular diffusion. First, we
study a model [8] in which the growth-shrinkage kinetics of
MTs are ignored. Preformed MTs of fixed length LMT , pivoted
at the SPB, sweep the space in search of a KC—in this case
referred to as the RD model. Similarly, one may imagine a
hypothetical scenario in which the MTs in fission yeast did
not have the pause state, like in many other eukaryotes, and
switch directly from the growth to a shrinkage state—we will
refer to this pure search-and-capture case as the S&C model.
A third model has growth-pause-shrinkage kinetics, as seen
in the experiments, but during the paused state, the angular
motions of MTs are suppressed—this will be referred to as the
S&C+P model. A similar model has been considered earlier
in a computational work but only for N = 1 [17]. Finally, to
have a benchmark, we study the full model that incorporates
all the features observed in experiments, i.e., a MT performing
both RD and growth-pause-shrinkage kinetics simultaneously

[see Fig. 1(b)]—we will refer to it as the RD+S&C model.
The mathematical equations of transport for the KC and MT
and the Langevin and kinetic Monte Carlo simulation details
of all these models are discussed in Appendix A; all the
parameters used (Table II in Appendix A) are taken from the
in vivo measurements reported in experiments [8].

In simulations we calculate the fraction of lost kineto-
chores or equivalently, survival probability S(t ) [51]. For cap-
ture processes in free space, S(t ) typically has power-law tails
[S(t ) ∼ t−γ , for t → ∞] [39], while in confined geometries
(like in our study, where the KC capture takes place inside
the nuclear volume), it is expected to have exponential tails
asymptotically: S(t ) ∼ exp(−t/τ ) [36,51] [Fig. 1(d)]. We are
not simply interested in the mean times 〈t〉 = ∫ ∞

0 dt ′S(t ′)
[33,51], which may have limitations (see below), but also the
characteristic times τ associated with the asymptotic behavior
of S(t ). We used two different methods to estimate τ in this
paper (see Appendix B). Results presented here are for cases
of lateral capture, i.e., a KC can attach to any point along the
length of an MT body. The special cases of tip capture to the
vicinity of MT tips are discussed in Appendix C.

III. RESULTS

We first plot the mean times of KC capture 〈t〉 as a function
of MT number N in Fig. 2. We see that for N � 50, 〈t〉RD <

〈t〉S&C, implying that a passive RD mechanism is undoubtedly
more efficient than S&C. We see that for the RD+S&C
model, 〈t〉 is close (and marginally greater) than that of RD
and distinctly smaller than that of S&C. This hints that if
the MTs suffer catastrophe (which happens in the RD+S&C
model but not in the RD model), a delay is introduced
in the capture process even if they do rotational diffusion.
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FIG. 2. Mean capture time 〈t〉 for the four models are plotted vs
N in log-log scale. The important cases of RD (blue) and S&C (or-
ange) are highlighted with symbols joined by lines. The experimental
mean time ≈4.30 min is indicated by a cyan line-segment (for 3–5
MTs). At large N all the 〈t〉 values saturate to a threshold ≈0.56 min.
Since the RD model does not take the initial growth of the MTs into
account, we added 0.56 min to 〈t〉RD here for comparison with other
models.

This trend of ascending timescales with the elimination of
angular diffusion (see Table IV in Appendix D) is further
confirmed as 〈t〉 is the highest for the S&C+P model with
dynamically unstable MTs along with a pause state which
does not rotationally diffuse. For fission yeast, N ∼ 3–5 MTs
[8]. From the published experimental data (Fig. 1(b) in [8]) we
estimated the mean capture time 〈t〉 ≈ 4.3 min (cyan line in
Fig. 2). This value is reasonably close to 〈t〉RD(� 5.4 min) and
〈t〉RD+S&C (� 6.5 min) obtained from our simulations for N =
5. On the other hand, the corresponding 〈t〉S&C(� 11.6 min)
and 〈t〉S&C+P(� 17.6 min) are way larger. Thus the temporal
efficiency of RD of MTs over S&C could be a possible
physical reason underlying its biological selection in cells
like fission yeast with a small number of MTs. However,
the puzzle still remains as to why S&C is ubiquitous in the
eukaryotic world, particularly in cells with larger number
of spindle MTs. At large N in Fig. 2, we see that the 〈t〉
for all the models converges to the limit ≈0.56 min, which
is the mean growth time of an MT from the SPB to its
average length LMT . Thus the statistical differences of the
different models, if any, cannot be captured by these mean
values.

