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Modeling heterogeneities in the crosslinked bacterial sacculus
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Examining the design principles of biological materials, in particular, the presence of inhomogeneities in their
ultrastructure is the key to understanding the often remarkable mechanical properties possessed by them. In this
work, motivated by the question of understanding the effect of variability in the material properties of the peptide
crosslinkers on the bulk mechanical properties of the cell wall structure of bacteria, we study a spring system
in which variability is encoded by assigning values of spring constants and rupture strengths of the constituent
springs from appropriate probability distribution. Using analytical methods and computer simulations, we study
the response of the spring system to shear loading and observe how heterogeneities inherent in the system can
heighten the resistance to failure. We derive the force extension relation of the system and explore the effect
that the disorder in values of spring constant and rupture strength has on load carrying capacity of the system
and failure displacement. We also study a discrete step shear loading of the system, exhibiting a transition from
quasibrittle to brittle response controlled by the step size, providing a possible framework to experimentally
quantify the disorder in analogous structures. The model studied here will also be useful in general to understand
fiber bundles exhibiting disorder in the elasticity and rupture strengths of constituent fibers.
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I. INTRODUCTION

Biological structures are some of the most sophisticatedly
engineered materials, whose design principles continue to
lend ideas for solving common place as well as esoteric
engineering riddles [1–3]. A pervasive feature of the design
of several biological materials is the presence of disorder in
their ultrastructural components [4,5]. However, this cannot
be termed as mere accident in light of the often pivotal
role played by the disordered fine structure of several key
biological materials. Numerous interesting examples of this
phenomena can be given, including the role of nonidentical
molecular motors in actomyosin contractility [6] and the
optimized hierarchical structure with highly irregular setup of
bone resulting in remarkable orders of toughness and stiffness
[4,7].

One of the most fascinating naturally occurring
biomolecule is the peptidoglycan (PG) mesh, the primary
component of the cell wall of bacteria. The PG mesh, in rod
shaped Gram negative bacteria like Escherichia coli, consists
of stiff glycan chains arranged roughly in the circumferential
direction, crosslinked intermittently by peptide bonds [8,9]
(see Fig. 1). It is a testament to the versatility of this structure
that it is able to satisfy a wide array of necessary mechanical
requirements, including being stiff enough to bear the
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internal turgor pressure but being elastic enough to allow for
elongation, apart from being sufficiently resistant to failure
due to crack propagation [8–10].

Like many biological materials, the PG mesh also exhibits
disorder that is evident in its ultrastructure—this includes the
length distribution and orientation of glycan strands and loca-
tion and degree of crosslinking across the cell wall [11–15].
Nonetheless, the relevance of these features of disorder on
the mechanical properties of the cell wall has not been well
studied, even as it can shed light on a number of experimental
observations of the cell wall. For instance, in a previous work
[16], we had explored the mechanical effect of length distri-
bution of the glycan strands and had shown how terminally
crosslinked smaller length glycan strands can enhance the
toughness of the cell wall, giving an explanation of experi-
mental observations of the presence of shorter length glycan
strands and the preference for crosslinking to happen at the
ends of the glycan strands [11,14].

The cell wall is continually remodelled in the cell, with
cleaving of older crosslinks under the action of hydrolases,
incorporation of new cell wall material into it and the con-
sequent formation of crosslinks [8,10,17]. This results in the
presence of newer crosslinks as well as hydrolase-degraded
older crosslinks in the cell wall. While the exact mechanical
effect of hydrolases on the peptide crosslinkers is unclear, this
effect can result in the lowering of rupture strength of the
bond or lowering of the stiffness of the bond or both. The
presence of heterogeneities in the mechanical properties of the
crosslinkers is further evidenced by experimental observations
in Ref. [12], where isolated cell wall fragments subjected
to sonication showed an immediate drop in the degree of
crosslinking that persisted even as the structure remained
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FIG. 1. The peptidoglycan (PG) mesh in E.coli cell wall has
stiff glycan strands aligned roughly in the circumferential direction,
crosslinked by short peptide bonds. This mesh can be visualized as
an ensemble of stiff interfaces and linear springs.

intact, before becoming relatively constant after a period of
time. This suggests that the crosslinkers in the cell wall act in
a heterogeneous manner under loading, due to differences in
their elasticity and rupture strengths. A very natural question
then is to understand effect of the variability in the mechanical
properties of the crosslinkers, specifically their strength and
elasticity, on the bulk mechanical response of the cell wall.
Motivated by this and as a first step, here we explore a spring
system akin to a Fiber bundle model (FBM) [18,19], in which
we incorporate variability in both the spring constant of the
constituent springs as well as their rupture strengths and study
the response of the system to shear loading. We first consider
the case when the distribution of the values of the spring
constants and rupture strengths are independent. Using ana-
lytical methods and computer simulations, we derive the force
extension relation and show that in general wider variability
in the elasticity of springs can ensure more robust resistance
to failure but it also lowers the load capacity whereas lower
variability results in a more brittle response to loading even
as the load capacity increases. We also deduce that the value
of the displacement at failure does not depend on the lower
limit of the distribution of the rupture strengths of the springs,
though the load capacity of the system increases as the vari-
ability in rupture strengths of constituent springs decreases.
This suggests that a possible mechanism for hydrolytic action
to act on the crosslinkers in a safe manner while ensuring
sufficient load bearing ability is by maintaining high order of
variability in the spring constants while limiting the variability
in the rupture strengths.

Next, we examine a step wise loading regime which allows
us to exhibit a quasibrittle to brittle transition as the load per
step increases. This transition, which is a feature that seems
universal in systems which have inhomogeneities built into
their ultrastructure, has been observed in other natural materi-
als, e.g., snow [20], and can be useful tool to experimentally
detect such inhomogeneities present in the system. Finally,
we also study the case when the distributions of the spring
constants and the rupture strengths of the constituent springs
in the system are (positively or negatively) correlated. We

show that while in the case of positive correlation, the re-
sponse to loading is considerably brittle, negative correlation
of spring constant and rupture strength values results in qua-
sibrittle behavior mimicking the independent case, although
the maximum load carrying capacity drops as compared to
independent case. This suggests the likelihood of the spring
constant and rupture strength having independent distributions
to ensure optimal load carrying capacity as well as resistance
to failure in natural systems, including the crosslinkers in the
peptidoglycan mesh.

