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Pairing in the two-dimensional Hubbard model from weak to strong coupling
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The Hubbard model is the simplest model that is believed to exhibit superconductivity arising from purely
repulsive interactions and has been extensively applied to explore a variety of unconventional superconducting
systems. Here we study the evolution of the leading superconducting instabilities of the single-orbital Hubbard
model on a two-dimensional square lattice as a function of onsite Coulomb repulsion U and band filling by
calculating the irreducible particle-particle scattering vertex obtained from dynamical cluster approximation
(DCA) calculations, and compare the results to both perturbative Kohn-Luttinger (KL) theory as well as the
widely used random phase approximation (RPA) spin-fluctuation pairing scheme. Near half-filling, we find
remarkable agreement of the hierarchy of the leading pairing states among these three methods, implying
adiabatic continuity between weak- and strong-coupling pairing solutions of the Hubbard model. The dx2−y2 -
wave instability is robust to increasing U near half-filling as expected. Away from half-filling, the predictions
of KL and RPA at small U for transitions to other pair states agree with DCA at intermediate U as well as
recent diagrammatic Monte Carlo calculations. RPA results fail only in the very dilute limit, where it yields a
dxy ground state instead of a p-wave state established by diagrammatic Monte Carlo and low-order perturbative
methods, as well as our DCA calculations. We discuss the origins of this discrepancy, highlighting the crucial
role of the vertex corrections neglected in the RPA approach. Overall, a comparison of the various methods over
the entire phase diagram strongly suggests a smooth crossover of the superconducting interaction generated by
local Hubbard interactions between weak and strong coupling.

DOI: 10.1103/PhysRevResearch.2.013108

I. INTRODUCTION

Since the theoretical proposal by Kohn and Luttinger (KL)
[1,2] that superconductivity can arise from purely repulsive
electron interactions and the subsequent discovery of su-
perconductivity in materials like heavy fermions, cuprates,
organic Bechgaard salts, and iron-based superconductors, su-
perconducting instabilities in models of interacting fermions
have been extensively studied. The Hubbard model [3] has
played an exceptional paradigmatic role in this discussion.
It is the simplest model of fermions with local interactions,
and was argued furthermore to be the appropriate effective
model to describe unconventional superconductivity in cor-
related electron systems, notably in cuprates [4]. The model
has also been popular because the physics of pairing by
spin fluctuations, originally suggested by Berk and Schrief-
fer [5,6] in continuum models and extended by Scalapino
and others to lattice Hubbard-type models [7–9], is rather
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simple to capture within the straightforward random phase
approximation (RPA) [10]. At present, theoretical studies of
the Hubbard model constitute a growing research area as seen,
for example, by several recent extensive comparisons between
various state-of-the-art numerical methods providing updated
benchmarks on the ground-state energy, the self-energy, and
competing order in the Hubbard model [11,12]. An important
next step is to compare and quantify the superconducting
pairing instabilities within this model [13].

Close to half band filling, the 2D Hubbard model on a
square lattice is known to exhibit strong d-wave pair corre-
lations [14]. While a rigorous proof that d-wave superconduc-
tivity exists in the model at T = 0 is lacking, the preponder-
ance of evidence from numerical calculations [15–27], as well
as weak and intermediate coupling renormalization group
studies [28–35], strongly support this conclusion. Rather
less is known with high confidence at larger interaction U ,
further away from the half-filled state, or with regard to
subleading pair channels throughout the phase diagram. It is
convenient to study the latter two questions using controlled
perturbative methods or via RPA due to physical transparency
and ease of implementation. Several authors, including the
current ones, have applied various weak-coupling schemes
to map out the leading superconducting instabilities as a
function of, e.g., doping and band parameters, displaying a
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rich mosaic of different pairing states [36–42]. Predictions
of these studies for leading pairing instabilities throughout
the phase diagram appear to agree rather well with recent
diagrammatic Monte Carlo calculations that should be well-
controlled and able to reach somewhat higher U [24]. How-
ever, the general question of how the pairing in the 2D
Hubbard model changes as correlations are increased is still
open.