The mean value is not sufficient to represent the full
statistics of a KC capture process, as is often the case with
other stochastic problems [32,34]. First, the S(t ) function
depends strongly on the initial spatial distribution of the
KC and MTs. For our simulations, we use a generic initial
condition, namely, the N MTs are initially oriented in random
directions. In Fig. 3(a) we show that, if instead, the MTs are
initially oriented in special directions, the S(t ) curves are all
distinct—each one of them would correspond to distinct mean
values [area under the S(t ) curves]. Second, from Fig. 3(a) it
is clear that S(t ) curves quite generically are not single expo-
nentials. As a result, 〈t〉 �= τ , and we quantitatively show this
departure for all four models as a function of N (Appendix E).
The presence of multiple well-separated timescales [see inset
of Fig. 3(a)] thus makes a single mean value somewhat
misleading [56–59]. We study a quantity called the uniformity

(a) (b)

FIG. 3. (a) Semilog plot of S(t ) vs time t for the RD mechanism
with N = 45 MTs for three different initial orientations θMT (with
random φMT and θKC = 0) at t = 0. The tails of the curves are
parallel (as indicated by the fits), implying a common characteristic
time τ . Inset shows the presence of multiple timescales in a log-
log plot. (b) P(ω) vs ω are shown for RD and S&C models for
different N .

index ω = t1/(t1 + t2) [59], where t1 and t2 are two random
instants of KC capture times. If t1 ≈ t2, it implies ω ≈ 0.5,
while if t1 and t2 are very different, ω is close to 0 or 1.
The distribution function P(ω) is accordingly either unimodal
(around ω = 0.5) or multimodal. Since we are interested in
the extent of temporal variations of capture times over and
above the common mean growth time, in each model we
subtract this offset and use the samples to construct P(ω) as
defined above for different N . In Fig. 3(b), while for the RD
model P(ω) stays multimodal with varying N , for the S&C
model it is multimodal at small N and becomes unimodal
at large N . For RD, the MTs explore the 3d nuclear volume
using pivoting; as a result the diversity of capture times of the
diffusing KC due to both long and short trajectories persist for
any N . On the other hand, for S&C, MTs move rectilinearly in
3d space. They appear as static line traps in the path of the KC,
and thus with increasing N , the number of long trajectories
decreases (due to a rise in the number of traps), making P(ω)
unimodal [Fig. 3(b)].

A strong dependence of S(t ) on initial conditions
[Fig. 3(a)] implies that even variance of the timescales will
be initial condition dependent, like the mean. Yet the most
robust quantity is the characteristic time τ—all the curves
in Fig. 3(a) have the same τ . Physically this happens as τ

represents timescales of rare events of KC capture involving
long trajectories of motion which remove memories of ini-
tial conditions [31,35]. Biologically, too extreme times are
important to estimate upper bounds for completion of the
KC capture process, which affects mitosis. Thus for both
theoretical robustness and practical implications, we focus on
this timescale in the rest of the paper. To calculate τ , we use
an algorithm to study the first passage of an ensemble (∼1000
copies) of our MT-KC systems. Once a part of the ensemble
attains first passage, the original ensemble size is restored by
cloning the copies which survive up to that time [52,53] (see
method 1 in Appendix B1). Performing this step repeatedly
we obtain S(t ) up to precisions ∼10−17 [Fig. 1(d)], which
cannot be achieved by conventional algorithms.

We compare τ for RD and S&C models in Fig. 4. When N
is small, we see that τRD < τS&C , implying better efficiency
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FIG. 4. τ vs N for the RD (blue) and S&C (orange) models. A
power-law fit of τS&C is shown. Two schematics for the RD model
with finite N and N → ∞ limits are shown. The limiting value of
τ sat

RD ≈ 1.56 min is shown by a dashed line in the N → ∞ limit,
obtained by simulating the KC diffusion in the presence of two
curved absorbing surfaces.

of the RD model over S&C—a conclusion similar to that
obtained using 〈t〉 (see Appendix D). On the other hand, as
N increases, τRD starts saturating for N � 20, while τS&C

continues to decrease monotonically. This leads to a cross-
ing of the two curves. Study of τ thus suggests that the
S&C mechanism is more advantageous in cells with a large
number of MTs, rationalizing its prevalence in eukaryotes
[3,7,46]. For a comparison of the four different models, see
Appendix C.

The saturation seen in τRD is due to geometrical constraints
in the RD model. The MT tips diffuse on a spherical surface
of radius LMT , θMT ∈ [0, θmax

MT ] with θmax
MT = cos−1(LMT /2R),

and φMT ∈ [0, 2π ]. There are two such surfaces spanned by
MTs pivoted at the SPBs. As N becomes large, the entire vol-
ume below (and above) these surfaces becomes inaccessible
to the KC, since they are instantaneously captured there. We
performed a separate simulation with the initial position of
the KC taken around the equatorial plane between two curved
absorbing surfaces. The τ sat

RD ≈ 1.56 min, obtained from this
N → ∞ limit simulation, is shown by a dashed line in Fig. 4.
The values of τRD converge to τ sat

RD for large N , as expected.
To further confirm that the saturation of τ with increasing N
is a generic phenomenon due to the existence of a continuous
absorbing surface inside the confining volume, we performed
an analytical calculation for a toy model (see Appendix F).