II. MODEL

Drawing inspiration from the crosslinked mesh like
structure of peptidoglycan in the bacterial cell wall, we study
a system of springs placed in the X–Z plane, consisting of two
rigid surfaces, aligned in the X direction and linear springs
connecting them, aligned in the Z direction. The rigid surfaces
correspond to two adjacent circumferential crosssections of
the peptidoglycan mesh, consisting of axially adjacent, long
length glycan strands, while the springs correspond to the
crosslinkers joining the two glycan strands (see Fig. 1). The
number of springs connecting the upper and lower surface,
denoted N , is determined by the degree of crosslinking present
in the cell wall: in E.coli, observed degree of crosslinking
∼30%–50% [10,14] and with radius of a typical cell ∼500 nm
[21], we estimate roughly 1000 peptides stems crosslinked
between two adjacent circumferential crosssections of the
cell. Therefore, we take N = 1000 in all simulations in this
work. Further, since glycan strands are an order of magnitude
more stiff than the peptide bonds [22], for simplicity we
assume that upper and lower surfaces are rigid with no local
deformations caused by exerted forces. The springs in the
system are taken to be linear, with finite rupture strength,
which limits the force that a spring can endure before
rupturing. We encode variability in the system by taking
values of the spring constants and the rupture strengths of the
springs from an appropriate joint probability distribution over
the region [k1, k2] × [ f1, f2] with the upper limits f2 and k2,
which for illustrative purposes, we fix to be equal to 1. Our
aim is to tune the range of variability by altering the values
of f1 and k1 and to see the possible effect on the response of
system to loading. In our model, the newly formed crosslinks
correspond to springs which are stiffer and have higher rupture
strengths while older crosslinks under effect of hydrolases and
mechanical stress, are taken to be relatively weaker and less
stiff. Therefore, to tune the range of variability in our model,
we vary the values of f1 and k1 while keeping f2 and k2 fixed.
We note that our theoretical setup is independent of the values
of the upper limit and our results will not change qualitatively
when a change is effected in the values of the upper limit.

In this work, we study shear loading of the spring system.
As mentioned before, purified cell wall fragments of E.coli
have been subjected to sonication [12], a method of cell
disruption acting by shear deformation [23] (in general, shear-
ing is a standard and successful method for performing cell
disruption experiments [24]). In our case, the upper surface
is displaced by application of force while the lower surface
is kept fixed (see Fig. 2). For simplicity, we assume that
adjacent springs maintain the position of their link with the
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FIG. 2. Schematic representation of spring system considered.
Two adjacent surfaces at distance l from each other joined by N
linear springs subjected to shear displacement x. This results in an
extension �l in each spring, with each spring at an angle θ to the
lower surface, given by tan θ = l/x.

upper and lower surfaces, upto their rupture, ensuring that
no sliding motion of the springs occurs. In this case, the
elongation is the same for every spring, since the displacement
of the point of contact of each spring on the upper surface
due to the application of the force, will be the same (equal to
displacement of the upper surface). We also take all springs
in the system to have the same rest length, equal to the
distance between the upper and lower surface (corresponding
to the interglycan spacing and denoted as l , see Fig. 2). In
general, though, it is possible that the peptide crosslinkers in
the peptidoglycan sacculus have variable rest lengths, which
can potentially induce interesting phenomena, for instance
emergence of residual stress in the system due to mismatch of
the rest lengths of the crosslinkers with interglycan spacing.
This, and yet other modes of heterogeneity in the peptidogly-
can sacculus, will be addressed in a subsequent work.

A. Single spring under shear load

We first write down the equations for a single spring with
spring constant k and rupture strength f , under similar shear
loading as described above. In general, the system can be
loaded in two ways—force controlled loading and displace-
ment controlled loading.

For force controlled loading, we assume that a force F is
exerted on the upper surface, causing a displacement x of the
upper surface and resulting in a stretching of the spring by �l .
The force in the direction of spring elongation is then given by
Fθ = k�l . Noting that sin θ = l

l+�l and using force balance,
we get

F

kl
=

(
1

sin θ
− 1

)
cos θ, (1)

which gives us a polynomial equation for sin θ as

R2 sin2 θ = (1 − sin θ )2(1 − sin2 θ ) (2)

with R = F/(kl ). In our case, since 0 < θ < π
2 , we have 0 <

sin θ < 1 and it is then easy to see that Eq. (2) has a unique
solution. So, solving for sin θ using Eq. (2), we can calculate

the displacement x in the X direction as

x =
√(

l

sin θ

)2

− l2 (3)

and the shear strain in then given by ε = x/l . In case of
displacement controlled loading, a displacement x is given
to the upper surface keeping the lower surface intact. The
extension �l of the spring is given by

�l =
√

l2 + x2 − l. (4)

The force F inducing the extension x on the upper surface
is given as

F = Fθ cos θ = k�l
x

l + �l
. (5)

In this work, we carry out a study of displacement controlled
loading of the spring system since typically displacement can
be measured in an easier and more precise manner.

B. Constitutive behavior of spring system

We now consider the case of the spring system, undergoing
displacement controlled shear loading (see Fig. 2), having N
springs, with spring constants ki, for i = 1, 2, . . . , N , where
N is the total number of peptides between two interfaces. The
effective spring constant of the N parallel springs is

k = keff =
N∑

i=1

ki. (6)

The rupture strength of the springs is denoted fi, i =
1, 2, . . . , N . Note that since the shear strain is the same for all
(intact) springs, we can calculate the longitudinal elongation
of each spring �l as in Eq. (4) and thus the force on the ith
spring is

σi = ki�l. (7)

For all springs i for which σi exceeds the rupture strength fi,
the spring breaks. The force being exerted in the X direction
on the system is then given by

F =
∑

intact springs

σix√
l2 + x2

, (8)

which describes the constitutive behavior of the bundle.
Consider now the special case where the springs all have

same spring constant k, the force on all springs is the same,
σ = k�l , when a displacement x is given to the upper surface
with �l as in Eq. (4). Further assuming that all the springs
have the same rupture strength f , the force on the system is
given by Fx = Nσx/

√
l2 + x2, when σ < f and the system

collapses when σ exceeds f . However, as mentioned above,
it has been observed that cell wall fragments of E.coli when
subjected to sonication, show an immediate drop in the degree
of crosslinking, during which the cell wall structure remains
intact [12]. This is however at odds with the behavior that a
system of springs with all springs having same spring constant
and rupture strengths exhibits under shear deformation, so we
rule out this case and assume that the values of the spring
constants and the rupture strengths displays some measure of
variability.