In the special case close to half-filling, the Hubbard model
reduces to the t-J model as U → ∞, and t-J studies have
also found d-wave pairing in this doping regime [43–50].
Numerical results in Ref. [48] showed that the pairing in-
teraction in the Hubbard and t-J models contains both a
large retarded contribution arising from spin fluctuations and
a smaller nonretarded contribution. For the Hubbard model,
the “nonretarded” contribution arises from high-energy exci-
tations involving the upper Hubbard band, while for the t-J
model, there is a corresponding instantaneous exchange con-
tribution. Moreover, this study found that the retarded spin-
fluctuation interaction provides the dominant contribution to
the pairing interaction. This supports the intriguing conclusion
that the physics of pairing at strong coupling is similar to,
or at least evolves continuously from, that at weak coupling.
However, away from half-filling little is known about this
crossover.

In this study, we investigate if the evolution of the pairing
interaction is continuous from weak to strong coupling. This
is reflected in the continuity of the leading and subleading
pairing instabilities upon increasing Coulomb interaction U .
It is not our intention here to make detailed comparison of
the relative stability of the various competing orders that are
observed in cuprates and may be present in the Hubbard
model or its generalizations, nor to explain the formation of
the pseudogap state out of the Mott insulator at half-filling.
Instead, we simply propose to understand the evolution of
the pairing interaction in the Hubbard model as a function of
doping and correlation strength.

With this question in mind, we calculate the supercon-
ducting pairing vertex of the Hubbard model via numerical
solutions of the Bethe-Salpeter equation obtained in the dy-
namical cluster approximation (DCA) with quantum Monte
Carlo (QMC) impurity solver. This approximation [51,52] is
known to provide an accurate estimate of the pairing vertex
over a range of intermediate strength U values appropriate
for the cuprates [53]. We then compare these results with
both perturbative Kohn-Luttinger (KL) theory and the RPA
scheme. The latter breaks down at higher U due to the well-
known magnetic instability inherent to the approximation, but
is thought to work well at smaller interaction strengths. We
find that the hierarchy of pairing eigenvalues of the linearized
gap equation match up well between the methods in the region
where they can be compared, providing further evidence that
the pairing evolution is smooth from weak to strong coupling.
Results from the simple RPA agree spectacularly well with
diagrammatic Monte Carlo [24] over the entire doping range
except at the smallest doping, where p-wave spin triplet
pairing is stable over a much narrower region in the RPA than
obtained in asymptotically exact results [54,55]. We discuss
the reasons for this discrepancy.

II. MODEL AND METHODS

We study the single-orbital Hubbard model defined on a
2D square lattice

H = −
∑
i, j,σ

ti, jc
†
iσ c jσ +

∑
iσ

Uniσ niσ̄ −
∑

iσ

μniσ , (1)

where c†
iσ /ciσ creates/annihilates an electron at lattice site

i with spin σ , and niσ = c†
iσ ciσ is the number operator of

electrons with spin σ at site i. The nearest-neighbor hopping
sets the energy unit, t = 1, and we include also next-nearest-
neighbor hopping t ′. The superconducting pairing originates
from the repulsive Coulomb interaction and is treated nu-
merically by three different approaches. First, we calculate
the full energy-resolved pairing kernel with inclusion of self-
energy corrections, and solve the Bethe-Salpeter equation
with Green’s functions and irreducible particle-particle vertex
obtained from quantum Monte Carlo simulations using the dy-
namic cluster approximation (DCA). The details are explained
in Sec. II A below. Second, we apply perturbative KL theory,
and lastly compare with the RPA spin-fluctuation method for
pairing, both detailed in Sec. II B. In KL-theory, only the
second-order diagrams enter the pairing theory, whereas in the
RPA approach, the effective pairing interaction is evaluated
diagrammatically by a selected class of diagrams that high-
lights the physics of nesting and pronounced spin fluctuations.
Whereas KL theory is a controlled weak-coupling approach
valid at small interactions U (compared to the bandwidth),
the solution of the Bethe-Salpeter equation by DCA is not
restricted to a certain regime of Hubbard U . However, this
method is significantly heavier computationally and suffers
from the sign problem [51]. This imposes constraints on the
smallness of U as well as the size of t ′, doping, and cluster
size [51,52].