In Fig. 4 we observe that for S&C the characteristic
time shows a nontrivial power-law decay τS&C ∼ N−β with
β ≈ 0.7. This is a striking deviation from the known results
with a static target where τ ∼ 1/N [36,48,49]. As noted
earlier, this arises due to the correlated movement of the
MTs relative to the moving KC. From our unpublished results
on the lion-lamb problem under confinement [60], we know
that the exponent β may depend on various factors such as
diffusivity and geometrical constraints.

While method 1 estimates τ precisely given adequate com-
putational resources, it may not be useful to experimentalists
with a limited number of measured samples. We propose a

TABLE I. Method 2 compared to method 1.

τRD (min) τS&C (min)

Method 2 Method 2
N1 = 1000 N1 = 100

N Method 1 N2 = 10 N2 = 100 Method 1 N2 = 10 N2 = 100

5 8.75 9.62 8.58 16.39 12.24 17.97
16 3.72 3.81 3.77 7.41 3.69 6.96
27 2.86 2.91 2.84 5.18 4.97 5.43
45 2.35 1.75 1.51 3.60 3.39 3.76

method (see method 2 in Appendix B2) based on extreme
value statistics [54,55], which allows a rough estimate of τ

from limited available data. If the experiment measures Nt

random capture times, those may be divided into N2 sets, each
containing N1 = Nt/N2 samples. The variance σ 2 of the maxi-
mum times tmax, drawn from each of these N2 sets, is related to
the characteristic time as τ = √

6σ/π (see Appendix B2). In
Table I, we see that for S&C, for just N1 = 100 and N2 = 10,
an experimentalist may estimate τ close to the actual values.
For RD, convergence to τ requires a relatively larger sample
set.

IV. CONCLUSIONS

Finding KCs by the spindle MTs is a crucial part of
mitosis. Why do organisms often select different mechanisms
to achieve capture? It is a moot question whether the existence
of any specific mechanism is just a random selection or,
given the machinery and resources available to an organism,
the chosen mechanism optimizes something. A systematic
study of first-capture times as a function of MT number N
comparing different possible mechanisms is lacking. In this
paper, we address this question by studying the temporal
optimality of different mechanisms. Interestingly we find that
one mechanism may be chosen over another, depending on
the number of spindle microtubules. We find that RD is
more efficient than S&C only when the MTs are fewer in
number, which might be an advantage for organisms such as
fission yeast. Our study shows that the mean capture time of
≈4.3 min as seen in experiments cannot be explained by a
pure search-and-capture mechanism but instead by pivoting.
On the other hand, τRD tends to saturate beyond N � 20, while
τS&C decreases monotonically, rendering the S&C mechanism
more efficient than RD for large N—this may explain the
common occurrence of S&C among eukaryotes. For a few
MTs, RD helps them explore a larger solid angular space than
S&C in a fixed time. In the latter case, misoriented MTs and
their times of growth-shrinkage may both lead to additional
delays in the first encounter with the KC.

The MT-KC capture problem has a capture time distri-
bution with an exponential tail due to confinement. Finding
τ is challenging as it associated with rare events. We used
an algorithm based on successive cloning of copies of the
system and obtained S(t ) to very high precision, leading to
an accurate estimate of τ . Furthermore, we showed that an
approximate estimate of τ is possible using the theory of
extreme value statistics. These techniques are quite general
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TABLE II. Parameter values used in simulation.

Models Parameters Values

RD Radius of nuclear sphere (R) 1.55 μm
Radius of KC (a) 0.124 μm
Length of MT (LMT ) 1.5 μm
DKC 0.0354 μm2 min−1

DMT (angular diffusion coefficient) 0.0603 rad2 min−1

Dynamic instability DKC 0.0354 μm2 min−1

Tubulin subunit length 6.15×10−4μm
Growth rate (r+) 4387.5 subunit min−1

Shrinkage rate (r−) 6175 subunit min−1

S&C G to S frequency ( f+−) 1.8 min−1

S to G frequency ( f−+) 0 min−1

S&C+P G to P frequency ( f+0) 1.8 min−1

P to S frequency ( f0−) 0.49 min−1

P to G frequency ( f0+) 0 min−1

S to P frequency ( f−0) 0 min−1

RD+S&C D0 0.2036 rad2 min−1μm3

D̃MT D0/r3
MT (if rMT >= 1.5 μm),

0.0603 rad2min−1 (if rMT < 1.5 μm)
G to P frequency ( f+0) 1.8 min−1

P to S frequency ( f0−) 0.49 min−1

P to G frequency ( f0+) 0 min−1

S to P frequency ( f−0) 0 min−1

and can be used to study other first-passage processes under
confinement.