013090-3



GARIMA RANI AND ISSAN PATRI PHYSICAL REVIEW RESEARCH 2, 013090 (2020)

FIG. 3. The joint probability distribution of the values of spring
constants and rupture strengths of the constituent springs is dis-
tributed on [k1, k2] × [ f1, f2]. When a shear displacement x is applied
to the system, resulting in spring extension �l , the fraction of broken
springs are those whose spring constant and rupture strength lie in the
shaded region, below the line k�l = f .

To probe the effect of statistical variability in the elas-
ticity and rupture strengths of the springs, we assume that
the springs in the system are assigned the values of their
respective spring constants and rupture strengths from a joint
probability distribution, denoted p. So, in particular, the frac-
tion of springs with spring constant in the interval [a, b] and
threshold values in the interval [c, d] is∫ b

a

∫ d

c
p(k, f )dkdf . (9)

Suppose now that a displacement x is imposed on the
upper surface keeping the lower surface fixed. The extension
in any spring is given by �l , as given in Eq. (4). Since
only those springs will survive whose spring constant k and
rupture strength f satisfy k�l < f (see Fig. 3), in other
words, springs whose rupture strength is more than the current
load, so the fraction of surviving springs at given extension x
is

Ns

N
=

∫∫
{(k, f ) : k�l< f }

p(k, f )dkdf , (10)

and we have

Fθ = N�l
∫∫

{(k, f ) : k�l< f }
kp(k, f )dkdf , (11)

and then the force extension relation is given by F =
Fθ cos θ = Fθ x/(l + �l ) as in Eq. (5). We note here that
in our spring model, the springs, which represent peptide
crosslinkers, have been taken to be linear. However, one
can study models in which the crosslinkers follow nonlinear
force extension relations by suitably modifying our theoretical
framework, though this complication is not studied here.

C. Simulation details

We carry out computer simulations to compare with and
confirm the theoretical framework laid out in the previous
section, for understanding the effect of variability in the ma-
terial properties of the springs. Specifically, for a given spring

system, consisting of N springs denoted by i = 1, 2, . . . , N ,
the ith spring is assigned a tuple (ki, fi ), where ki is its spring
constant and fi denotes its rupture strength. To study the effect
of variability on the mechanical properties of the system,
values (ki, fi ) are drawn randomly from appropriate joint
probability distribution for every i. Given shear displacement
x, spring extension �l is calculated using Eq. (4) and the
force σi on the ith spring is then calculated using Eq. (7). If
σi > fi, then the spring is considered ruptured and its spring
constant ki is assigned value 0. The force extension relation
is then calculated using Eq. (8). The force extension relation
and other simulations in the text are obtained by averaging
over 100 realizations in each case.

III. RESULTS

We now study the effect that the variability in the spring
constants and rupture strengths has on the constitutive be-
havior of the bundle. We first consider the case where the
distributions of the spring constants and rupture strengths of
the springs in the system are taken to be independent.

A. Effect of variability on constitutive behavior

Since the distributions of the spring constants and rupture
strengths are taken to be independent, so the joint probability
distribution p(k, f ) [see Eq. (9)] will decompose as product
of the marginal distributions p1 and p2, giving p(k, f ) =
p1(k)p2( f ). We analyze the case where the values of the
spring constant and the rupture strength come from uniform
distributions. So, with values of the spring constant and the
rupture strength lying in [k1, k2] and [ f1, f2], respectively, we
get that

p(k, f ) = p1(k)p2( f ) = 1

(k2 − k1)( f2 − f1)
. (12)

To compute the force extension relation, we note that in
this case, the integral in Eq. (11) can be evaluated as follows:
we define η = min(max(k1�l, f1), f2). Then we have∫∫

{(k, f ) : k�l� f }
kp(k, f )dkdf

=
∫ f2

η

df

(∫ min(k2, f /�l )

k1

kp(k, f )dk

)
(13)

which gives

Fθ = N�l
∫ f2

η

df

(∫ min(k2, f /�l )

k1

kp(k, f )dk

)
(14)

and the force extension relation is then

F = N
x�l

l + �l

∫ f2

η

df

(∫ min(k2, f /�l )

k1

kp(k, f )dk

)
(15)

with �l given as in Eq. (4) as a function of the shear
displacement x.

In Fig. 4, using Eq. (15) and computer simulations, we
compute the force extension curve and the surviving fraction
of springs as a function of the shear extension x, acting on a
fully intact bundle, with the values of spring constants and
rupture strengths of the springs in the system drawn from

013090-4



MODELING HETEROGENEITIES IN THE CROSSLINKED … PHYSICAL REVIEW RESEARCH 2, 013090 (2020)

FIG. 4. Force-extension curve with distribution of f taken:
(a) f = U [0.1, 1], (b) U [0.5, 1], and (c) U [0.95, 1]. In each case,
three plots are drawn with probability distribution of k taken
as U [0.1, 1], U [0.5, 1], and U [0.95, 1]. (d) Fraction of surviving
springs is drawn as a function of displacement for f = U [0.95, 1].
We compare the curve derived analytically from Eqs. (10) and (15)
(solid lines) and simulations (solid points) for all the cases. We have
taken N = 1000 and l = 1. In all the graphs, we note that the system
with k distribution U [0.95, 1] collapses first while system with k
distribution U [0.1, 1] collapses last.

