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QED theory of elastic electron scattering on hydrogen-like ions involving formation
and decay of autoionizing states
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We develop ab initio relativistic QED theory for elastic electron scattering on hydrogen-like highly charged
ions for impact energies where, in addition to direct (Coulomb) scattering, the process can also proceed via
formation and consequent Auger decay of autoionizing states of the corresponding helium-like ions. Even so, the
primary goal of the theory is to treat electron scattering on highly charged ions, a comparison with experiment
shows that it can also be applied for relatively light ions covering thus a very broad range of the scattering
systems. Using the theory we performed calculations for elastic electron scattering on B4+, Ca19+, Fe25+, Kr35+,
and Xe53+. The theory was also generalized for collisions of hydrogen-like highly charged ions with atoms
considering the latter as a source of (quasi)free electrons.
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I. INTRODUCTION

Atomic systems with two or more electrons possess au-
toionizing states which can be highly visible in many pro-
cesses studied by atomic physics, e.g., photo and impact
ionization, dielectronic recombination, and photon or electron
scattering. In particular, when an electron is incident on an
ion, for certain (resonant) energies of the incident electron an
autoionizing state can be formed. This state can then decay
either via spontaneous radiative decay or via Auger decay
due to the electron-electron interaction. In the former case
dielectronic recombination takes place, whereas in the latter
resonant electron scattering occurs. Depending on whether the
initial and final ionic states coincide or not, the energy of the
scattered electron can be equal to the energy of the incident
electron (elastic resonant scattering) or differ from it (inelastic
resonant scattering).

An incident electron can also scatter on an ion without
excitation of the internal degrees of freedom of the ion. In
such a case, scattering proceeds via the Coulomb force acting
between the electron and the (partially screened) nucleus of
the ion. This scattering channel is nonresonant and elastic and
its amplitude should be added coherently to the amplitude
for the elastic resonant scattering. As a result, there appears
interference between these two channels which has to be taken
into account in a proper treatment of elastic scattering.
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Resonant scattering was extensively studied for non-
relativistic electrons incident on light ions [for instance,
e− + He+(1s) → He∗∗ → He+(1s) + e−]. This scattering
becomes especially important at large scattering angles (as
viewed in the rest frame of the ion) where the contribution
of the potential Coulomb scattering is minimal. Therefore,
experimental investigations (which often replace electron-ion
collisions by ion-atom collisions in which atomic electrons
are regarded as quasifree) were mainly focused on such angles
(see, e.g., [1–6]). There exist also a large number of calcula-
tions for resonant electron-ion scattering in which a nonrela-
tivistic electron interacts with a light ion (see, e.g., [5–8]).

In sharp contrast, the studies on resonant scattering of an
electron on a highly charged ion, in which relativistic and
QED effects can become of importance, are almost absent
with no experimental data and merely two theoretical papers
[9,10]. In [9] scattering of an electron on a hydrogen-like
uranium ion was considered, however, only the resonant
part of the scattering was calculated, whereas the potential
Coulomb part as well as the interference between them were
not taken into account. In [10] resonant electron scattering on
helium-like ions with atomic numbers 60 � Z � 92 proceed-
ing via the formation of autoionizing states [(1s2p1/2)nl]1/2

and [(1s2s)nl]1/2 with the principal quantum numbers 5 �
n � 7 is presented. The goal of [10] was to investigate the
possibility of experimental study of the parity nonconserva-
tion effects in this process. We note that for the heavy ions the
potential Coulomb part is much larger than the resonant part
(particularly, this concerns the contribution of highly excited
states), so that the contribution of the resonant part including
its interference with the Coulomb part is negligible.

In case of scattering on highly charged ions, the electrons
are subjected to a very strong field generated by the ionic nu-
cleus. As a result, the account of relativistic and QED effects
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may become of great importance for a proper description of
the scattering process.

In this paper we consider elastic electron scattering on
hydrogen-like highly charged ions for impact energies where
the presence of autoionizing states of the corresponding
helium-like ions can actively influence this process. To this
end, we shall develop ab initio relativistic QED theory of this
process, which enables one to address both its resonant and
Coulomb parts in a unified and self-consistent way. Relativis-
tic units are used throughout unless otherwise is stated.

II. GENERAL THEORY

We consider elastic electron scattering on a hydrogen-like
ion which is initially in its ground state,

e−
pi,μi

+ X (Z−1)+(1s) → e−
p f ,μ f

+ X (Z−1)+(1s), (1)

where Z is the atomic number of the ion X . If the energy of
the initial state of the electron system, which consists of the
incident electron e−

p,μ with an asymptotic momentum p and
polarization μ and the 1s electron bound in the ion, is close
to the energy of a doubly excited (autoionizing) state of the
corresponding helium-like ion, the resonant scattering channel

e−
pi,μi

+ X (Z−1)+(1s) → X (Z−2)+(d )

→ e−
p f ,μ f

+ X (Z−1)+(1s), (2)

where d is a doubly excited state, becomes of importance.
Here, the scattering proceeds via the formation of a doubly
excited state (d) and its subsequent Auger decay. This channel
is driven by the interelectron interaction.

One can expect that in case of highly charged ions the main
channel of the electron-ion scattering process (1) is Coulomb
scattering, which is nonresonant. Therefore, in order to in-
vestigate the resonant structure experimentally, the electron
scattering to very large angles (�180◦), for which the contri-
bution of the main channel is minimal, should be considered
[5]. Accordingly, one needs to calculate the differential cross
section.

We shall consider the scattering process (1) using the
Furry picture [11], in which the action of a strong external
field (for example, the field of the ionic nucleus) on the
electrons is taken into account from the very beginning.
The electrons interact with each other via the interaction with
the quantized electromagnetic and electron-positron fields,
which is accounted for by using perturbation theory.

The ingoing (+) and outgoing (−) wave functions of an
electron in an external central electric field with a asymptotic
momentum (p) and polarization (μ) can be presented as [12]

ψ (±)
pμ (r) = N

∑
jlm

�+
jlm(ν)vμ(ν)e±iφ jl ilψε jlm(r), (3)

where

N = (2π )3/2

√
pε

(4)

is the normalization factor, ν = p/|p| is the unit vector
defining the angular dependence of the momentum p. The
wave functions ψε jlm(r) describe electrons with the energy
ε =

√
1 + p2, the total angular momentum j, its projection

m and parity defined by the orbital momentum l , and φ jl are
the phases determined by the external field [see Eq. (B1) in
Appendix B]. These wave functions are normalized according
to ∫

dr ψ+
ε′ j′l ′m′ (r)ψε jlm(r) = δ(ε′ − ε)δ j′ jδl ′lδm′m, (5)

where δ denotes either the delta function or the Kronecker
symbol, respectively. The spherical bispinor reads as [13]

� jlm(ν) =
∑
ml ms

Cls
jm(mlms)Ylml (ν)χms , (6)

where Cls
jm(mlms) = 〈lmlsms| jm〉 are the Clebsch-Gordan

coefficients, Ylml (ν) are spherical harmonics, and χms ,

χ+1/2 =
(

1
0

)
, χ−1/2 =

(
0
1

)
(7)

are spinors. Further, in (3) there are also spinors vμ(ν), which
are defined according to

1
2νσvμ(ν) = μvμ(ν), (8)

(vμ′ (ν), vμ(ν)) = δμ′μ, (9)

vμ(ez ) = χμ, (10)

where σ is the Pauli vector, ez is the unit vector along the z
axis. Then, the wave functions ψ (±)

pμ (r) are normalized as∫
dr ψ

(±)+
p′μ′ (r)ψ (±)

pμ (r) = (2π )3δ(p′ − p)δμ′μ

= (2π )3

εp
δ(ε′ − ε)δ(cos θ ′ − cos θ )

× δ(ϕ′ − ϕ)δμ′μ. (11)

For the process of elastic electron scattering (1), the
contribution of its Coulomb part to the amplitude is very
important. The Coulomb scattering amplitude is usually
calculated by studying the asymptotics of the electron wave
functions in the Coulomb field [12].