A. Pairing within the dynamical cluster approximation

For the quantum Monte Carlo calculations, we use a
dynamic cluster approximation [51] with a continuous-time
auxiliary field (CT-AUX) QMC solver [52]. The DCA repre-
sents the bulk lattice by a finite size cluster and uses coarse-
graining of the reciprocal space to retain information about
the remaining bulk degrees of freedom. Within this cluster
approach, the first Brillouin zone is divided into Nc patches
PK, each of which is represented by a cluster momentum K,
and within which the self-energy �(k, iωn) is assumed to be
constant and given by the cluster self-energy �c(K, iωn). One
then averages the Green’s function over the patches PK to
determine the coarse-grained Green’s function

Ḡ(K, iωn) = Nc

N

∑
k∈PK

[iωn − ξk − �c(K, iωn)]−1, (2)

with ξk = −2t (cos kx + cos ky) − 4t ′ cos kx cos ky − μ. Here
the sum is restricted to the Nc/N momenta within the patch
about the cluster momentum K. The corresponding bare prop-
agator G0(K, iωn) = [Ḡ−1(K, iωn) + �c(K, iωn)]−1 is then
used together with the interaction U to set up the effec-
tive cluster problem, in which the self-energy �c(K, iωn) =
F[G0(K, iωn),U ] is calculated with the CT-AUX QMC
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solver. This calculation is repeated iteratively until the self-
energy has converged. For further details, the reader is referred
to Ref. [51].

After convergence, the two-particle Green’s function in
the particle-particle channel with zero center of mass mo-
mentum and energy, Gc,2(K, K ′) = G↑↓↓↑

c,2 (K,−K,−K ′, K ′)
is calculated for the cluster problem [53]. Here, K = (K, iωn)
and K ′ = (K′, iωn′ ). The irreducible particle-particle vertex
�pp(K, K ′) is then extracted from the Bethe-Salpether equa-
tion

Gc,2(K, K ′)

= Ḡ(K )Ḡ(−K )δK,K ′

+ T

Nc

∑
K ′′

Ḡ(K )Ḡ(−K )�pp(K, K ′′)Gc,2(K ′′, K ′), (3)

and used in the DCA gap equation for the bulk lattice

− T

Nc

∑
K ′

�pp(K, K ′)χ̄ pp
0 (K ′)φα (K ′) = λαφα (K ), (4)

where the pairing kernel G(k, iωn)G(−k,−iωn) has been
coarse-grained over the momenta of the DCA patches PK
to give χ̄

pp
0 (K ) = Nc/N

∑
k∈PK

G(k, iωn)G(−k,−iωn). The
solution of this eigenvalue equation gives the DCA results
for the leading eigenvalues λα and corresponding eigenvectors
φα (K ). We use a cluster size of N = 64 for U = 2 and N =
32 for U = 4, 6, and 8 and the temperature is set to T =
0.025, 0.05, 0.15, and 0.2 for U = 2, 4, 6, and 8, respec-
tively. We stress that the DCA calculations in the intermediate
to strong coupling regime (U = 6 and 8) were carried out at
temperatures T � 0.15. While there is mounting numerical
evidence for static charge and spin stripe order in the ground
state of the doped Hubbard model [56–59], particularly at
1/8 doping, fluctuating stripe correlations rather than static
order was found at the elevated temperatures we have used
in recent determinant QMC calculations [60]. We therefore
ignore the possibility of competing static stripe order in the
DCA calculations. Moreover, we only consider the on-site U
repulsion. An additional nearest neighbor repulsion V term in
the extended Hubbard model was considered in recent studies
using DCA calculations [61] as well as cellular dynamical
mean-field theory [62,63]. These calculations found that d-
wave superconductivity is only weakly suppressed by small
to moderate V because of the strongly retarded nature of the
d-wave pairing interaction.