uniform distributions over different intervals. In all cases,
simulations show excellent agreement with the theoretical
computations. We observe a very interesting contrast: in each
case, the maximum load that the bundle takes, given by
the maximum of the force-extension curve, is highest in the
case when springs in the bundle are the stiffest, given in
Fig. 4 when the spring constants are uniformly distributed on
[0.95,1]. However, the extension at which the bundle fails, is
maximized in the case when the values of the spring constants
is distributed over a wider range, which in Fig. 4 is given
by [0.1,1], while bundle with stiffest springs show a brittle
response to the shear loading. This suggests that while the load
bearing ability of the system is enhanced by the presence of
stiff springs, the toughness of the system or the resistance of
system to mechanical failure is enhanced by the presence
of heterogeneities in the system. This also highlights the
standard engineering problem of fabricating materials with
high degrees of load bearing ability and toughness, something
that nature seems to excel in, with biomaterials like bone and
nacre exemplifying this property [4,25]. We also note that
the maximum load increases as the variability of the distri-
bution of rupture strength decreases [Fig. 4(c)]. Thus an ideal
scenario to ensure high load bearing ability and resistance to
mechanical failure is to increase the variation in the value of
spring constants while keeping the rupture strength high with
little variation. This suggests that a possible mechanism for
hydrolytic action on the crosslinkers could result in ensuring
wider variability in the elasticity of the crosslinkers while
showing little effect on their rupture strengths, so as to secure
the viability of the structure which has to bear load even as it
is being remodelled continually.

We now estimate the shear displacement xi at which spring
breakage is initiated and x f at which the system fails. We
observe from Fig. 4(d) that xi remains unchanged even as
the variability in the values of spring constants is changed.
This suggests that xi is independent of k1. Similarly, we also
observe from Figs. 4(a)–4(c) that x f stays the same in all
three cases once the distribution of spring constant is fixed,
which suggests that it is independent of f1. To understand
this interesting phenomena, we estimate xi and x f as follows:
note that the ratio of rupture strength and the spring con-
stant f /k for springs in the system takes value in the range
[ f1/k2, f2/k1], since the joint distribution p is supported on
[k1, k2] × [ f1, f2]. Therefore breaking of springs is initiated
when the displacement ensures that the spring elongation
�l ≈ f1/k2 and system failure occurs when �l ≈ f2/k1. We
can then estimate the displacement xi at which spring failure
is initiated and the displacement x f at which the system
collapses using Eq. (4), which gives

xi ≈
√

(l + ( f1/k2))2 − l2 =
√

(2lk2 + f1) f1

k2
(16)

and similarly we have that the bundle fully breaks when �l =
f2/k1. So, then we have

x f ≈
√

(l + f2/k1)2 − l2 =
√

(2lk1 + f2) f2

k1
. (17)

It follows from Eq. (17) that x f depends on the weaker
springs that have very high rupture strength, with the extreme
case given by springs having spring constant k1 and rupture
strength f2. It is independent of the values f1 and k2, which
represent the values for the stiffest springs which have the
lowest rupture strength. These values however determine xi

[see Eq. (16)]. Since the displacement is the same for all
springs, springs with high stiffness and low rupture strength
are the first to rupture. To check this, we perform simulations
of bundle of 1000 springs with values of spring constant
derived from the distribution U [k1, 1], for varying k1, while
the rupture strength of the springs is derived from fixed
uniform distribution, to compute the value of xi [plotted in
Fig. 5(b) as a function of k1] and x f [plotted in Fig. 5(d) as
a function of k1]. We also perform simulations keeping the
distribution of spring constants to be fixed and the rupture
strength distribution to be U [ f1, 1] with varying f1 to compute
the values of xi [plotted in Fig. 5(a) as a function of f1] and
x f [plotted in Fig. 5(c) as a function of f1]. In all cases, the
simulations results agrees well with the analytical results. We
observe from Fig. 5(b) that the value of xi is approximately
constant in all three cases as k1 varies, in good agreement
with Eq. (16), while increasing with value of f1 approximately
linearly. On the other hand, the value of x f remains constant
in all three cases as f1 varies, as in Fig. 5(c), while showing
a power law dependence on k1. This, in particular, reiterates
that the ideal scenario to ensure high value of both x f and load
capacity arises when k1 has a low value while the value of f1

is high. This is because a low value of k1 ensures that x f has
a high value. But the value of x f remains relatively constant
as f1 changes. Therefore a high value of f1, while keeping
x f unchanged, limits the variability and hence, increases the
load capacity. To understand this effect, we can make a rough
estimation of the shear displacement at failure in case of the
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FIG. 5. [(a) and (b)] Displacement at which spring rupturing is
initiated, xi, is plotted as a function of f1, for different distributions
of k1 as labeled and as a function of k1, for different distributions of
f1, respectively, using Eq. (16) (solid line) and simulations (points).
[(c) and (d)] Displacement at which system fails, x f , is plotted as a
function of f1 for different distributions of k1 and as a function of k1,
for different distributions of f1 as labeled, respectively, using Eq. (17)
(solid line) and simulations (points).

bacterial cell wall as the elasticity of the crosslinkers vary-
with the spring constant of peptide crosslink estimated as
k2 ∼ 10−2 N/m [26] and estimating the rupture strength of
the crosslink as f2 = √

2Ek2 where E ∼ 300 kJ/mol is the
dissociation energy of the covalent crosslinking bond, we get
x f < 10 nm when there is very little variation with k1 ≈ k2

while x f ∼ 102 nm when there is variation with k1/k2 ≈ 0.1.
This calculation, though only a very rough estimation, shows
how effectively variation in the elasticity of the crosslinkers
can offer high degree of protection from mechanical failure.

Another interesting parameter of the system is the displace-
ment at which the force extension curve attains its maxima,
denoted xm. As explained in Appendix, it is always true that
xi � xm � x f , it is interesting to observe from Eqs. (16) and
(17) that as the variability in k and f is limited with f1 ≈ f2

and k1 ≈ k2, we have that xi ≈ xm ≈ x f in this case, which
highlights the decidedly brittle response to loading of the
system in this case, with the spring breaking being initiated,
the system attaining its load maximum and system failure
all occurring when virtually the same shear displacement has
been applied to it. As the parameters f1 and k1 change, the
displacement xm shows rather intriguing crossover behavior:
when f1/k1 � 1, xm exhibits independence from the value of
f1 but as f1 approaches k1 and becomes greater than it, this
behavior crossover to one where there is a dependence of xm

on f1. This behavior is explored in detail in Appendix.