The resonant part of the scattering process (2) is due to
the formation and decay of autoionizing states of the corre-
sponding helium-like ion. In this paper, for the description
of autoionizing states within the QED theory the line-profile
approach (LPA) will be employed [14], where the QED
perturbation theory is used. In particular, it is necessary to
take into account various corrections such as the interelectron
interaction corrections and the relativistic corrections to the
scattering amplitude.

In order to make the consideration of both Coulomb and
resonant parts of the scattering amplitude self-consistent, we
shall apply the formal theory of scattering for the Coulomb
potential considering it by using perturbation theory.

A. Coulomb scattering amplitude

For simplicity, in this section we limit ourselves to the
consideration of a one-electron system. Within the scattering
theory developed in [15,16], the in (+) and out (−) states
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satisfy the Lippmann-Schwinger equation

ψ (±)
pμ (r) = φpμ(r) + 1

ε − Ĥ0 ± i0
V̂ ψ (±)

pμ (r), (12)

where V̂ represents the scattering potential. Here, the function
φpμ(r) describes a free electron and can be obtained from
Eq. (3) by setting Z = 0:

φpμ(r) = uμ(p)eipr, (13)

uμ(p) = 1√
2ε

( √
ε + 1vμ(ν)√

ε − 1(σν)vμ(ν)

)
. (14)

Following [15] we introduce the R-matrix elements according
to

Ri f = 〈
φp f μ f

∣∣V̂ ∣∣ψ (+)
piμi

〉
= 〈

φp f μ f

∣∣V̂ ∣∣φpiμi

〉 + 〈
φp f μ f

∣∣V̂ 1

εi − Ĥ0 + i0
V̂

∣∣ψ (+)
piμi

〉
.

(15)

The S-matrix elements are related to the R matrix as follows:

Si f = 〈
φp f μ f

∣∣Ŝ∣∣φpiμi

〉 = δi f − 2π iδ(εi − ε f )Ri f . (16)

Since the S-matrix elements can be also written as

Si f = 〈
ψ (−)

p f μ f

∣∣ψ (+)
piμi

〉
, (17)

we obtain that ( f 
= i)〈
ψ (−)

p f μ f

∣∣ψ (+)
piμi

〉 = (−2π i)δ(ε f − εi ) Ri f . (18)

In the case of Coulomb scattering, V̂ = −αZ/r, the states
ψ (±)

piμi
can be conveniently evaluated using the expansions (3),

which enables us to obtain the following expression:

RCoul
i f = N2 (−1)p

(2π )2

∑
m

(vμ f (ν f ))∗mMmμi (θ, ϕ) (19)

(a detailed derivation of RCoul is presented in Appendix A).
Following [17] we introduced the matrix M:

M+1/2,+1/2(θ, ϕ) = f (θ ), M+1/2,−1/2(θ, ϕ) = g(θ )e−iϕ,

M−1/2,+1/2(θ, ϕ) = −g(θ )eiϕ, M−1/2,−1/2(θ, ϕ) = f (θ ),

(20)

where f (θ ) and g(θ ) are the relativistic scattering amplitudes

f (θ ) = 1

2π i

∑
jl

|κ|(e2iφκ − 1)Pl (cos θ ), (21)

g(θ ) = 1

2π i

∑
l

(e2iφκ=−l−1 − e2iφκ=l )P1
l (cos θ ). (22)

B. Coulomb scattering amplitude within the LPA

In the QED theory the scattering matrix (S) can be rep-
resented as the sum of the normal ordered products of field
operators corresponding to different processes of particle scat-
tering. Each normal ordered product and, consequently, any
scattering process can be represented graphically according to
the Feynman rules. In the corresponding matrix elements, the
integration over xμ = (t, r) 4-vectors is performed. If in the
process the energy is conserved, after the integration over the

�

�

A

A

n = a

k , e

k′, e′

FIG. 1. Feynman graph describing the elastic photon scattering
on an atomic electron. The double solid line denotes the electron in
the external potential V F (the Furry picture). The wavy lines with
the arrows describe the emission and absorption of a photon with
momentum k and polarization e.

time variables the matrix element can be written as [12]

SQED
i f = (−2π i)δ(ε f − εi )U

QED
i f , (23)

where U QED
i f is the amplitude. In QED of strong fields the

S-matrix elements and, correspondingly, the amplitude Ui f are
evaluated with the use of perturbation theory [12]. For the
description of highly charged ions within QED theory, spe-
cial methods are employed. Most of QED calculations were
performed using the adiabatic S-matrix approach [18–20],
the two-time Green’s function method [21], the covariant-
evolution-operator method [22], and the LPA [14]. In this
paper we employ the LPA.

We shall now establish the relationship between the ampli-
tude RCoul

i f defined by Eq. (15) and the corresponding ampli-
tudes derived within the LPA. Let us evaluate the scattering
amplitude corresponding to the interaction with an external
field V ext in the one-electron case. Within the LPA the initial
and final states (the reference states) are described as reso-
nances in the process of scattering. As an auxiliary process, it
is normally most convenient to take elastic photon scattering.
For the properties of the reference states to be independent of
the details of the scattering process, the resonance approxima-
tion is employed [14]. In this approximation, the line profile
is interpolated by the Lorentz contour, the position of the
resonance and its width define the energy and width of the
corresponding state.

We consider the process of elastic photon scattering on
one-electron ion initially being in its ground state. The Feyn-
man graphs corresponding to this process in the zeroth order
of the perturbation theory are depicted in Fig. 1. The corre-
sponding S-matrix element reads as [12,14]

SQED
i f = (−ie)2

∫
d4xud4xd ψ̄u(xu)γ μu S(xu, xd )γ μd ψd (xd )

× A∗(k′,λ′ )
μu

(xu)A(k,λ)
μd

(xd ). (24)

We assume that ψu = ψd describes the 1s electron. The
electron propagator S(xu, xd ) can be written as

S(xu, xd ) = i

2π

∫
dω1e−iω1(tu−td )

∑
n

ψn(ru)ψ̄n(rd )

ω1 − εn(1 − i0)
, (25)

where the sum runs over the entire Dirac spectrum. Further,
A(k,λ)

μd
(xd ) and A∗(k′,λ′ )

μu
(xu) refer to the absorbed and emitted
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k , e

k′, e′

V ext×

FIG. 2. Feynman graph corresponding to the insertion describing
the interaction with the external field V ext . The dotted line with a
cross denotes the interaction with the field V ext . The notations are the
same as in Fig. 1.

photons, respectively, kμ = (ω, k) is the 4-vector of photon
momentum, λ describes the photon polarization. By inserting
(25) into Eq. (24) and integrating over the time and frequency
variables tu, td , and ωn we obtain

SQED
i f = (−2π i)δ(ω′ + εu − ω − εd ) e2

∑
n

A∗(k′,λ′ )
un A(k,λ)

nd

ω + εd − εn
,

(26)

where one-electron matrix elements

A(k,λ)
nd =

∫
d3r ψ̄n(r)γ μA(k,λ)

μ (r)ψd (r), (27)

A∗(k′,λ′ )
un =

∫
d3r ψ̄u(r)γ μA∗(k′,λ′ )

μ (r)ψn(r) (28)

were introduced.
In the first order of the perturbation theory we consider

one interaction with an external field Aext
μ (x) = (V ext (r), 0).

The Feynman graph describing this interaction is presented in
Fig. 2. The corresponding S-matrix element reads as

SQED(1)
i f = (−ie)3

∫
d4xud4xd d4x ψ̄u(xu)γ μu A∗(k′,λ′ )

μu
(xu)

× S(xu, x)γ μAext
μ (x)S(x, xd )A(k,λ)

μd
(xd )γ μd ψd (xd ).