B. Pairing within Kohn-Luttinger and RPA
spin-fluctuation theory

In both weak-coupling KL theory as well as in RPA
spin-fluctuation mediated superconductivity, one derives an
effective Cooper pair term of the form

Hint = 1

2

∑
k,k′

V (k, k′)c†
k′↑c†

−k′↓c−k↓ck↑ + H.c., (5)

with V (k, k′) denoting the effective pairing vertex. In the KL
approach, the vertex is obtained to second order in U . Since
Hubbard interactions connect propagators of opposite spin
only, this amounts to an evaluation of the diagrams depicted
in Fig. 1. The effective interaction obtained from the second

FIG. 1. Second-order screening (bubble) and exchange (ladder)
diagrams. Note that each interaction line U depicted by a wiggly
line connects opposite spins only. The bubble diagram contributes to
same spin triplet pairing only, and singlet and opposite spin-triplet
solutions arise from the ladder diagram after symmetrization and
antisymmetrization, respectively, as stated in Eq. (6).

order diagrams is given by

VKL(k, k′) = U 2

2
[χ0(k + k′) ± χ0(k − k′)], (6)

where the upper (lower) sign corresponds to the singlet
(triplet) channel. In the singlet channel, the effective inter-
action includes the first order repulsive term U . The bare
spin susceptibility is given by the Lindhard function evaluated
at zero energy χ0(q) = 1

N

∑
k

f (ξk+q )− f (ξk )
ξk−ξk+q

, with the Fermi

function f (ξ ) = [exp(ξ/T ) + 1]−1.
Within RPA, the screening (bubble) and exchange (ladder)

diagrams depicted in Fig. 1 are summed to infinite order in
U . The bubble diagrams correspond to effective interactions
through longitudinal fluctuations, while the ladder diagrams
are due to exchange interactions mediated by transverse fluc-
tuations. The final interaction between opposite spin electrons
is

V (k, k′) = U + V RPA
lo (k − k′) + V RPA

tr (k + k′), (7)

V RPA
lo (k − k′) = U 2

2

[
χ0(k − k′)

1 −Uχ0(k − k′)
− χ0(k − k′)

1 +Uχ0(k − k′)

]
,

V RPA
tr (k + k′) = U 2χ0(k + k′)

1 − Uχ0(k + k′)
. (8)

As shown in Eq. (8), the contribution from screening can
be written in terms of a spin-fluctuation term displaying
the Stoner enhancement and a charge contribution, which
generally remains small. In this study, we restrict ourselves to
the paramagnetic phase, where the longitudinal and transverse
spin susceptibilities are the same and all triplet channels are
degenerate.

We calculate the spin-singlet (s) (spin-triplet (t )) gaps by
symmetrizing (antisymmetrizing) the effective interactions,
V s/t (k, k′) = 1

2 [V (k, k′) ± V (−k, k′)]. The superconducting
gap equation

�k = −
∑

k′
V s/t (k, k′)

�k′

2Ek′
tanh

(
βEk′

2

)
, (9)

with Ek =
√

ξ 2
k + |�k|2 is linearized by setting Ek = |ξk|.

This gives the leading and subleading superconducting insta-
bilities at Tc and amounts to a calculation of the eigenvalues
λi and corresponding eigenvectors gi(k) of the matrix

Ms/t
k,k′ = − 1

(2π )2

lk′

vF (k′)
V s/t (k, k′), (10)
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FIG. 2. (a) Fermi surface and (b) real part of bare spin suscepti-
bility χ0(q) for electron filling n = 0.90 and t ′ = −0.15.

with k, k′ restricted to the Fermi surface. Here, lk′ is the length
of the Fermi surface segment, vF (k′) is the Fermi speed at k′.
The largest eigenvalue corresponds to the leading instability,
but additional details of the pairing structure are reflected in
the subleading solutions. Below, we compare the solutions of
the linearized gap equation to the obtained instabilities from
quantum Monte Carlo DCA.