We hope that our findings may encourage future studies
comparing capture mechanisms in different organisms with
varying spindle sizes. This may test our basic hypothesis that
the physical advantages of one mechanism over others may
drive their selection.
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APPENDIX A: SIMULATION METHOD OF THE MODELS

Here we first discuss the computational models to study the
attachment of MTs to the KC by RD and S&C. The KC is as-
sumed to be a small sphere of radius a which diffuses freely in
the nucleoplasm. The nucleus is modeled as a sphere of radius
R. MTs can nucleate from either of the spindle pole bodies
(SPBs). All the parameter values used in our simulations (see
Table II) were taken from experimental measurements done at
T = 24 ◦C [8].

1. Kinetics of the kinetochore

For all four models that we study in this paper [see Fig. 1(c)
in the main text], the KC dynamics is identical. The over-

damped dynamics of KC [8,61] is given by

drKC

dt
=

√
2DKCξKC (t ). (A1)

Here, rKC is the position vector and DKC is the translational
diffusion coefficient of the KC. The components of ξKC (t ) are
Gaussian white noise with mean zero and delta correlations
〈ξi(t )ξ j (t ′)〉 = δi, jδ(t − t ′) with i, j = xKC, yKC, zKC . The ini-
tial position of the KC is uniformly distributed inside a small
subsphere around the center of radius 0.3 μm. At the nuclear
boundary, the reflecting boundary condition is applied along
the radius vector joining the KC and the center of the nuclear
sphere.

2. Langevin simulation for rotational diffusion of MTs

In this process, all the MTs are assumed to have fixed
lengths LMT , pivoted at either of the SPBs [Fig. 1(c) in the
main text]. In the overdamped limit, the equation of motion
for the MT in spherical polar coordinates is given by [8]

dθMT

dt
= DMT

cos θMT

sin θMT
+

√
2DMT ξθMT (t ), (A2)

dφMT

dt
=

√
2DMT

sin θMT
ξφMT (t ). (A3)

Here, DMT is the angular diffusion coefficient of the MTs.
Similar to ξKC , here ξMT = (ξθMT , ξφMT ) is a Gaussian white
noise with mean zero and delta correlations. The initial ori-
entation of the MTs pivoted at the SPBs are distributed uni-
formly inside the nuclear envelope. Since MT length rMT =
LMT is a constant, the tip of a MT is always constrained
to diffuse on a portion of a spherical surface of radius
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LMT , with 0 � θMT � θmax
MT and 0 � φMT � 2π . Here θmax

MT =
cos−1(LMT /2R)]. Reflecting boundary conditions are applied
when the MT tip hits the boundary.

3. Langevin-Gillespie hybrid algorithm for search and capture

The search-and-capture S&C mechanism involves dy-
namic instability of MTs [10,12]. Experiments [8], however,
showed that the MTs exhibit a state of pause (P) before
switching from the growth (G) to the shrink (S) state (also
adapted in [17]). To compare the relative efficiency, here we
study different models of S&C both with or without the P
state. MTs have a tubular structure consisting of typically 13
protofilaments [1]. Thus when 13 tubulin dimers are added
(or subtracted), the length of a MT rMT increases (or de-
creases) by a length of 8 nm. Since we do not have explicit
protofilaments in our models, we take care of this by choosing
the effective subunit length of each dimer to be 8/13 nm
in simulations, as has been done in earlier works [62–64].
In all our dynamic instability models, each MT starts out in
a random direction with a “seed” length lmin of 20 dimers
(i.e., 20×8/13 ≈ 12 nm) and grows by adding subunits with
rate r+. In S state, a MT shrinks back to the cutoff length
lmin by losing subunits with rate r−. Subsequently, the MT
switches back to the G state, choosing a new random direc-
tion.