(29)

The integration over the time and frequency variables leads to

SQED(1)
i f = (−2π i)δ(ω′ + εu − ω − εd ) e2

∑
n1n2

A∗(k′,λ′ )
un1(

ω′ + εu − εn1

)

×V ext
n1n2

A(k,λ)
n2d(

ω + εd − εn2

) , (30)

where

V ext
n1n2

= e
∫

d3r ψ+
n1

(r)V ext (r)ψn2 (r). (31)

Within the LPA the reference states (the initial and final
states) are defined via resonances in the process of elastic
photon scattering. Accordingly, we are interested in (we note
that εu = εd )

ω′ + εu ≈ ε f , (32)

ω + εd ≈ εi. (33)

In the resonance approximation, the reference states are de-
scribed in such a way that their properties do not depend on a
specific scattering process. Accordingly, retaining only terms
with n1 = f , n2 = i, in the resonance approximation we get

SQED(1)res
i f = (−2π i)δ(ω′ + εu − ω − εd ) e2

A∗(k′,λ′ )
u f

(ω′ + εu − ε f )

×V ext
f i

A(k,λ)
id

(ω + εd − εi )
. (34)

The second order of the perturbation theory with respect to
the interaction with the external field reads as

SQED(2)
i f = (−2π i)δ(ω′ + εu − ω − εd ) e2

×
∑

n1n2n3

A∗(k′,λ′ )
un1(

ω′ + εu − εn1

)V ext
n1n2

1(
ω + εd − εn2

)

×V ext
n2n3

A(k,λ)
n3d(

ω + εd − εn3

) . (35)

In the resonance approximation we keep only the term with
n2 = n3 = i:

SQED(2)res
i f = (−2π i)δ(ω′ + εu − ω − εd ) e2

A∗(k′,λ′ )
u f

(ω′ + εu − ε f )

×V ext
f i

1

(ω + εd − εi )
V ext

ii

A(k,λ)
id

(ω + εd − εi )
. (36)

The third order of perturbation theory in the resonance
approximation reads as

SQED(3)res
i f = (−2π i)δ(ω′ + εu − ω − εd )

× e2
∑
n1n2

A∗(k′,λ′ )
u f

(ω′ + εu − ε f )
V ext

f i

1

(ω + εd − εi )

×V ext
ii

1

(ω + εd − εi )
V ext

ii

A(k,λ)
id

(ω + εd − εi )
. (37)

In the resonance approximation the series of the perturbation
theory composes a geometric progression

∞∑
l=0

SQED(l )res
i f = (−2π i)δ(ω′ + εu − ω − εd ) e2

∞∑
l=0

A∗(k′,λ′ )
u f

(ω′ + εu − ε f )
V ext

f i

[
1

(ω + εd − εi )
V ext

ii

]l A(k,λ)
id

(ω + εd − εi )

= (−2π i)δ(ω′ + εu − ω − εd ) e2
A∗(k′,λ′ )

u f

(ω′ + εu − ε f )
V ext

f i

A(k,λ)
id(

ω + εd − εi − V ext
ii

) . (38)
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Thus, the summation of the infinite series resulted in a shift of
the position of the resonance, which represents a correction
to the energy of the reference state. This procedure was
first applied in [23] for the derivation of the natural line
shape within the QED theory, where the correction due to
the electron self-energy was considered. We also note that
the corrections to the photon scattering amplitude for a few
electron ions were discussed in [14].

Within the LPA we introduce the amplitude

Ui f =
∞∑

l=1

U (l )
i f , (39)

where

U (1)
i f = V ext

f i , (40)

U (2)
i f =

∑
n

V ext
f n

1

(ω + εd − εn)
V ext

ni , (41)

U (3)
i f =

∑
n1n2

V ext
f n1

1(
ω + εd− εn1

)V ext
n1n2

1(
ω + εd− εn2

)V ext
n2i . (42)

In the resonance approximation we can set ω + εd = εi. The
amplitude (39) describes the transition (i → f ) caused by the
external field V ext.

Introducing the operator �V̂ , which is defined by its matrix
elements as

�Vn1n2 = V ext
n1n2

, (43)

the amplitude can be rewritten as

Ui f = 〈
�

(0)
f

∣∣�V̂
∣∣� (0)

i

〉 + 〈
�

(0)
f

∣∣�V̂
1

εi − Ĥ0 + i0
�V̂

∣∣� (0)
i

〉
+〈

�
(0)
f

∣∣�V̂
1

εi − Ĥ0 + i0
�V̂

1

εi − Ĥ0 + i0
�V̂

∣∣� (0)
i

〉
+ · · ·

=
∞∑

l=0

〈
�

(0)
f

∣∣�V̂

[
1

εi − Ĥ0 + i0
�V̂

]l ∣∣� (0)
i

〉
. (44)

The one-electron wave functions � (0)
n describe electrons non-

interacting with the external field V ext
n1n2

:

Ĥ0�
(0)
n = εn�

(0)
n . (45)

Here, Ĥ0 is the Dirac Hamiltonian

Ĥ0 = α p̂ + βm + V F(r), (46)

where α and β are the Dirac matrices and the choice of the
potential V F defines the Furry picture employed.

The amplitude Ui f in Eq. (44) can be also written as

Ui f = 〈
�

(0)
f

∣∣�V̂ |�i〉, (47)

where

�i = �
(0)
i + 1

εi − Ĥ0 + i0
�V̂ �i. (48)

The function �i is a solution of the following equation:

(Ĥ0 + �V̂ )�i = εi�i. (49)

�

a

a′

�

b

b′

FIG. 3. Feynman graph corresponding to the first-order in-
terelectron interaction in two-electron ion (one-photon exchange
graph).

We note that the amplitude (47), in which the exact state
is given by (48), essentially coincides with the amplitude
(15), where the exact state is given by (12). Therefore, we
conclude that the amplitude Ui f obtained within the LPA,
a QED approach, coincides with the amplitude Ri f , which
follows from (relativistic) quantum mechanics and which, in
particular, can be evaluated using Eq. (18). One should add
that in the framework of the LPA also QED corrections, such
as electron self-energy, vacuum polarization, photon exchange
corrections, can be taken into account using the procedure
described above. Thus, in general, the operator �V̂ includes
also the corresponding QED corrections.

C. Implementation of the LPA for the description
of elastic resonant scattering

The scattering amplitude corresponding to the interelectron
interaction is given by Feynman graphs depicted in Figs. 3
and 4. The graph in Fig. 3 represents the one-photon exchange
correction, the graphs in Figs. 4(a) and 4(b) refer to the
two-photon exchange corrections; the three- and more-photon
exchange corrections could also be considered. One should
note, however, that in the process under consideration all
these graphs need a special treatment because they contain
divergences.

�

�

a

a′

n1

�

�

b

b′

n2

(a)

�

�

a

a′

n1

�

�

b

b′

n2

(b)

FIG. 4. Feynman graphs corresponding to the second-order in-
terelectron interaction in two-electron ion (two-photon exchange
graphs).
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For the description of processes, which involve electrons
interacting with the field of a highly charged nucleus, the
Furry picture is normally used, in which the interaction of
the electrons with the potential of the nucleus V F = −αZ/r
is fully taken into account from the onset, whereas the inter-
electron interaction is considered using a QED perturbation
theory. However, in the case of elastic scattering such an ap-
proach leads to divergent results arising from the application
of the perturbation theory to a long-range Coulomb interaction
between bound and free electrons.