III. RESULTS

We focus first on a case near half-filling with electron
density n = 0.90 and nearest-neighbor hopping t ′ = −0.15
and explore the role of increasing U from weak to strong cou-
pling. The associated noninteracting Fermi surface and bare
susceptibility χ0(q) featuring pronounced (π, π )-centered
fluctuations are shown in Fig. 2. For this band, the solution to
the DCA gap equation, Eq. (4), is given by a dx2−y2 symmetric
gap function with four nodes as the leading instability for all
values of coupling strength U = 2, 4, 6, and 8. (For U = 8,

we set t ′ = 0 to avoid the sign problem.) The evolution of
the leading and subleading DCA instabilities as a function
of U is shown in Table I and plotted in Fig. 3. Here, we
limit the discussion to even-frequency solutions, but note that
subleading odd-frequency solutions also exist. In contrast to
DCA, both the KL and RPA schemes are limited to small
values of the Coulomb interaction of U = O(t ), and RPA
is additionally sensitive to the inherent magnetic instability
that occurs upon increasing U . As seen from Table I and
Fig. 3, in all the DCA cases the leading solution is the lowest
order dx2−y2 solution with four nodes along the Brillouin
zone diagonals. Upon increasing U , the subleading DCA
instabilities approach the leading d (4) instability as inferred
from Fig. 3, and additional nodal singlet solutions appear
in-between the dx2−y2 state and the highest triplet state denoted
p′ in Table I and Fig. 3. The number of gap nodes resolved at
the Fermi level is sensitive to the cluster size; at U = 2 which
is calculated for a cluster size of N = 64, twenty nodes are
resolved at the Fermi surface for the third subleading dx2−y2

DCA solution. In comparison, the third subleading solution
at U = 4 exhibits only four nodes. While this could be a
real effect due to the increased interaction strength, it may
also simply be due to the smaller cluster size of N = 32. For
U = 6, a larger number of subleading solutions appear, many
of the same nodal structure, e.g., the dx2−y2 solutions with
twelve nodes at the Fermi surface, denoted d(12), which are
distinguished by a change of spectral gap weight at different

TABLE I. The leading superconducting instabilities of Kohn-
Luttinger (KL), RPA, and DCA calculations for n = 0.90 and t ′ =
−0.15 as a function of U . (For the U = 8 case, t ′ = 0). The
gap symmetry is stated by a letter and the number of nodes at
the Fermi surface in parenthesis. The following structures appear:
A1g [cos(kx ) + cos(ky ) denoted by s′(8)], A2g [sin kx sin ky(cos(kx ) −
cos(ky )) denoted by g(8)], B1g [cos(kx ) − cos(ky ) denoted by d (4)
and higher order (cos(2kx ) + cos(2ky ))(cos(kx ) − cos(ky )) denoted
by d (12)] and the Eu [(cos(kx ) − cos(ky )) sin(kx ) denoted by p′(6),
but with nodes displaced slightly away from the zone diagonal].
For simplicity, we only state instabilities that appear before the
leading triplet solution (with the exception of U � 0.1). In the last
s′ solutions of the U = 8 column, the number of nodes is undecided
due to system size limitations.

KL

U2χ U=0.1 U=1 U=1.3 U=2 U=4 U=6 U=8
d(4) d(4) d(4) d(4) d(4) d(4) d(4) d(4)
p′(6) p′(6) d(12) g(8) d(12) d(12) d(12) d(12)
d(12) d(12) g(8) d(12) g(8) g(8) g(8) g(8)
g(8) g(8) p′(6) p′(6) d(20) d(4) d(12) d(12)

p′(6) p′(6) s′(8) s′(8)
d(12) d(12)
s′(8) s′

d(12) s′

p′(6) p′(6)

DCARPA

parts of the Fermi surface. As mentioned above, the DCA
result for U = 8 was obtained for t ′ = 0 and T = 0.2 (as
opposed to t ′ = −0.15 and T = 0.15) in order to avoid the
QMC sign problem. Thus, comparing the U = 8 result to
the lower U cases, there are additional quantitative effects in
the eigenvalues from this change of parameters. We do not,
however, expect such changes to have a large effect on the