To simulate our models, we use a combination of Langevin
dynamics and kinetic Monte Carlo. The KC position is up-
dated using the Langevin equation [Eq. (A1)], whereas the
dynamic instability of a MT is modeled using the Gillespie
algorithm [65].

a. Pure search-and-capture model (S&C)

This is the standard dynamic instability model where the
P state is ignored [Fig. 1(c) in the main text]. MT switches
from the G to the S state with the catastrophe frequency f+−
keeping its orientation fixed. When a growing MT tip hits
the nuclear envelope, it switches to the S state, keeping its
orientation unchanged.

b. Search-and-capture with stationary MTs
in pause state (S&C+P)

In this case a MT switches from G to P with frequency f+0

and P to S, with frequency f0− keeping its orientation fixed
[see Fig. 1(c) in the main text and Table II]. Upon hitting the
nuclear envelope, the MTs switch to the P state.

c. Search and capture with rotational diffusion (S&C+RD)

This model incorporates all the features observed in
the experiments. A MT undergoes both rotational diffusion
and dynamic instability (i.e., G→P→S) simultaneously [see
Figs. 1(b) and 1(c) in the main text]. The state of MT
remains unchanged upon hitting the nuclear envelope. In
this model, unlike S&C or S&C+P, MTs not only have a
Gillespie update due to growth, pause and shrinkage, but also
a simultaneous Langevin update due to rotational diffusion
following Eqs. (A2) and (A3). But while the Langevin updates
of KC and MT are more frequent and happen at chosen time
intervals �t , the Gillespie updates for MT growth, pause, and

shrinkage events happen occasionally after several such �t
intervals.

Since the length rMT varies, we chose a length-dependent
angular diffusion constant D̃MT = D0/r3

MT [66–68] for rMT >

LMT , where D0 = DMT L3
MT (see Table II). For rMT � LMT , we

use D̃MT = DMT —note that having a r−3
MT dependence all the

way down to small values of rMT would lead to unrealistic
values of D̃MT .

4. Capture conditions

The positions of the MT tip and the center of mass of
the KC are given by rMT = (rMT , θMT , φMT ) and rKC =
(rKC, θKC, φKC ), respectively. The angle subtended at the SPB
is

γ = cos−1

(
rKC · rMT

rKCrMT

)
.

As discussed earlier, the KC can attach to the tip of the MT or
laterally along the body (see Fig. 6). The lateral capture con-
dition is rKC cos γ � rMT and rKC sin γ � a, or |rKC − rMT |
� a. For tip capture (Fig. 6), the capture conditions we use
are in conformity with the criterion used by Kalinina et al. in
their experiments [8] (see Appendix C).

5. Effect of finite volume of the microtubules

In this work, for simplicity, we have ignored the finite vol-
ume of the MTs. For a small number of MTs, as in the case for
fission yeast, this assumption holds true. As N is increased, the
excluded volume effects might become important. Moreover,
there is an upper limit on the number of MTs that can be
accommodated on the surface of a SPB (see below for details).
For S&C, since MTs growing radially out of the SPB do not
explore the volume laterally, this effect has been neglected as
in earlier works [7,15]. For the RD mechanism, this effect will
become important beyond a certain MT number—this may
be studied using more sophisticated computational models in
future. However, the broad conclusions that we draw from this
work, like the relative capture time efficiency of RD over S&C
for different ranges of N , are expected to remain unchanged.
Moreover, the saturation that we see in τ with increasing N
for RD is expected to occur at a lower value of N .

Estimation of maximum number of MTs which may grow
out of the surface of SPBs

The spindle pole body for fission yeast is oblate shaped
with diameters 2d1 = 0.18 μm and 2d2 = 0.09 μm [69]. As-
suming that MTs grow from the surface of SPBs, we may
calculate the ratio of the surface area SA of a SPB and the
cross-sectional area of a MT. This number gives an estimate
of the maximum number of MTs that may grow out of a SPB.
The area SA of a SPB is calculated by using the following
formula [70]:

SA = 2πd2
1 + π

d2
2

e
log

(
1 + e

1 − e

)
≈ 0.0673 μm2.

Here e = (1 − d2
2 /d2

1 ) is the eccentricity of the SPB. Noting
that the diameter of a MT is 2dMT = 25 nm [1], the maximum
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number of MTs that can be accommodated on each SPB is

SA/2

πd2
MT

≈ 69.

The factor of half above takes care of the fact that MTs grow
from half of the area of a SPB. Finally, considering both
the SPBs at the two poles, we obtain a maximum number
of 2×69 = 138 MTs which may grow within a fission yeast
nucleus.

APPENDIX B: METHODS TO ESTIMATE
CHARACTERISTIC CAPTURE TIME

For the randomly sampled first-capture times of KC by
MTs in the models discussed above, the characteristic times
τ are challenging to estimate. We discuss below two different
methods for estimating τ which we have used in this work.