In order to modify the “standard” approach, we note that
the incident and scattered electron most of the time is mov-
ing in the Coulomb field of a hydrogen-like ion with the
net charge Z − 1. Therefore, we shall avoid the use of the
perturbation theory for the interaction of the free electron
with the bound electron by employing the Furry picture in
which the free electron is supposed to move in the field of
the nuclear charge Z − 1. Then, the interaction of the free
electron with the bound electron together with its interaction
with the “remaining” charge of the nucleus [Z − (Z − 1) = 1]
is already a short-range interaction since it corresponds to the
interaction with an electrically neutral system [the charge of
the bound electron (e) smeared out over the size of its bound
state and the “remaining” charge of the nucleus (−e)]. Now,
the divergences do not arise and this short-range interaction
can be accounted for by using the perturbation theory.

Thus, our consideration involves the following points. (i)
The wave functions of the incident and scattered electron
are obtained by solving the Dirac equation with the potential
−α(Z − 1)/r. (ii) The wave functions of all other electrons
(bound and virtual) are derived from the Dirac equation with
the potential −αZ/r. (iii) The interaction of the continuum
electrons with the “remaining” charge of the nucleus is calcu-
lated with the use of perturbation theory. (iv) The interelectron
interaction is considered as the interaction with the quantized
electromagnetic and electron-positron fields within the QED
perturbation theory. (v) The divergences arising from the long-
range Coulomb interaction of the continuum electron with the
remaining charge of the nucleus and with the bound electron
can be regularized and cancel each other.

The amplitude of the Coulomb scattering given by Eq. (19)
formally corresponds to taking into account the Feynman
graphs depicted in Fig. 5, where graphs (a) and (b) represent
the first and second terms in the right side of Eq. (15). For the
derivation of the amplitude for the resonant scattering channel
[see (2)] the Feynman graphs depicted in Fig. 6 have to be
taken into account. Figures 6(a) and 6(c) present the direct and
exchange graphs, respectively, of the one-photon exchange.
The double line describes an electron in the Furry picture with
the potential V F = −αZ/r, the double striped line describes
continuum electrons in the Furry picture with the potential
V F

cont = −α(Z − 1)/r. Figure 6(b) represents the interaction of
the incident electron with the potential �Vcont = V F − V F

cont =
−α/r (i.e., with the potential of the remaining charge of the
nucleus).

The contribution of Fig. 6(a) [or Fig. 6(c)] is given by [14]

(I )u1u2d1d2 = α

∫
dr1dr2 ψ̄u1 (r1)ψ̄u2 (r2)γ μ1

1 γ
μ2
2 Iμ1μ2 (|�|, r12)

×ψd1 (r1)ψd2 (r2), (50)

a

a′

b

b′

Z − 1
�×

(a)
a

a′

b

b′
Z − 1

�×

Z − 1
�×

(b)

FIG. 5. Feynman graphs representing the first (a) and second
(b) terms in the right side of Eq. (15) for two-electron ion. The single
solid line denotes free electron, the double line denotes electron
in the field of potential V F = −αZ/r. The dashed line with the
cross designates interaction with external field Vcont = −α(Z − 1)/r.
The double striped line describes electron in the Furry picture with
potential V F

cont = −α(Z − 1)/r.

where r12 = |r1 − r2| and

Ic
μ1μ2

= δμ10δμ20

r12
, (51)

I t
μ1μ2

= −
(

δμ1μ2

r12
ei�r12 + ∂

∂xμ1
1

∂

∂xμ2
2

1 − ei�r12

r12�2

)

× (
1 − δμ10

)(
1 − δμ20

)
. (52)

While the exchange contribution [Fig. 6(c)] does not contain
any divergence, the direct contribution [Fig. 6(a)] does. How-
ever, the contribution to the amplitude given by Fig. 6(b) is
also divergent and it turns out that the divergences in Figs. 6(a)
and 6(b) cancel each other.

Let us consider this point more in detail. First of all we note
that the problem with Fig. 6(a) arises only due to the Coulomb
part of the transition matrix element. We now assume that
d1 = u1 = ep,μ [the incident and scattered electron having
the same energy (ε)] and d2 = u2 = 1s (the 1s electron) and
consider only the above-mentioned part Ic of the transition
matrix element

(Ic)u1u2d1d2 = α

∫
dr1dr2ψ

+
u1

(r1)ψ+
u2

(r2)
1

r12
ψd1 (r1)ψd2 (r2).

(53)

�

a

a′

�

b

b′

(a)
a

a′

b

b′

1
×

(b)
a

a′

b

b′

(c)

FIG. 6. The direct (a) and exchange (c) Feynman graphs repre-
senting the one-photon exchange. The double line describes electron
in the Furry picture with potential V F = −αZ/r, the double striped
line describes electron in the Furry picture with potential V F

cont =
−α(Z − 1)/r. The graph (b) represents interaction of the incident
electron with the potential �Vcont = −α/r.
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Using the expansion [13]

1

r12
=

∞∑
K=0

rK
<

rK+1
>

PK (cos θ ), (54)

where r< = min(r1, r2), r> = max(r1, r2) and retaining only
the term with K = 0 (the terms with K > 0 have no diver-
gences) we can write

(
Ic
0

)
u1u2d1d2

= α

∫
dr1dr2ψ

+
u1

(r1)ψ+
u2

(r2)
1

r>

ψd1 (r1)ψd2 (r2).

(55)

The wave function of an electron with a given momentum
and polarization can be decomposed into the complete set of
partial waves with a certain energy and angular momentum

[see Eq. (3)]. The divergence appears only for the case of
identical partial waves for the incident and scattered electrons,
which we shall now consider. The wave function of 1s electron
decreases exponentially, accordingly, the integration over r2

is convergent. Asymptotically (when r → ∞), the upper and
lower components of the incident electron wave function are
given by

gε jlm(r) ∼ Cg cos(pr + ξ log 2pr + δ jl ), (56)

fε jlm(r) ∼ Cf sin(pr + ξ log 2pr + δ jl ), (57)

where ξ = αZε/p is the Sommerfeld parameter, δ jl are the
phase shifts, Cg and Cf are constants [12]. Accordingly, the
integration over r1 contains a divergent part at the upper limit
(r1 → ∞):

∫
dr1

1

r1
[|Cg|2 cos2(pr1 + ξ log 2pr1 + δ jl ) + |Cf |2 sin2(pr1 + ξ log 2pr1 + δ jl )]. (58)

After a regularization of the integral over r1, the divergent part of Eq. (55) can be singled out and, as will be shown, it will be
exactly canceled by the divergence contained in the contribution to the amplitude due to the interaction of the continuum electron
with the potential �Vcont.

It is convenient to split the integral Ic
0 into two parts:

(
Ic
0

)
u1u2d1d2

= α

∫
dr1dr2

(
1

r>

− 1

r1

)〈
ψ+

u1
(r1)ψd1 (r1)

〉〈
ψ+

u2
(r2)ψd2 (r2)

〉 + α

∫
dr1dr2

(
1

r1

)〈
ψ+

u1
(r1)ψd1 (r1)

〉〈
ψ+

u2
(r2)ψd2 (r2)

〉

= α

∫
dr2

∫
|r1|<|r2|

dr1

(
1

r2
− 1

r1

)〈
ψ+

u1
(r1)ψd1 (r1)

〉〈
ψ+

u2
(r2)ψd2 (r2)

〉 + α

∫
dr1

(
1

r1

)〈
ψ+

u1
(r1)ψd1 (r1)

〉
δu2d2 . (59)

Here, we used the fact that the wave function of the 1s electron is normalized to unity. The integral containing the term (1/r2 −
1/r1) is obviously convergent. The integral with 1/r1 is divergent but is exactly canceled out by the divergent part of the
contribution to the amplitude due to the interaction �Vcont of the incident electron with the remaining charge, which reads
as

(�Vcont )u1u2d1d2 = α

∫
dr1ψ

+
u1

(r1)

(−1

r1

)
ψd1 (r1) δu2d2 . (60)