B. Loading regimes

We now impose specific loading regimes on the spring sys-
tem and study its response. Specifically, given displacement
x(t ) imposed on the upper surface as a function of time t ,
we compute the fraction of surviving springs as a function
of time, which we denote u(t ) = Ns(t )/N . We explore two

FIG. 6. [(a) and (c)] Loading regimes x(t ) are plotted, given
shear displacement at time t and the corresponding response of the
system to these loading regimes in form of the fraction of surviving
springs is plotted as a function of time in (b) and (d), respectively. We
note that in each case, for loading regime with higher loads, spring
breakage, that is Ns/N < 1, is initiated faster.

loading regimes: (a) where x(t ) increases linearly with time
before becoming constant and (b) where x(t ) increases lin-
early and then drops to 0 and this cycle is continued, ensuring
each time that the load peaks at a level higher than the previous
cycle [see Figs. 6(a) and 6(c)]. We note that the response in
the first case is an almost immediate drop in the fraction of
surviving springs u(t ), which then stabilizes when the loading
itself stabilizes. We note the similarity in the response to
this loading regime to experimental observations in Ref. [12],
where the degree of crosslinking of isolated E.coli sacculi
subjected to sonication showed an immediate decrease before
becoming constant. In the second case, the response to the
load results in a calibrated fall in the fraction of surviving
springs. When x(t ) is increasing, u(t ) registers a fall but
when x(t ) drops to 0 and subsequently increases, u(t ) remains
constant till x(t ) goes beyond the previous peak whence u(t )
starts to drop again and this cycle continues.

We now consider another loading regime of the spring
system, by stepwise increase of the shear displacement. In
other words, loading is provided in discrete steps of shear
displacement, �x in each step. We estimate the number of
steps to failure in this case. As before, the spring constant
and the rupture strength derive values from joint distribution
p(k, f ) supported fully on [k1, k2] × [ f1, f2]. The number of
steps to failure, denoted n f (x) is given by

n f (�x) = n1(�x) + nb(�x), (18)

where n1 denotes the number of steps needed for first failure
to happen and nb denotes the number of steps from first failure
till complete failure.

We recall that failure of springs starts to happen when
�l ≈ f1/k2 and all springs would have failed when �l ≈
f2/k1 (see Fig. 3). This gives us the equation

n2
1(�x)2 ≈

(
f1

k2
+ l

)2

− l2, (19)
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FIG. 7. Phase diagram of the spring system with uniformly distributed threshold strength ( f ) and spring constant (k), showing a quasibrittle
to brittle transition. (a) Phase diagram in the �x − k1 plane for fixed f1 = 0.1, (b) in �x- f1 plane for fixed k1 = 0.1.

which gives

n1 ≈
√( f1

k2
+ 2l

) f1

k2

�x
, (20)

and similarly, we have

n2
f (�x)2 ≈

(
f2

k1
+ l

)2

− l2 ⇒ n f ≈
√( f2

k1
+ 2l

) f2

k1

�x
. (21)

We also define nb(�x) = n f (�x) − n1(�x). The response of
the system to shear loading is brittle if all springs break in
a single step while the response is quasibrittle in the case
when the breaking process occurs over multiple steps. In
other words, using notation of Eq. (18), the response to shear
loading is brittle if nb < 1 and the response is quasibrittle if
nb � 1. In Fig. 7, we plot the phase diagram of the system
in various cases: in Fig. 7(a), the phase diagram is in the
k1-�x plane while keeping f1 fixed and in Fig. 7(b), the phase
diagram is in the f1-�x plane while keeping k1 fixed. We note
that in each case, a quasibrittle to brittle transition is evident:
for sufficiently low values of �x, the response is quasibrittle
while for high values of �x, the response is brittle. Now, in
case each �x load is given in fixed �t time, then the load rate
y = �x/�t can determine the material response: if y is high,
then the response is brittle as �x is high as well, similarly, if y
is low, then �x is low which results in a quasibrittle response.
This phenomena has been observed to happen in snow [20]
and has been studied in Ref. [27] using an FBM model that
is similar to our model but less general, in that all the springs
in the system have a fixed spring constant k. In general, this
type of quasibrittle to brittle transition can be considered as a
signature of the presence of heterogeneities in the system.

C. Correlated elasticity and rupture strength

We now study the spring system for which the values of
the spring constant and the rupture strength of the constituent
springs are correlated. For simplicity, we assume that the
values of the spring constant and the rupture strength are
derived from the same interval [a, b], though we note that our
results will hold more generally. We consider first a system
with positively correlated k and f values, with springs having
high rupture strength having relatively higher spring constants

as well. Fixing ε > 0, we define the conditional probability
distribution of spring constant conditional on the rupture
strength pk| f = U [ξ f , κ f ], where U denotes the uniform dis-
tribution on the interval [ξ f , κ f ] with ξ f = max(a, f − ε) and
κ f = min( f + ε, b). Then, with p0 denoting the probability
distribution of the rupture strength and taken as U [ f1, f2], we
have the joint distribution as

p(k, f ) = pk| f (k)p0( f ) = 1

( f2 − f1)(κk − ξk )
. (22)

Unlike the previous case, where the spring constants and
the rupture strengths of the springs in the system were taken
to be independent with the distribution spread fully on the
rectangle [k1, k2] × [ f1, f2], in this case, the probability distri-
bution is supported on a strip of width ∼2ε around the diag-
onal (x, x), a � x � b of the box [a, b] × [a, b]. We observe
a markedly brittle response to displacement controlled shear
loading, as shown in Fig. 8, with bundle failure occurring very
sharply similar to the case where the spring constants show
very little variability while contrasting acutely with the case
where the spring constants are spread widely, as in Fig. 4(a).