1. Method 1: Cloning of systems to calculate S(t )

As discussed in the main text, the asymptotic behavior of
the survival probability S(t ) is independent of the initial posi-
tions of the MTs and the KC and behaves as limt→∞ S(t ) ∼
exp(−t/τ ). However, this robust asymptotic exponential tail
may appear at very small values of S(t ). Standard compu-
tational methods often fix a precision like ∼10−8 for S(t )
and try to get the tail behavior from large samples of t . But
however large the sample number is, at such ordinary levels
of precision the asymptotic tail may not even appear, and so
accurate determination of τ remains a challenge. However
an algorithm, developed earlier in the context of reaction-
diffusion systems [52,53], may be very effectively extended
to study problems of survival in confined geometries and in
particular, to obtain accurate estimates of asymptotic behavior.
The main idea of the algorithm is schematically depicted in
Fig. 5. At t = 0, we start with M random realizations of the

FIG. 5. Illustration of the algorithm of method 1 to calculate the
survival probabilities S(t ) to high precision. In this figure, M = 4 and
N = 1.

system, each one having N number of MTs and a KC. Initially
the survival probability S(0) = 1. As time evolves, capture
happens in some copies, while in the remaining (say q(t ))
copies the KC continues to survive. Thus at any time t , we
have S(t ) = S(0)[q(t )/M]. At a time t = t1 when q(t1)/M =
s1 just becomes � 1/2, we replicate the q(t1) surviving copies
to restore the initial ensemble size M—this step is referred to
as cloning or enrichment [53]. Subsequently, at any t > t1, if
q(t ) are the surviving copies, then S(t ) = s1[q(t )/M] until the
next enrichment event happens at t = t2 when q(t2)/M = s2

becomes just � 1/2. This process is iterated many times. For
k successive such cloning events S(t ) = s1s2 . . . [q(t )/M] =
O(1/2k ), and thus accuracies like ∼10−17 or even lower
can be readily achieved. For such precision of S(t ), it is
guaranteed that the exponential tail clearly appears, and so
τ is extremely accurately determined. In our simulations, the
choice of a large number of realizations, namely, M = 1000,
reduced fluctuations significantly, but the computational cost
was fairly large—each S(t ) curve for a particular N of each
model [see, e.g., Fig. 1(d) in the main text] is generated by
running the simulation for ∼96 h using the supercomputing
facility at IIT Bombay.

2. Method 2: Sampling extreme times

Extreme value statistics deals with extreme (maximum
or minimum) deviations of a set of random observations.
Consider a set of independent and identically distributed
random variables {t1, t2, . . . , tN1} that are drawn from a parent
distribution F (ti), with i = 1, . . . , N1, where

F (ti ) ∼ C exp(−ti/τ ), for large ti. (B1)

Here τ is the relaxation constant (characteristic time in our
case) and C is a constant. One might be interested in the
distribution of the maximum (extreme) value tmax = max{ti}.
The cumulative distribution of tmax is

Q(t̃ ) = prob[t̃ � tmax] = prob[t̃ � t1, t̃ � t2, . . . , t̃ � tN1 ]

=
[ ∫ t̃

ti=0
F (ti)dti

]N1

=
[

1 −
∫ ∞

ti=t̃
F (ti )dti

]N1

. (B2)

At large t̃ , replacing F (ti) in Eq. (B2) by Eq. (B1) we get

Q(t̃ ) ≈ [1 − Cτ exp(−t̃/τ )]N1 . (B3)

When N1 is large, Q(t̃ ) in Eq. (B3) can be approximated as
follows:

Q(t̃ ) ≈ exp(−CN1τ exp(−t̃/τ ))

= exp(− exp[ln(CN1τ )] exp(−t̃/τ ))

= exp(− exp[−(t̃/τ − ln(CN1τ ))]), (B4)

and it finally converges to the cumulative Gumbel distribution
[54,55],

Q(t̃ ) ≈ exp(− exp[−(t̃ − μ)/τ ]), (B5)

with μ = τ ln(CN1τ ). Note that μ and τ are nonuniversal
constants dependent on the parent distribution F (t ).

It is well known that the variance σ 2 of the Gum-
bel distribution is related to the characteristic value τ as
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follows [54]:

τ =
√

6

π
σ. (B6)

The above idea may be used for the purpose of estimating
characteristic times of first capture of KC by MTs having the
first-passage distribution F (t ). Note that the decay constants
of the exponential tail of F (t ) and survival probability S(t )
are the same. In computation or experiment, one needs to first
sample N1×N2 different times of capture. The whole data may
be divided into N2 sets, each having N1 sample times. Each
such set may provide a tmax such that there would be N2 such
values. These tmax values may then be used to obtain σ 2, which
leads to τ through Eq. (B6). Table I in the main text show the
efficacy of this method.