The consideration given in the previous paragraphs is based on the decomposition Z = (Z − 1) + 1. Its first term corresponds
to the effective charge of the nucleus (as seen asymptotically by the incident and scattered electron) screened by the bound
electron which essentially is regarded as a pointlike charge (−1) placed at the origin. Using the Furry picture, the Coulomb
interaction between the continuum electron and such a pointlike electron is taken into account to all orders. At the same time,
the difference between this interaction and the Coulomb interaction between the continuum electron and the bound electron in
the 1s state is considered in the first order. We note that this difference is of short range corresponding to the interaction with an
electrically neutral system, which is considered using the perturbation theory. Indeed, the sum of Ic

0 and �Vcont(
Ic
0 + �Vcont

)
u1u2d1d2

= α

∫
dr2

∫
|r1|<|r2|

dr1

(
1

r>

− 1

r1

)〈
ψ+

u1
(r1)ψd1 (r1)

〉〈
ψ+

u2
(r2)ψd2 (r2)

〉
(61)

is finite and represents a correction due to interaction with
a short-range potential. Within our approach, Fig. 6(a) must
be always considered together with Fig. 6(b). For light ions
the accuracy of our approach may be improved if we replace
the interaction with a pointlike charge by the interaction with
the charge density given by the 1s electron wave function and
adjust the Furry picture accordingly. The influence of this
replacement on the results is discussed in the next section
(Figs. 11 and 12).

The Feynman graph depicted in Fig. 6(c) represents the
exchange graph of the one-photon exchange, it is finite and
does not require a special treatment. Up to now, we considered

the direct (nonresonant) elastic scattering. Let us now briefly
discuss the description of the resonant channel of the scat-
tering process which becomes relevant when the sum of the
energies of the incident and the bound electrons is close to the
energy of a doubly excited (autoionizing) state. In such a case,
the contribution of two- and more-photon exchange between
electrons in low-lying states becomes of importance. More-
over, the doubly excited states are normally quasidegenerate,
hence, a perturbation theory for quasidegenerate states has to
be used. For this purpose, the LPA [14] is employed.

For application of the quasidegenerate perturbation the-
ory within the LPA we introduce the set of two-electron
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configurations (g) in the j- j coupling scheme which includes
all two-electron configurations composed by a certain set of
electrons (for example, 1s, 2s, 2p, 3s, 3p, 3d electrons)

�
(0)
JM j1 j2l1l2n1n2

(r1, r2)

= N ′ ∑
m1m2

C j1 j2
JM (m1, m2) det

{
ψn1 j1l1m1 (r1), ψn2 j2l2m2 (r2)

}
,

(62)

where j and m are the total angular momentum and its
projection, l is the orbital angular momentum defining the
parity, n denotes the principal quantum number or energy (for
the continuum electrons), J and M are the total angular mo-
mentum of the two-electron configuration and its projection,
N ′ is the normalizing constant.

In the LPA a matrix V is introduced, which is determined
by the one- and two-photon exchange, electron self-energy
and vacuum polarization matrix elements and other QED cor-
rections [14] and which can be derived order by order within
the QED perturbation theory. The matrix V = V (0) + �V is
considered as a block matrix

V =
[
V11 V12

V21 V22

]
=

[
V (0)

11 + �V11 �V12

�V21 V (0)
22 + �V22

]
. (63)

The matrix V11 is defined on the set g, which contains con-
figurations mixing with the reference state ng ∈ g. The
matrix V (0) is a diagonal matrix composed of the sum of
the one-electron Dirac energies. The matrix �V11 is not a
diagonal matrix, but it contains a small parameter of the QED
perturbation theory. The matrix V11 is a finite-dimensional
matrix and can be diagonalized numerically:

V diag
11 = BtV11B, Bt B = I. (64)

The matrix B defines a transformation to the basis set in
which the matrix V11 is a diagonal matrix. Then, the standard
perturbation theory can be applied for the diagonalization of
the infinite-dimensional matrix V . The eigenvectors of V read
as [14]

�ng =
∑
kg∈g

Bkgng�
(0)
kg

+
∑

k /∈g,lg∈g

[�V21]klg

Blgng

E (0)
ng − E (0)

k

�
(0)
k + · · · ,

(65)

where ng ≡ (JM j1 j2l1l2n1n2) is a complete set of quantum
numbers describing the reference state, indices k, lg denote
the two-electron configurations: the index lg runs over all con-
figurations of the set g; the index k runs over all configurations
not included in the set g (this implies the integration over
the positive- and negative-energy continuum). Here, E (0)

k is
the energy of the two-electron configuration �

(0)
k given by

the sum of the one-electron Dirac energies.
The amplitude of the scattering process is given as a matrix

element of the operator (�V̂ )

U Auger
i f = 〈

�
(0)
fin

∣∣�V̂ |�ini〉. (66)

The bra vector corresponds to the wave function describing
noninteracting electrons, Eq. (62), the ket vector is given
by the eigenvector, Eq. (65). The operator �V̂ is derived
within the QED perturbation theory order by order [14,24].
In the first and second orders of the perturbation theory it

is represented by Feynman graphs depicted in Figs. 3 and 4,
respectively.

The total amplitude of the process (1), including its reso-
nant part (1), is given by

Ui f = U Coul
i f + U Auger

i f , (67)

where the Coulomb and Auger contributions are given by
Eqs. (19) and (66), respectively. The numerical calculation of
the Coulomb amplitude U Coul

i f is discussed in Appendix B.
The transition probability is expressed via the amplitude

according to [12]

dwi f = 2π |Ui f |2δ(Ei − E f )
d3 p f

(2π )3
, (68)

where Ei, E f are the energies of the initial and final states of
the system and p f is the momentum of the scattered electron.

The cross section is defined as

dσi f = dwi f

j
, (69)

where j = pi/εi is the flux of the incident electrons having an
energy εi and a momentum pi. Accordingly, the double and
single differential cross sections for elastic electron scattering
read as

dσi f

dε f d� f
(ε f , θ f ) = 2π |Ui f |2δ(ε f − εi )

εi

pi

p f ε f

(2π )3
, (70)

dσi f

d� f
(ε f = εi, θ f ) = 2π |Ui f |2 εi

pi

p f ε f

(2π )3
, (71)

where ε f and � f are the energy and solid angle (with polar
angle θ f ) of the scattered electron, respectively.

III. RESULTS AND DISCUSSION

In this section we discuss results of applications of our
theory to electron scattering on hydrogen-like ions ranging
from boron to uranium. The calculated cross sections will be
given in the rest frame of the ion and for those impact energies
where only LL autoionizing states participate in the scattering
process. Since the Coulomb scattering is especially strong in
forward angles, we restrict ourselves to the consideration of
electron scattering to backward angles for which the Coulomb
contribution is minimal.

In experiments on electron-ion scattering free electrons are
often replaced by electrons bound in light atomic (molecular)
targets which serve as a source of (quasi)free electrons. There-
fore, in what follows we consider collisions of hydrogen-like
ions not only with free electrons, but also with molecular
hydrogen.

In the bottom panels of Figs. 7–10 the single differential
cross section for scattering of free electrons is presented as a
function of the scattered electron kinetic energy for Ca19+(1s),
Fe25+(1s), Kr35+(1s), and Xe53+(1s). In these figures we
observe a smooth background, caused by Coulomb scattering,
which is superimposed by maxima and minima arising due
to the resonant scattering as well as interference between the
resonant and the Coulomb parts of the scattering process.
The figures show that the differential cross section strongly
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FIG. 7. Double-differential cross section for the elastic electron scattering in collisions of 5.178 MeV/u Ca19+(1s) with H2 target (top) and
single differential cross section for the elastic electron scattering in collisions of Ca19+(1s) with free electrons (bottom).

depends on the charge of the ionic nucleus (Z) both qualita-
tively and quantitatively.