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2

FIG. 3. Relative eigenvalues λi/λ1 for subleading instabilities i ∈
{d (12), g(8), p′} as a function of interaction U at density n = 0.90.
The eigenvalues are derived from Kohn-Luttinger (dashed-dotted
lines) and RPA (full lines) in the regime U = 0 − 1.36 (blue area)
and from DCA for U = 2, 4, 6, and 8 (pink area). λ1 refers to the
leading eigenvalue, which always belongs to the d (4) solution. For
clarity, we have omitted subleading singlet instabilities appearing
between g(8) and p′ for U � 2.
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FIG. 4. [(a)–(c)] Three leading solutions of the RPA model (U = 1) with the leading dx2−y2 solution, the sub-leading higher order dx2−y2

solution with 12 nodes and third leading g-wave solution. [(d)–(f)] The results of the DCA calculation, φα (K, iω1) at the lowest frequency
are shown as insets. Comparison of RPA and DCA results by angle dependent gap plots in the first quadrant of the Brillouin zone. The angle
θ is defined in the inset in (d). The three leading solutions of the RPA calculation (U = 1) are shown in color and the DCA results (U = 2)
are shown by black symbols. The DCA results are interpolated to the Fermi surface of the noninteracting system to allow a direct comparison
although the DCA calculation is only done for 8 × 8 discrete values.

pairing instability for large U , and indeed the hierarchy of
solutions remains unaltered as seen from Fig. 3.

Turning next to the KL and RPA results for the same band,
the hierarchy of the leading pairing solutions are displayed
also in Table I and Fig. 3. As expected for this filling, both
methods predict a leading dx2−y2 state and agree on the hierar-
chy of the subleading solutions at the lowest U . In contrast
to DCA, however, in the low-U limit, the triplet solution
denoted p′ becomes the second leading instability. This is due
to the proximity to the van Hove singularity, which is known
to enhance the effective triplet pairing interaction [39]. For
t ′ = −0.15, the critical density for which the van Hove saddle
points reside at the Fermi surface is nvan Hove = 0.875 and at
n = 0.90 we are thus not far from this regime.

Upon increasing U (but still within the RPA regime),
the p′ solution rapidly drops and, as seen from Table I and
Fig. 3, there is excellent agreement with the DCA pairing
hierarchy near the regime of U = 1. At larger U , still within
the RPA calculation, the magnetic instability is approached,
and the two nearly degenerate instabilities d (12) and g(8) are
interchanged. This is an artifact of the RPA approach which
can be understood in the following way. The g(8) solution
increases more steeply because it takes full advantage of the
strongly enhanced susceptibility. Unlike d (12), the g(8) solu-
tion does not have any nodes at the Fermi surface segments
in the large gap regions close to (π, 0) and symmetry-related
points. The symmetry-imposed nodes of the g(8) solution
along the zone axes do not inhibit gap formation, since the
Fermi surface segments do not close at (π, 0) and symmetry-
related points. Nevertheless, except from such caveats as
(over)sensitivity to band details or magnetic instabilities, the
overall evolution of the leading superconducting solutions as

discussed here highlights the agreement of the methods, and
points to an adiabatic continuity between weak- and strong-
coupling pairing solutions of the Hubbard model near the
half-filled regime.

Next, we compare the detailed properties of the gap solu-
tions obtained by DCA to the results of RPA (at U = 1). In
Fig. 4, the three leading instabilities of both approaches are
displayed. As seen, there is remarkable agreement between
the two methods, giving in both cases a leading dx2−y2 so-
lution with four diagonal nodes, i.e., �d (k) = �

2 [cos(kx ) −
cos(ky)], but with strong gap enhancements around (0,±π )
and (±π, 0). In RPA, this enhancement is caused by the large
density of states present in those regions of k space due to
the proximity of the van Hove singularity. A similar effect
at different doping levels was discussed in Ref. [39]. In the
linearized gap equation, this effect enters via the inverse of
the Fermi speed in the matrix elements of Eq. (10) as well as
in the amplification of the bare spin susceptibility. However,
the enhancement is also found in the DCA approach where we
interpolate the solution to the Fermi surface of the noninter-
acting system, see from Fig. 4(d). For U = 2, we expect the
Fermi surface to be very similar to that of the noninteracting
system. From Fig. 4(d), we see that the gap enhancements are
robust towards the inclusion of self-energy effects.