However, the situation is different when we consider a
negative correlation between the k and f values. We again
fix an interval [a, b] and ε > 0. However, we now take the
distribution pk| f = U [ρ f , μ f ], with ρ f = max(a, a + b −
f − ε) and μ f = min(a + b − f + ε, b). We then have the
joint distribution p(k, f ) = pk| f (k)p0( f ), with p0 = U [a, b].
In this case, the values of k and f are distributed in a region
of width ∼2ε around the diagonal (x, a + b − x), a � x � b.
In Fig. 8(b), we observe that the system displays a markedly
quasibrittle response, comparable to the independent case
[Fig. 4(a)]. In other words, the quasibrittle response to load-
ing of the system with independent k and f values can be
effectively mimicked by systems with k and f appropriately
negatively correlated, even though the support of the values of
the spring constants and the rupture strengths of the springs
are spread over a much narrower area. To understand this,
we note that as the shear displacement is increased, the
region [a, b] × [a, b] in the k- f plane is swept in the counter-
clockwise direction by lines of the form f = k�l , with the
area under the line determining the fraction of springs broken
(see Fig. 3). In case the values of k and f are negatively corre-
lated, the entire area of [a, b] × [a, b] has to be swept to cover
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FIG. 8. Force extension curve for systems with (a) positively
correlated and (b) negatively correlated k and f values, ε as labeled
in inset, distribution of f taken as U [0.1, 1] in both cases, computed
using Eq. (15) (solid lines) and simulations (points).

all the springs. In the positively correlated case, the k and
f values are distributed around the diagonal (x, x), so much
lesser area has to swept to cover all springs in the system,
hence it exhibits a decidedly brittle response. However, while
in the positive correlation case, the maximum load is greater
than the independent case, in case of negative correlation, the
maximum load is in fact lower than the independent case.
Hence, our analysis suggests that, in general, for ensuring
a sufficiently high load capacity and also high resistance to
failure, it can be important that the distributions of k and f of
the springs in the system are independent and are supported
over a wide region, essentially resulting in a multi-composite
structure. For the particular case of the bacterial cell wall,
it is therefore plausible that hydrolytic action effects inde-
pendent distributions of the elastic properties of the peptide
crosslinkers, with wide variability in the stiffness and limited
variability in rupture strengths, since this has the effect of
making the structure both more resistant to failure under to
loading and enhances the load carrying capacity.

IV. NONUNIFORM DISTRIBUTIONS

So far, we have primarily considered the case with spring
constants and rupture strengths of the springs in the system
having uniform distribution over appropriate intervals. We
now study systems for which the k and f values are indepen-
dent and follow other distributions. First, we consider the case
where the spring constants and the rupture strengths follow
Gaussian distributions N (μ0, σ0) and N (μ1, σ1), respectively.
For a random variable following the N (μ, σ ) distribution with
mean μ and standard deviation σ , it is easy to see that ≈99.7%
of values lie within a distance of 3σ of the mean μ. We there-

FIG. 9. Force extension curve for systems with k and f values
following independent Gaussian distributions. The f values follow
(a) N (0.55, 0.15) and (b) N (0.975, 0.0083) distributions while the
distributions of k values are labeled in inset. We compare the curves
derived using Eq. (15) (solid lines) and simulations (points). Note
that in both cases, system with k distribution N (0.975, 0.0083)
collapses first and system with k distribution N (0.55, 0.15) collapses
last.

fore infer that the spring constants and rupture strengths of the
constituent springs in the system are essentially distributed in
the region [k1, k2] × [ f1, f2] with k1 = μ0 − 3σ0, k2 = μ0 +
3σ0, f1 = μ1 − 3σ1, f2 = μ1 + 3σ1. Given k1, k2, f1, f2,
we solve and get μ0 = (k1 + k2)/2, σ0 = (k2 − k1)/6, μ1 =
( f1 + f2)/2, σ1 = ( f2 − f1)/6. So, we have

p(k, f ) = 1

2πσ0σ1
e
−[ (k−μ0 )2

2σ2
0

+ ( f −μ1 )2

2σ2
1

]
. (23)

The force extension relation is then computed using Eq. (15)
(noting that the integral in this case cannot in general be
exactly solved, unlike the uniform case and is therefore nu-
merically approximated) and it is compared with computer
simulations of the system as described in Sec. II C, in Fig. 9.
Simulations show excellent agreement with theoretical com-
putations, which demonstrates that our theoretical framework
is applicable for spring systems irrespective of the distribu-
tions followed by k and f values.

In this case, we note that (1) the maximum load is always
higher in the Gaussian case as compared to the uniform case
and (2) the system in this case collapses at a faster rate, with
a significant number of the springs having ruptured at shear
displacements much lower than x f . This is because in the
Gaussian case the k and f values are strongly concentrated
around the mean but in the uniform case the values are spread
more evenly. To further highlight this, we also consider sys-
tems for which the spring constants follow a left truncated and
a right truncated normal distributions, essentially supported in
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FIG. 10. Force extension curves for systems with k and f val-
ues taken independent, with distribution of f fixed as U [0.95, 1],
computed using Eq. (15) (solid lines) and simulations (points). The
k values follow the uniform (black and triangles), Gaussian (blue
and circles), left truncated Gaussian (green and lines), right truncated
Gaussian (red and squares) distributions, supported on [0.1, 1]. The
distributions are depicted in the inset.

[k1, k2], with probability distributions given by

p(k) = δ[k1,∞)

√
2

σ
√

π
e− (k−k1 )2

2σ2 (24)

and

p(k) = δ[−∞,k2 )

√
2

σ
√

π
e− (k−k2 )2

2σ2 (25)

respectively [see Fig. 10 (inset)]. Here, σ = (k2 − k1)/3 and
the function δ[a,b](x) takes value 1 for a � x � b and 0
otherwise. In both the uniform and Gaussian cases, wider
variability in the k values and limited variability in the f
values results in an ideal scenario with a high load carrying
capacity and resistance to failure, so we fix this case with f
values showing relatively much less variability and following
the uniform distribution on a small interval. In Fig. 10, we
compare the force extension curves with the spring constants
having uniform, Gaussian, left truncated Gaussian and right
truncated Gaussian distributions. We observe that the maxi-
mum load is highest for the right truncated case and is lowest
in the left truncated case, implying that the load capacity is
higher when the spring constants are concentrated around a
higher value. However, while the systems finally fail at same
shear displacement x f for all distributions, the right truncated
system fails at the fastest rate and the left truncated system
displays a force extension curve that is the slowest to fall,
exhibiting substantial quasibrittle response to loading.