The total scattering amplitude can be written as a sum
of the two parts: the nonresonant (Coulomb) part and the
resonant part. Accordingly, the cross section can be split
into three terms corresponding to the Coulomb scattering, the
resonant scattering, and their interference. When the charge
Z of the ionic nucleus varies, the amplitude for Coulomb
scattering in the vicinity of resonances effectively scales as

1/Z . Further, the Schrödinger equation predicts that, provided
the total width of an autoionizing state is determined mainly
by the electron-electron interaction, the amplitude for res-
onant scattering scales as 1/Z as well. Therefore, for not
too heavy ions one could expect that all the contributions
to the cross section, the Coulomb and the resonant parts
and the interference term, scale with Z roughly as 1/Z2.
Indeed, our calculations for ions ranging between Z ∼ 5 and
Z ∼ 20 are in qualitative agreement with this scaling (for

FIG. 8. The same as in Fig. 7 but for 8.694 MeV/u Fe25+(1s). The solid black lines represent the results of the exact QED calculation, the
dashed red line corresponds to the calculation with disregard of the Breit part of the interelectron interaction and the real part of the radiative
corrections.
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FIG. 9. The same as in Fig. 8 but for 16.731 MeV/u Kr35+(1s).

illustration see Figs. 7 and 11). For heavier ions the amplitude
for the resonant scattering begins to decrease with Z faster
than 1/Z . This is mainly caused by a rapid growth of the
radiative contribution to the total widths which in heavy ions
outperforms the Auger decay. Accordingly, with increasing
Z the contribution of the resonant scattering decreases faster
than the contribution from the interference term. Whereas
for relatively small Z all the three parts of the cross section
are equally important, for higher Z the purely resonant part
becomes of minor importance and the resonance structure
in the cross section is determined solely by the interference
term.

We also note that the order of resonances also depends on
Z , in particular, it leads to different orders of maxima and
minima for different Z . The resonant energies of the incident
electron as well as the energies and widths of the corre-
sponding autoionizing states for various ions are presented in
Tables I–IV.

FIG. 10. The same as in Fig. 7 but for 38.493 MeV/u Xe53+(1s).

In order to investigate the influence of the Breit interac-
tion and the radiative corrections (self-energy and vacuum
polarization), we performed calculations where these correc-
tions were omitted. The red dotted lines in the bottom panels
of Figs. 8 and 9 correspond to calculations in which the Breit
interaction and the radiative corrections were neglected. The
energy shift of the resonances is clearly visible and roughly
equals to ∼4 and ∼10 eV for iron and krypton, respectively.
A slight decrease in the differential cross section due to the
contribution of the Breit interaction is noticeable but turns out
to be rather small even for krypton.

In the top panels of Figs. 7–10 we present results for
collisions of highly charged ions with H2. In order to evaluate

TABLE I. The parameters characterizing the resonant structure
of the cross section for various autoionizing (LL) states of helium-
like calcium are presented. The second and third columns present
the energies (E ′ = E(LL) − 2mc2) and widths (�) of the autoionizing
states. The fourth column presents the resonant energies of the
scattered electron (εres = E(LL) − ε1s). The data are given in the rest
frame of the ion.

Autoionizing
state E ′ (keV) � (eV) εres (keV)

(2s)2
0 −2.6710 0.25 2.7989

(2s2p1/2)0 −2.6670 0.08 2.8030
(2s2p1/2)1 −2.6654 0.08 2.8045
(2s2p3/2)2 −2.6600 0.07 2.8100
(2p1/2)2

0 −2.6465 0.13 2.8234
(2p1/22p3/2)1 −2.6432 0.13 2.8267
(2p1/22p3/2)2 −2.6405 0.16 2.8294
(2s2p3/2)1 −2.6313 0.19 2.8386
(2p3/2)2

2 −2.6295 0.33 2.8405
(2p3/2)2

0 −2.5995 0.12 2.8705
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TABLE II. Same as in Table I but for helium-like iron.

Autoionizing
state E ′ (keV) � (eV) εres (keV)

(2s)2
0 −4.5597 0.31 4.7179

(2s2p1/2)0 −4.5560 0.21 4.7216
(2s2p1/2)1 −4.5516 0.20 4.7260
(2s2p3/2)2 −4.5356 0.19 4.7421
(2p1/2)2

0 −4.5242 0.35 4.7534
(2p1/22p3/2)1 −4.5138 0.37 4.7639
(2p1/22p3/2)2 −4.5082 0.45 4.7695
(2s2p3/2)1 −4.5001 0.31 4.7776
(2p3/2)2

2 −4.4872 0.53 4.7905
(2p3/2)2

0 −4.4513 0.34 4.8264

the doubly differential scattering cross section for collisions
with molecular hydrogen, we use the impulse approximation
where the electrons, which are initially bound in hydrogen,
are considered as quasifree. Using this approximation one can
show that the cross section in collisions with hydrogen can be
expressed via the cross section in collisions with free electrons
according to(

d2σ (ε f , θ f )

dε f d� f

)
H2

= 2

(
dσ (ε f , θ f )

d� f

)
free

ε f

γ p f
J (p′

z ). (72)

Here, γ = 1/
√

1 − V 2
col and p′

z = γ (p f − Vcolε f ), where Vcol

is the collision velocity. Further,

J (p′
z ) =

∫
d2p′

⊥|ψ1s(p′
⊥, p′

z )|2

= 8

3 π

α5(
α2 + p′2

z

)3 (73)

is the Compton profile for the 1s electron of hydrogen atom
with the corresponding wave function ψ1s(p′), p′ = (p′

⊥, p′
z )

is the momentum of the incident electron in the rest frame
of hydrogen, α is the hyperfine structure constant (which
corresponds to the characteristic orbiting momentum of the
1s electron in hydrogen expressed in relativistic units), and
( dσ (ε f ,θ f )

d� f
)
free

is the cross section for collision with a free
electron given by Eq. (71).

TABLE III. Same as in Table I but for helium-like krypton.

Autoionizing
state E ′ (keV) � (eV) εres (keV)

(2s)2
0 −8.8807 0.551 9.0555

(2s2p1/2)0 −8.8782 0.724 9.0579
(2s2p1/2)1 −8.8670 0.725 9.0691
(2p1/2)2

0 −8.8237 1.133 9.1124
(2s2p3/2)2 −8.8008 0.687 9.1354
(2p1/22p3/2)1 −8.7705 1.366 9.1657
(2p1/22p3/2)2 −8.7593 1.494 9.1769
(2s2p3/2)1 −8.7555 0.792 9.1806
(2p3/2)2

2 −8.6856 1.453 9.2505
(2p3/2)2

0 −8.6459 1.316 9.2902

TABLE IV. Same as in Table I but for helium-like xenon.

Autoionizing
state E ′ (keV) � (eV) εres (keV)

(2s2p1/2)0 −20.669 3.638 20.632
(2s)2

0 −20.669 2.265 20.632
(2s2p1/2)1 −20.646 3.617 20.655
(2p1/2)2

0 −20.574 5.166 20.726
(2s2p3/2)2 −20.250 3.372 21.051
(2p1/22p3/2)1 −20.205 6.905 21.096
(2p1/22p3/2)2 −20.189 7.050 21.112
(2s2p3/2)1 −20.185 3.463 21.116
(2p3/2)2

2 −19.777 6.784 21.524
(2p3/2)2

0 −19.726 6.695 21.575

Comparing the cross sections for collisions with free and
quasifree electrons we can conclude that the resonance struc-
ture remains basically the same and the only difference is
the bending of the background caused by the convolution
with the Compton profile. The bending is more prominent
for collisions with heavier ions since the energy interval
considered scales with Z as Z2.