APPENDIX C: CHARACTERISTIC TIME FOR VARYING
MICROTUBULE NUMBER: TIP AND LATERAL CAPTURE

We study the characteristic time τ as a function of N for
the four different models when the KC attaches to the tip of a
MT. The KC may attach anywhere within <0.5 μm of the MT
tip—this was the definition of tip capture used in the experi-
ment [8]. This is shown in Fig. 6(a). We find that the qualita-
tive features are similar to the lateral capture case [shown in
Fig. 6(b)]. We see that in both the cases RD model is more effi-
cient than the S&C model (and also the other two models) for
smaller N . Similar to the case of lateral capture, here as well
we find that τRD saturates at large N . All other τ values keep
monotonically decreasing. The reason behind the saturation in

(a)

(b)

FIG. 6. Characteristic times for (a) tip capture and (b) lateral
capture for the four models as a function of N .

TABLE III. τRD and 〈t〉RD compared to other dynamic instability
associated models.

τRD/τModel 〈t〉RD/〈t〉Model

Model N = 1 N = 3 N = 5 N = 1 N = 3 N = 5

RD+S&C 1.18 0.84 0.80 1.10 0.74 0.74
S&C 0.73 0.57 0.53 0.66 0.44 0.42
S&C+P 0.52 0.41 0.39 0.43 0.30 0.27

τRD can be explained using the similar argument of geometri-
cal constraint as in the main text. Here, the annular volumes
(between radii LMT and LMT − 0.5) on both sides of the
nuclear sphere become the region of the capture as N → ∞.
The condition for tip capture is 0 � (rMT − rKC cos γ ) �
0.5 and rKC sin γ � a, or, |rKC − rMT | � a.

APPENDIX D: EFFICIENCY OF THE RD MODEL
WITH RESPECT TO THE OTHER MODELS

As discussed in the main text, in addition to the mean time
〈t〉, the characteristic time τ is a very useful quantity to study.
Here, we compare the timescales of four models discussed
in the main text to demonstrate the quantitative temporal
benefit that the RD mechanism produces. The efficiency of
the RD model is expressed in terms of two ratios τRD/τModel

and 〈t〉RD/〈t〉Model in Table III for MT numbers 1, 3, and 5,
respectively. Among the three N values studied below, the ef-
ficiency of the pure RD mechanism is most clearly manifested
for N = 5. In Fig. 2 in the main text, we have shown that
〈t〉RD is the smallest compared to all the other models for a
significant range of N . In Table IV, we explicitly write some
values of 〈t〉 for the four different models as a function of N
in descending order of temporal efficiency.

APPENDIX E: RATIO OF CHARACTERISTIC AND MEAN
TIMESCALES—INDICATOR OF NONEXPONENTIAL

FORMS OF S(t )

For a simple exponential function S(t ) = exp(−t/τ ), it is
easy to see that the mean time 〈t〉 = ∫ ∞

0 S(t )dt = τ (charac-
teristic time). But the curves S(t ) which we obtain in our study
(for example, in Fig. 2 in the main text) have nonexponential
functional forms. Nevertheless, they all have exponential tails.
The presence of multiple timescales manifest in the fact
that 〈t〉 �= τ . Thus, the ratio of τ/〈t〉 is an indicator of the
nonexponential form of S(t ). In Fig. 7, we plot this ratio [by
using the data of Fig. 2 in the main text and Fig. 6(b) below]
as a function of N for the four different models studied in the

TABLE IV. 〈t〉 for different models as a function of N .

〈t〉 (min)

Model N = 5 N = 10 N = 45 N = 122

RD 5.38 2.29 0.73 0.58
RD+S&C 6.52 3.02 0.85 0.59
S&C 11.56 5.44 1.09 0.63
S&C+P 17.58 8.51 1.47 0.71
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FIG. 7. Ratio of the characteristic and mean capture times for
the four models as a function of MT number N . The black solid line
indicates the case of a simple exponential.

paper. For a few MTs (<3), the values of the ratios are slightly
greater than 1, indicating that the corresponding S(t ) functions
are “almost” single exponentials. But with increasing N there
is a strong departure from exponentiality, indicated by the rise
of the values of the ratios. In fact, for the RD model even at the
largest N that we studied, the ratio stays very different from
1. This compliments our finding that P(ω) remains bimodal
for the RD model for all values of N (hence showing large
trajectory-to-trajectory fluctuations in capture times). For the
other three models, while 〈t〉 tends to saturate at large N (see
Fig. 2 in the main text), the characteristic time τ continues
to decrease [Fig. 6(b)]. Consequently, the ratio τ/〈t〉 shows a
plunge in Fig. 7 at large N .