The two sub-leading solutions shown in Fig. 4 consist of a
dx2−y2 -wave solution with twelve nodes d (12), and a lowest-
order g-wave state with eight nodes g(8). These solutions are
close in energy and are both strongly suppressed compared
to the leading dx2−y2 gap with four nodes. For the second and
third leading solutions, the RPA approach produces strong gap
enhancements at the Fermi surface points closest to (0,±π )
and (±π, 0) whereas this effect is less pronounced in the DCA
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FIG. 5. (a) Symmetry of the leading superconducting instability as a function of U and filling n with t ′ = 0 and T = 0.015. RPA results
are indicated by filled colors superimposed in the ground-state phase diagram obtained in Ref. [24] shown by open symbols and lines. The
blue line displays the phase boundary between a simple harmonic p wave [sin(kx )/ sin(ky )] and dxy, and the dark green line indicates the phase
boundary between dxy and dx2−y2 . The yellow region indicates an s′ phase [40]. A region of higher-order p′ wave (sketch as inset [24]) is visible
in both approaches for small values of U around a filling of n = 0.55. The triplet p′ state features six or ten nodes depending on temperature.
In RPA, the region of leading triplet instability at very low filling is sensitive to resolution and temperature; it essentially vanishes as T is
decreased to T = 0.0002 (small blue arrows and blue dashed line almost coinciding with the y axis). (b) Zoom in of the phase diagram close
to n = 0.55 and comparison to Ref. [24]. The insets show solutions g(k) as obtained from RPA at the parameters marked by white points.
The dashed red line (and the small red arrows) shows how the boundary between the p′ and dxy changes within RPA when T is lowered from
T = 0.015 to 0.0002.

calculations, especially for the third leading g-wave solution.
This may arise from the fact that the g-wave solution has nodes
along the zone axes and DCA, with fewer k points to sample
the Brillouin zone as shown in the inset of Fig. 4(f), therefore
does not capture the enhancement effect for this solution.

Encouraged by the overall agreement between KL/RPA
and DCA, we next compare the RPA results obtained here
with previous reports in the literature. In Fig. 5, we show
a direct comparison of the ground-state phase diagram of
Ref. [24] obtained from diagrammatic Monte Carlo simula-
tions and our RPA calculations. As seen, there is qualitative
and in most cases nearly quantitative agreement between
the different methods. For example, upon hole doping the
instability from the dx2−y2 state to the dxy state occurs al-
most simultaneously in the two methods. Furthermore, both
KL/RPA and diagrammatic Monte Carlo simulations find a
p′-wave triplet state to become leading for small values of U
around a filling of n = 0.55.

Most often, triplet solutions become favorable when the
system approaches a van Hove singularity regime [26,39,64].
To second order in U , the pairing vertices are given by

V RPA
sing = U + U 2

2
[χ0(k − k′) + χ0(k + k′)] + O(U 3), (11)

V RPA
trip = U 2

2
[−χ0(k − k′) + χ0(k + k′)] + O(U 4). (12)

In the absence of a q = 0 peak structure in the susceptibility,
the triplet pairing cannot take advantage of the attractive
contribution to the pairing kernel −U 2

2 χ0(k − k′). Usually,
such a peak is what renders the triplet solution favorable in
the vicinity of a van Hove instability. However, the region
of triplet superconductivity evident from Fig. 5(a) around
n = 0.55 at the smallest U has a different origin (at t ′ = 0
the van Hove singularity occurs at the Fermi level for filling
n = 1).

Around n = 0.55, the system is in an interesting cross-
over regime, where the spin susceptibility shows prominent
features at nesting vectors Q 	 (π,±π

2 )/(±π
2 , π ), which lie

right in-between nesting vectors along the zone diagonal and
zone axes, driving the singlet dx2−y2 and dxy solutions, respec-
tively. The odd parity p′ solution most optimally accommo-
dates this nesting structure, but since it is not supported by a
q = 0 peak, it is rather fragile and becomes rapidly suppressed
as U increases. This can be understood from the fact that
the spin susceptibility exhibits extended ridgelike structures
which are most pronounced around (±π, 0)/(0,±π ). Upon
increasing U , these ridges will dominate the effective pairing
and drive the system into the singlet dxy solution.

In Fig. 5(b), we show a zoom-in of the phase diagram
relevant to the triplet p′ phase. As seen, the phase boundary of
the p′ phase to the d-wave states agrees remarkably well with
the diagrammatic Monte Carlo calculations by Deng et al.
[24] at the lowest temperatures. The detailed gap structure
of the superconducting p′ state features ten nodes as shown
by the inset in Fig. 5(b). This is slightly different from the
illustration shown in Fig. 5(a) from Ref. [24], but similar to
the gap structures discussed in Ref. [26].