In our approach, the Coulomb interaction of the incident
and scattered electron with the nucleus and partly with the
bound 1s electron is taken into account within the Furry
picture. In Eq. (60) the interaction of the electron in the
continuum with the 1s electron is considered, in the first order
of the perturbation theory, as the Coulomb interaction with
a pointlike charge located in the origin. This is consistent
with the Furry picture for the continuum electrons, in which
they are regarded as moving in the field V F

cont = −α(Z − 1)/r.
Equation (61) represents the difference between the long-
range term of the Coulomb interaction of the continuum
electron with the 1s electron, given by Eq. (55) [contribution
of the term with K = 0 in Eq. (54)], and the interaction of
the continuum electron with the pointlike charge placed in the
origin. Hence, Eq. (61) describes the interaction with a short-
range potential in the first order of the perturbation theory. We
note that all numerical results presented in Figs. 7–10 were
obtained using the Furry picture mentioned above.

In order to investigate the importance of the higher orders
of the perturbation theory corresponding to the interaction
with this potential, we replaced in Eqs. (60) and (61) the
interaction with a pointlike charge by the interaction with a
charge density corresponding to the 1s electron wave function

�Vcont = −α

∫
dr′ ψ

+
1s(r′)ψ1s(r′)
|r′ − r| . (74)

Since the 1s electron wave function is independent of angular
variables, with employment of the decomposition (54) the
potential (74) can be deduced to

�Vcont (r) = −α

∫ ∞

0
dr′ ρ(r′)

r>

, (75)

where ρ(r′) is the probability density function of the 1s
electron r> = max(r, r′).

With this replacement the Furry picture should be changed
accordingly: now the continuum electron is considered to be

013087-11



K. N. LYASHCHENKO et al. PHYSICAL REVIEW RESEARCH 2, 013087 (2020)

FIG. 11. Same as in Fig. 7 but for 359.1 keV/u B4+(1s). The solid black curves represent results of calculations with potential �Vcont =
−α/r, the dotted red curve corresponds to the calculation with the potential �Vcont given by Eq. (74).

moving in the potential

V F
cont = −αZ

r
+ α

∫
dr′ ψ

+
1s(r′)ψ1s(r′)
|r′ − r| . (76)

Employment of the potential (76) instead of the potential
V F

cont = −α(Z − 1)/r yields a correction to the scattering
amplitude. This correction is scaled with Z as 1/Z2.

In [5] an experimental-theoretical investigation of resonant
electron scattering in collisions of hydrogen-like ions B4+(1s)
of boron with H2 targets was reported. In particular, in [5]
results of nonrelativistic calculations within the R-matrix ap-
proach were presented. In order to make a certain test of our
method, we performed calculations for the same scattering
system. In Fig. 11 the differential cross section of elastic
electron scattering on B4+(1s) is presented in the rest frame
of the ion. The solid black curve shows our results obtained
by using the potential V F

cont = −α(Z − 1)/r, the dashed red
curve displays the results calculated with the potential (76).
By comparing them one can conclude that the higher orders of
the perturbation theory corresponding to the interaction (61)
give quite a small correction in the case of boron ions and,
hence, can be neglected for heavier ions as well.

Comparing our results with those obtained using the non-
relativistic R-matrix approach of [5] we see that overall there
is a reasonably good agreement between them. Nevertheless,
one substantial disagreement should be mentioned: our results
show the presence of clear resonances due to the (2s, 2p1/2)1

and (2p2
3/2)2 autoionizing states which are absent in the calcu-

lation [5]. It can be explained by the difference between rel-
ativistic and nonrelativistic description of the electron states
which remains noticeable even for light atomic systems.

For a comparison of our results with the experimental data
of [5], the doubly differential cross section for collision with
hydrogen (the upper panel of Fig. 11) was convoluted with a

Gaussian function(
d2σ (ε f , θ f )

dε f d� f

)
H2,expt

= 1√
2π σr

∫
dε exp

(−(ε − ε f )2

2σ 2
r

)

×
(

d2σ (ε, θ f )

dε d� f

)
H2

, (77)

where σr = 0.56 eV is the experimental resolution. The result
of the convolution is presented in Fig. 12. The resonance
with the (2s)2 state is clearly seen in our calculations and

FIG. 12. Double-differential cross section from the top panel
of Fig. 11 convoluted with Gaussian [see Eq. (77)]. The solid
black curves represent results of calculations with potential �Vcont =
−α/r, the dotted red curve corresponds to the calculation with the
potential �Vcont given by Eq. (74).
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TABLE V. Same as in Table I but for helium-like boron.

Autoionizing
state E ′ (eV) � (eV) εres (eV)

(2s2)0 −154.5 0.195 185.8
(2s2)1S 0.194a 186.14a

(2s2p1/2)1 −153.3 0.008 187.0
(2s2p1/2)0 −152.9 0.008 187.4
(2s2p3/2)2 −152.8 0.008 187.4
(2s2p)3P 0.015a 187.44a

(2p2
1/2)0 −149.5 <0.001 190.8

(2p2
3/2)2 −149.4 0.002 190.9

(2p1/22p3/2)1 −148.9 <0.001 191.3
(2p1/22p3/2)2 −147.2 0.192 193.0
(2p2)1D 0.188a 193.89a

(2s2p3/2)1 −146.5 0.103 193.8
(2s2p)1P 0.088a 194.20a

(2p2
3/2)0 −139.7 0.007 200.6

(2p2)1S 0.010a 200.90a

aReference [5].

in the calculations of [5]; however, it is not observable in
the experimental data of [5]. Also, we note that our results
obtained using Eq. (76) (the dashed red line in Fig. 11) are in
a somewhat better agreement with the experiment.

The resonant energies of the incident electron as well as
the energies and the widths of the corresponding autoionizing
states for helium-like boron are presented in Table V and
compared with data taken from [5]. A good agreement of
our results with the theoretical and experimental data of [5]
shows that our approach can also be applied to relatively light
systems.

It is worth noting that experimental data for elastic res-
onant electron scattering are available only for rather light
ions: B4+, C5+, N+6, O7+, and F8+ [5,25]. Consequently, the
considered impact energies were relatively modest and such
scattering processes could be successfully described even by
a nonrelativistic theory. To our knowledge, experiments on
electron resonant scattering on ions with a (much) larger
charge are still absent. However, recently such experiments
have become feasible [26]. The most appropriate means for
measuring the cross sections of resonant electron scattering
on heavy highly charged ions are storage rings of heavy ions.
Two types of targets can be employed: a beam of free electrons
or a gas of light atoms which serve as a source of quasifree
electrons. For instance, the former experimental setup was
used to measure the cross section for dielectronic recombi-
nation with H-like uranium [27]. For registration of scattered
electrons, an electron detector with a fine energy resolution is
necessary. Detectors with the required resolution are available
at the GSI [28,29] and also at some other scientific centers
[30,31]. Hence, all the ingredients to perform experiment on
resonant electron scattering on heavy highly charged ions
are already available and the relativistic QED theory of this
process, presented in our paper, may serve as a guidance for
experimental studies.

Finally, in this section we would like to note the following.
As was already mentioned in the Introduction, the resonant

part of electron scattering on a hydrogen-like uranium ion was
calculated in [9]. We also considered electron scattering on
hydrogen-like uranium taking into account not only the reso-
nant part, but also the Coulomb scattering and the interference
between them. In this case, the Coulomb scattering turned out
to be by far the dominant one. However, our results obtained
by neglecting the Coulomb scattering (and the interference)
are in a good agreement with those of Kollmar et al. [9].

IV. CONCLUSION

We have considered elastic scattering of an electron on a
hydrogen-like highly charged ion. The focus of the study has
been on electron impact energies where autoionizing states
of the corresponding helium-like ion may play an important
role in the process. Compared to electron scattering on light
ions, the main difference in the present case is a strong
field generated by the nucleus of the highly charged ions
which makes it necessary to take into account the relativis-
tic and QED effects. To this end, we have developed ab
initio relativistic QED theory for elastic electron scattering
on hydrogen-like highly charged ions which describes in a
unified and self-consistent way both the direct (Coulomb)
scattering and resonant scattering proceeding via formation
and consequent decay of autoionizing states.