APPENDIX F: QUASI-TWO-DIMENSIONAL MODEL TO
EXPLAIN THE SATURATION OF τ IN THE RD MODEL

For large N , we have seen the saturation behavior of τRD

in Fig. 4 in the main text and in Fig. 6(b) above. Here we
show that this behavior is generic by studying a toy model
analytically and computationally. Consider a circle of radius b
inside which a small disk of radius a (like the KC) diffuses
freely. N point particles (like the tips of N MTs) diffuse
along the diameter (see schematic in Fig. 8) of the circle.
As N → ∞ the entire diameter becomes an absorbing line
(see schematic in Fig. 8). We perform simulations for finite
N , and the data is plotted in Fig. 8 with green symbols. We
have performed an analytical calculation for τ which yields
τsat ≈ 3.10 [arbitrary (arb.) unit]; the latter is represented by
a black solid line in Fig. 8. Convergence of the computa-
tional values of τ to the analytical value of τsat for N > 10
is clearly visible. The analytical calculation is discussed be-
low.

Analytical estimate of τsat for the
quasi-two-dimensional model

Using the backward Fokker-Planck equation [61], we ana-
lytically estimate here the τsat value for the quasi-2D model in
the limit of N → ∞ (schematic in Fig. 8). The disk of radius a
(similar to the KC) diffuses inside a semicircle of radius b. The
diameter of the semicircle is an absorbing boundary while the

FIG. 8. A toy model to explain the saturation in τ . A disk diffuses
inside a circle and can get captured along the diameter where nonin-
teracting particles diffuse along the diameter (see schematic for finite
N). The limiting case here is an absorbing line along the diameter of
the circle, which is realized for N → ∞ (shown schematically). The
characteristic time τ for the toy model (green filled square) shows
saturation with N . The τsat ≈ 3.10 (arb. unit) (black line) is obtained
from the analytical calculation discussed below.

semicircular arc is a reflecting boundary. For the simplest case
where a disk is assumed to be as a point particle (a = 0), the
backward Fokker-Planck equation for the survival probability
S(r, θ, t ) is given by

∂S

∂t
= D∇2S, (F1)

where ∇2 is the two-dimensional Laplacian operator in
polar coordinates. S(r, θ, t ) is the survival probability of
the particle up to time t starting from the initial position
(r, θ ). Here D is the diffusion coefficient of the disk. We
solve Eq. (F1) using a separation of variables. Substituting
S(r, θ, t ) = R(r)�(θ )T (t ) in the above equation we get

1

DT

dT

dt
= 1

R

d2R

dR2
+ 1

Rr

dR

dr
+ 1

r2�

d2�

dθ2
.

Equating the left-hand side to a constant value −k2, we get the
T (t ) solution as

T (t ) = T0 exp(−k2Dt ) (F2)

and the above equation becomes

r2

R

d2R

dr2
+ r

R

dR

dr
+ k2r2 = − 1

�

d2�

dθ2
. (F3)

Equating the right-hand side to m2 and applying the ab-
sorbing boundary condition �(θ ) = 0 at θ = 0 and π , we get
the solution of the angular part as

�(θ ) = A sin(mθ ), (F4)

where m can be any integer value. Finally, the radial part of
Eq. (F3) gives the solution in terms of Bessel functions of
order m,

R(r) = AmJm(kr) + BmYm(kr). (F5)
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At r = 0, the radial function should vanish due to the ab-
sorbing boundary condition. Since Ym(kr) diverges as r → 0,
we drop that term. The above relation is true for any positive
integer m. The reflecting boundary condition leads to the van-
ishing of the first derivative of R(r) at r = b, i.e., dR

dr

∣∣
r→b = 0.

Using Eq. (F5) and the reflecting boundary condition we
obtain [71]

dJm(kr)

dr

∣∣∣∣
r→b

= m

b
Jm(kb) − kJm+1(kb) = 0. (F6)

From Eq. (F2) the characteristic time τsat = 1/k2
1D, where

k1 is the smallest positive value of k satisfying Eq. (F6),
corresponding to m = 1. Assuming k1b is a small number, we

approximate Jm(kb) ≈ (kb)m

m!2m to finally obtain

k1 ≈ 2

b
. (F7)

Since in our simulation the disk has a finite radius a and
the capture happens as the periphery of the disk touches the
diameter, we need to replace the radius b in Eq. (F7) by
an effective radius b̃. We use a geometrical approximation
b̃ ≈ √

R2 − 4a2 − a. For b = 4.0, a = 0.4, and D = 1, we
get τsat = b̃2/4D ≈ 3.10 (arb. unit). We further confirm this
value by directly simulating the case of N → ∞ and find
a numerical value of τsat = 3.02 (arb. unit), which is in
good agreement with the analytical approximation of 3.10
(arb. unit).
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