We note here that the main results and conclusions of this
study are not dependent on the form of the distributions of
the values of k and f , however, the precise shape of the
force extension curve will depend on the distributions. In
general, the distributions and the range of the k and f values
in the peptidoglycan mesh will be influenced by the rate of
incorporation of cell wall material (synthesis rate) and the
rate at which hydrolases act to facilitate material removal in
the cell wall, factors which modulate the growth rate of the
cell as well [28,29]. For instance, uniform distribution of the

values of k and f will likely occur under conditions resulting
in steady incorporation and removal of cell wall material. On
the other hand, a concentration of the k and f values closer to
the upper limit of the distribution is probably indicative of a
higher rate of synthesis as compared to the rate of hydrolysis
while a faster rate of hydrolysis might result in a distribution
of values concentrated near the lower limit. Since dissimilar
growth conditions will likely result in elastic properties of the
peptide crosslinkers being differently distributed, our analysis
thus suggests that the cell wall adopts disparate constitutive
behavior under varying growth conditions. A detailed the-
oretical study of this will be done in a subsequent work.
Another interesting direction in this regard is the possibility of
carrying out a form of biological “forensics,” to ascertain by
carefully analyzing constitutive behavior of isolated cell wall
fragments, the conditions undergone by the cell itself during
its growth.

V. DISCUSSION AND CONCLUSION

In this work, inspired by the crosslinked structure of the
bacterial cell wall and to understand the effect of variability
in the mechanical properties of the peptide crosslinkers on the
structure of the cell wall, we studied the response of a spring
system, consisting of several springs joining two adjacent
rigid surfaces, to a displacement controlled shear loading.
Variability in the mechanical properties of the crosslinkers
has been indicated by experimental results on sonication of
isolated E.coli sacculi [12] and can arise from action of
hydrolases on the cell wall, resulting in a distribution of newly
formed and degraded crosslinks. To incorporate variability
into the model, the spring constants and rupture strengths of
the springs were taken from an appropriate probability dis-
tribution. Laying the condition that the distribution of spring
constants and rupture strengths are independent, we computed
the force extension curve and observed that higher variability
in values of the spring constants resulted in a quasibrittle
response to loading with a higher value of the shear displace-
ment at which the system collapses while lower variability
resulted in a much more brittle response, highlighting the
standard problem in engineering of ensuring high orders of
stiffness and toughness in a material [1]. On the other hand,
while the load capacity increased with lower variability in
values of rupture strength, the failure displacement remained
independent of the lower limit of its distribution. Thus our
work reflected a viable way for providing a high load bearing
capacity and resistance to failure to the system is by ensuring
a composite structure with wide variability in value of spring
constants and low variability in rupture strengths. Since the
bacterial cell wall is key to bearing turgor pressure in the cell
while being remodelled, with cleaving of crosslinks and in-
sertion of newer glycan strands happening continually, main-
taining structural integrity under such conditions is critical to
the survival of the cell. Our work suggests that the action of
hydrolases, if resulting in good variability in the elasticity
of crosslinkers while showing little effect on their rupture
strength, can ensure that the structure remains robust enough
to sustain high turgor pressure as well as resist mechanical
failure.
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We also explored a stepwise loading regime which allowed
us to obtain a quasibrittle to brittle transition as the load
increases. This transition is a signature of the presence of het-
erogeneities in the system and hence, is of much importance
for experimental detection of the same.

In this work, we have modelled the peptide crosslinkers in
the peptidoglycan sacculus as linear springs. Although peptide
crosslinkers have often been modelled as linear springs in
previous work [26,29,30], nonlinearity in their force extension
relation is plausible. Indeed, simulation work has suggested
that their force extension curves are well approximated as a
worm like chain (WLC) [31]. We note that our theoretical
framework can be suitably modified to incorporate nonlinear-
ity in the force extension relation of the peptide crosslinkers,
nevertheless, the main results of our study will not change
qualitatively.

Several theoretical approaches to modeling the cell wall
have taken a continuum theory approach [32–34], which
however may not take into account the molecular level archi-
tecture and the inhomogeneities inherent in the structure of
the cell wall. The peptidoglycan sacculus has a significantly
complex structure and we acknowledge that in our simplified
model, we have not considered and studied the full range
of its design features and their role in ensuring the stability
of the cell wall and survival of the cell. Nonetheless, our
approach presents a possible first step towards including the
inhomogeneities present in the peptidoglycan mesh and its
molecular scale architecture in modeling of the cell wall
structure and dynamics. In particular, our work anticipates a
potentially paradigmatic shift in the coarse grained modeling
of the peptidoglycan sacculus by considering variability in
the elastic properties of the constituents, leading to a better
understanding of the bulk material properties of the sacculus:
previous coarse grained models of peptidoglycan have typi-
cally assumed uniformity in the elastic properties of glycan
strands and peptide crosslinkers [26,29,30]. Future work will
involve incorporating the dynamics of the cell wall and the
elasticity of the glycan strands into our model alongwith local
transfer of load when a crosslink ruptures, from which stress
concentrations and pore size distributions can be computed
and compared with experiments and simulations, which can
lead to further insights on the structure of the cell wall and
shed light on its surprising viability against all odds.
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APPENDIX: SHEAR DISPLACEMENT
AND MAXIMUM LOAD CAPACITY

Here we analyze the shear displacement xm at which the
force extension curve attains its maximum as a function of
the parameters f1 and k1, with f2 = k2 = 1. Since the shear
displacement uniquely determines the spring extension �l by
Eq. (4) in the main text, the force extension relation here is
taken as a function of �l . There are two possibilities- (a)
f1/k1 � f2/k2 and (b) f2/k2 � f1/k1. In case (a), it follows

from a straightforward calculation using Eq. (15) in the main
text, that the derivative of F with respect to �l , F ′(�l ) > 0
when �l < f1/k2 and that F ′(�l ) < 0 when f2/k2 = 1 <