We end with a brief discussion of the pairing instabilities
in the low-density regime n � 0.3. As seen explicitly in
Fig. 5(a), the low-density limit hosts a triplet p-wave super-
conducting phase. We stress that this is a standard two-node
sin(kx )/ sin(ky) p-wave state distinct from the p′ triplet state
discussed above. The possibility of a transition from dx2−y2 to
dxy or p-wave superconductivity in the low-density regime of
the weakly repulsive 2D Hubbard model was discussed early
on by Baranov and Kagan [65] and by Chubukov and Lu [54]
who analyzed the behavior of the pairing vertex in symmetry-
distinct pairing channels as a function of band parameters.
The more recent diagrammatic Monte Carlo calculations by
Deng et al. [24], mapped out the phase boundaries between the
p-, dxy-, and dx2−y2 -wave pairing solutions in the low-density
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and low-U limits, reproduced in Fig. 5. As seen from Fig. 5,
even though there is substantial overall agreement with the
RPA results, the low-density regime stands out as exceptional
in this comparison between the methods. At the lowest T
and in the limit n,U → 0 the preferred state from the RPA
study is d wave with near degeneracy between dxy-, and
dx2−y2 -wave pairing. At larger U , however, as seen from Fig. 5,
RPA does not capture the preference for p-wave pairing in
the dilute limit. This result, however, is not surprising since
the lowest-order diagrams included in the RPA procedure
are known to not capture the tendency for p-wave pairing
in the dilute limit. Only by including higher-order vertex
renormalizations does p-wave pairing get supported. This
was shown initially by Chubukov who analyzed the third-
order diagrams for renormalization of the fermionic scattering
amplitude in 2D, and found that the vertex renormalization
in the particle-particle channel is crucial for realizing the p-
wave state at low densities [55]. Subsequent studies confirmed
the importance of O(U 3) vertex corrections for stabilization
of p-wave pairing at low density [66,67]. As a consistency
check we applied the DCA machinery to calculate the leading
instability at U = 4, t ′ = 0, and T = 0.0125 at fillings n =
0.15 and n = 0.20 (due to resolution we cannot address lower
n by this method). In the first case (n = 0.15), we obtained
indeed a leading p-wave solution even for U = 4, while dxy

is the preferred state at n = 0.20. This points to a rough
agreement with the phase boundary obtained by diagrammatic
Monte Carlo simulations in Ref. [24], and again suggests a
smooth crossover of superconductivity from weak to strong
interactions.

IV. CONCLUSIONS

While there is general agreement that the leading Cooper
pairing instability of the Hubbard model close to half-filling
is the dx2−y2 -wave state, and work on the t-J model valid
in this regime corresponding to very large U suggests the
same, rather less is known consensually about the rest of

the Hubbard model pairing phase diagram, including fillings
far from n = 1 and intermediate to strong U . These regimes
are not simply of academic interest, but may well represent
reasonable descriptions of a variety of unconventional su-
perconductors, including cuprates, organic Bechgaard salts,
heavy fermion materials, iron-based superconductors, and
ultracold fermionic gases. In this work, we have compared
different approximate methods, expected to be valid in differ-
ent correlation regimes, to predict the leading and subleading
superconducting instabilities in these less-studied situations.
We find that spin and charge fluctuation exchange pairing cal-
culated from both KL (small U ) and RPA methods, and a DCA
Quantum Monte Carlo approach (intermediate to strong U )
compare rather favorably to each other, suggesting a smooth
crossover in pairing states within the Hubbard model from
weak to strong coupling at all fillings. Our results compare
well to recent diagrammatic Monte Carlo calculations, with
the exception of the regime of very small electron density
where weak-coupling approaches need to be cured by vertex
corrections. The agreement with RPA allows for a transparent
explanation of the physics of several of these less well-
known pairing phases. Clearly the hypothesis of adiabatic
connectivity of pair states from weak to strong coupling
needs further scrutiny and investigations by other methods
capable of handling electron pairing in the strongly correlated
regime.
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