�l < f2/k1, with F ≡ 0 when �l � f2/k1. In other words,
we have that F strictly increases as a function �l when
�l increases between 0 and f1/k2 while it strictly decreases
when �l increases between f2/k2 = 1 to f2/k1 beyond which
F ≡ 0. Therefore, in this case, the maximum is attained either
when f1/k2 � �l � f1/k1 or when f1/k1 � �l � f2/k2 = 1.
With f1/k2 � �l � f1/k1, the force extension relation as in
Eq. (15) in the main text, becomes

F = C(�l )

[
1

3(�l )2

(
k3

2 (�l )2 − f 3
1

)

+ k2
2

(
f2 − k2�l

) − k2
1 ( f2 − f1)

]
, (A1)

where we have

C(�l ) = N�l
√

(l + �l )2 − l2

2(l + �l )( f2 − f1)(k2 − k1)
. (A2)

Now, to compute xm, we differentiate F as given by Eq. (A1)
with respect to �l and equating with 0, we get the fifth order
polynomial equation, denoted p1(�l ) = 0, given by

−4�l5

3
+�l4

(−3−(1− f1)k2
1

)+�l3

(−1

3
−3(1 − f1)k2

1

)

+ �l2

(
3 − 3(1 − f1)k2

1 + f 3
1

3

)
+ �l f 3

1 + f 3
1

3
= 0.

(A3)

Next, when f1/k1 � �l � f2/k2 = 1, we have

F = C(�l )

[(
k3

2�l − k3
1�l

)
3

+ k2�l ( f2 − k2�l )

− k2
1�l ( f2 − k1�l )

]
(A4)

with C(�l ) as in Eq. (A2). Again, we differentiate F with
respect to �l and equating with 0, we get a cubic equation,
denoted p2(�l ) = 0, given by

�l3

(
4
(
k3

1 − 1
)

3

)
+ �l2( − 3 − k2

1 + 4k3
1

)

+ �l

(
10k3

1 − 9k2
1 − 1

3

)
+ 3 − 3k2

1 = 0. (A5)

Interestingly, the cubic polynomial p2 is independent of f1

and thus, in case that the maximum is attained when f1/k1 �
�l � 1, then the shear displacement at which maxima is
attained is independent of f1. Since p1(0) > 0 and p2(0) > 0
while p1(1) < 0 and p2(1) < 0, this implies that both p1 and
p2 have roots in the interval [0,1]. It follows from discriminant
analysis and by numerical methods that both p1 and p2 have
unique root in this interval. So, the question arises as to when
the root of p1 lies in the interval [ f1/k2, f1/k1] and likewise,
when the root of p2 lies in the interval [ f1/k1, 1]. We note that

3k5
1

f 2
1 (k1 − 1)

p1( f1/k1) = 3k3
1

(k1 − 1)
p2( f1/k1) = d ( f1, k1),

(A6)
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FIG. 11. In (a) and (b), the displacement for which the force
extension curve attains maxima, xm, is plotted as a function of k1,
with fixed f1 = 0.3 and fixed f1 = 0.9 respectively. In (c), xm is
plotted as a function of f1 with fixed k1 = 0.5. The green and blue
solid line indicate the value of xm derived from �l taken as the unique
solution of polynomials p1 and p2 while dotted line indicates xm

obtained from simulations.

where d ( f1, k1) is the following expression in f1 and k1:[
k4

1 (10 f1 − 9) + k3
1

(
12 f 2

1 + f1 − 9
) + k2

1

(
9 f 2

1 + f1 + 4 f 3
1

)
+ k1

(
9 f 2

1 + 4 f 3
1

) + 4 f 3
1

]
. (A7)

Since p1( f1/k2) > 0, p2(1) < 0 and k1 < 1, it follows that
if d ( f1, k1) > 0 then p1 has a root in the interval [ f1/k2, f1/k1]
and consequently the maximum of the force extension curve
lies in this interval. On the other hand, if d ( f1, k1) < 0, then

p2 has a root in the interval [ f1/k1, 1], therefore the force
extension curve attains maximum in this interval, in which
case, as mentioned, xm is independent of the value of f1 since
p2 is independent of f1. We note that when k1 ≈ f1, then
d ( f1, k1) > 0, which implies that in this case, p1 has a root
between [ f1/k2, f1/k1]. Similarly, for high values of f1, for
instance, with f1 � 0.8, we also have d ( f1, k1) > 0, in which
case xm is derived from the root of p1 in interval [ f1/k2, f1/k1].
But when f1/k1 � 1, then d ( f1, k1) < 0 and so, xm is derived
from the root of p2 in the interval [ f1/k1, 1].

Next, in case when 1 = f2/k2 � f1/k1, as before we have
F ′(�l ) > 0 for any 0 < �l < f1/k2 and F ′(�l ) < 0 when
f2/k2 = 1 < �l < f2/k1 with F ≡ 0 for �l � f2/k1. There-
fore the maximum is attained when f1/k2 � �l � f2/k2 = 1.
In this case, �l is also a root of p1 as given in Eq. (A3) and
is the unique root in interval [ f1/k2, 1]. In Fig. 11, we plot xm

as a function of k1 fixing f1 and of f1 fixing k1. Specifically,
in Fig. 11(a) with fixed value of f1 = 0.3, when k1 � f1, we
have that 1 = f2/k2 � f1/k1 and so, xm is derived from the
root of p1 (shown in green color). However, when k1 � f1,
except for a crossover region where f1 ≈ k1 in which the shear
displacement at the maximum is derived as a root of p1, for
larger values of k1 with f1/k1 � 1, we see that xm is derived
from the root of p2 (blue color in Fig. 11). In Fig. 11(b), a high
value of f1 = 0.9 is fixed and as discussed, in this case, xm is
derived from the root of p1 for all values of k1. In Fig. 11(c),
we have fixed value of k1 = 0.5. We note that for smaller
values of f1, with f1/k1 � 1, xm is derived from the root of
p2 and is, therefore, constant as f1 varies. However, as f1

approaches k1, the behavior crosses over with xm now derived
from the root of p1, and as f1 becomes greater than k1, we
have f1/k1 > 1 and as discussed, the xm is still derived from
the root of p1. In all cases, simulation results show excellent
agreement with theoretical results.
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