Using this theory we have calculated scattering cross sec-
tions for a number of collision systems ranging from relatively
light to very heavy ones. As one could expect, with increasing
the charge of the ionic nucleus, the role of the resonant
scattering decreases. However, even for ions with Z ≈ 50
the resonances in the cross section remain clearly visible for
backward scattering.

Although the presented theory has been developed first
of all for the description of collisions with highly charged
ions, its application for such a light system as (e− + B4+)
demonstrates that it can be successfully used for an accurate
description of a very broad range of colliding systems.
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APPENDIX A: COULOMB SCATTERING

The Coulomb scattering amplitude can be calculated as the
scalar product of the in and out states (ψ (−) and ψ (+))

Si f = 〈
ψ (−)

p f μ f

∣∣ψ (+)
piμi

〉 =
∫

d3r ψ (−)+
p f μ f

(r)ψ (+)
piμi

(r). (A1)

We assume that the z axis is directed along the electron
momentum pi in the initial state. Presenting the in and out
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states in the form given by Eq. (3), the S-matrix element reads
as

Si f = N2
∑
jlm

∑
j′l ′m′

M∗
j′l ′m′μ f

(θ, ϕ)Mjlmμi (0, 0)ei(φ jl +φ j′ l′ )il−l ′

×
∫

d3r ψ+
ε′ j′l ′m′ (r)ψε jlm(r)

= N2δ(ε − ε′)
∑
jlm

M∗
jlmμ f

(θ, ϕ)Mjlmμi (0, 0)e2iφ jl , (A2)

where we introduced

Mjlmμ(ν) = �+
jlm(ν)vμ(ν)

=
∑
ml ms

Cls
jm(ml , ms)Y ∗

lml
(θ, ϕ)χ+

ms
vμ(θ, ϕ)

=
∑
ml ms

Cls
jm(ml , ms)Y ∗

lml
(θ, 0)χ+

ms
vμ(θ, ϕ)ei(ms−m)ϕ.

(A3)

Taking into account that

Ylml (0, 0) =
√

2l + 1

4π
δml 0, (A4)

χ+
ms

vμ(0, 0) = δμms , (A5)

we obtain

Mjlmμ(0, 0) = Cls
jm(0, μ)

√
2l + 1

4π
∼ δmμ. (A6)

It is convenient to introduce the quantity

(vμ)ms = χ+
ms

vμ(θ, ϕ). (A7)

Then, the S-matrix element can be written as

Si f = N2δ(ε − ε′)
∑

jl

∑
ml ms

Cls
jμi

(ml , ms)Ylml (θ, 0)
[
χ+

ms
vμ f (θ, ϕ)

]∗
ei(μi−ms )ϕCls

jμi
(0, μi )

√
2l + 1

4π
e2iφ jl

= (−2π i)δ(ε − ε′)N2 i

2π

∑
m

(
vμ f

)∗
m ei(μi−m)ϕ

∑
jl

√
2l + 1

4π
Cls

jμi
(μi − m, m)Cls

jμi
(0, μi )e

2iφ jlYlμi−m(θ, 0). (A8)

Making use of Eq. (18) we get

RCoul
i f = N2 (−1)p

(2π )2

∑
m

(
vμ f

)∗
mMmμi , (A9)

where, following [17], we introduced the matrix Mmμi :

Mmμi = 4π
1

2pi
ei(μi−m)ϕ

∑
jl

√
2l + 1

4π
Cls

jμi
(μi − m, m)Cls

jμi
(0, μi )Ylμi−m(θ, 0)e2iφ jl . (A10)

In particular,

Mmμ = 4π
1

2pi

∑
jl

√
2l + 1

4π
Cls

jμ(0, μ)Cls
jμ(0, μ)Yl0(θ, 0)e2iφ jl , if m = μ (A11)

Mmμ = 4π
1

2pi
e2iμϕ

∑
jl

√
2l + 1

4π
Cls

jμ(2μ, μ̄)Cls
jμ(0, μ)Yl2μ(θ, 0)e2iφ jl , if m = −μ. (A12)

Accordingly, we obtain

M+1/2,+1/2(θ, ϕ) = f (θ ), M+1/2,−1/2(θ, ϕ) = g(θ )e−iϕ,

M−1/2,+1/2(θ, ϕ) = −g(θ )eiϕ, M−1/2,−1/2(θ, ϕ) = f (θ ). (A13)

Taking into account that

Yl1(θ, 0) = −Yl,−1(θ, 0) = −
√

(2l + 1)(l − 1)!

4π (l + 1)!
P1

l (cos θ ), (A14)

Yl0(θ, 0) =
√

2l + 1

4π
Pl (cos θ ), (A15)

(
Cl1/2

jm (0, m)
)2 = |κ|

2l + 1
, (A16)
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Cls
jm(2m, m̄)Cls

jm(0, m) = 1

2l + 1

√
l (l + 1), j = l + 1

2
(A17)

Cls
jm(2m, m̄)Cls

jm(0, m) = − 1

2l + 1

√
l (l + 1), j = l − 1

2
(A18)

we obtain

f (θ ) = 1

2pi

∑
jl

|κ|(e2iφκ − 1)Pl (cos θ ), (A19)

g(θ ) = 1

2pi

∑
l

(e2iφκ=−l−1 − e2iφκ=l )P1
l (cos θ ), (A20)

where φκ ≡ φ jl and κ is the Dirac quantum number

κ =
(

j + 1

2

)
(−1) j+l+1/2. (A21)

Using Eq. (69), the differential cross section for the
Coulomb scattering is obtained to be

dσi f = 2π |Ri f |2 ε

p
δ(Ei − E f )

d3 p
(2π )3

, (A22)

dσi f

dν
=

∣∣∣∣∣
∑

m

(
vμ f

)∗
mMmμi

∣∣∣∣∣
2

. (A23)

APPENDIX B: NUMERICAL CALCULATION
OF THE COULOMB AMPLITUDES

The Coulomb amplitudes are given by series equations
(A19) and (A20). These series are not convenient for a direct
numerical calculation. However, the leading part of these
series can be calculated analytically and the remaining part
can be easily summed up numerically.

The Coulomb phase shifts for the potential V = −αZ/r
read as

φκ = arg �(γ − iν) + η − 1

2
πγ + π

2
(l + 1), (B1)

where

e2iη = −κ + iν ′

γ + iν
, (B2)

ν = ε

p
αZ, (B3)

ν ′ = me

p
αZ, (B4)

γ =
√

κ
2 − α2Z2, (B5)

where α is the fine-structure constant and me is the electron
mass. Following [32] we introduce

aκ (γ ) = e2iφκ − 1

= (−1)l+1

(−κ + iν ′

γ + iν

)
�(γ − iν)

�(γ + iν)
e−iπγ − 1. (B6)

Then, the amplitudes (A19) and (A20) can be written as

f (θ ) = 1

2ip

∑
jl

|κ|aκPl (cos θ )

= 1

2ip

∑
l

[(l + 1)aκ=−l−1 + laκ=l ]Pl (cos θ ), (B7)

g(θ ) = 1

2ip

∑
l

(aκ=−l−1 − aκ=l )P
1
l (cos θ ). (B8)

Now, we introduce the approximate amplitudes

f̃ (θ ) = 1

2ip

∑
l

[(l + 1)ãκ=−l−1 + l ãκ=l ]Pl (cos θ ), (B9)

g̃(θ ) = 1

2ip

∑
l

[ãκ=−l−1 − ãκ=l ]P
1
l (cos θ ), (B10)

where

ãκ = aκ (γ = |κ|) (B11)

and, correspondingly,

ãκ=−l−1 = (l + 1 + iν ′)
�(l + 1 − iν)

�(l + 2 + iν)
− 1, (B12)

ãκ=l = (l − iν ′)
�(l − iν)

�(l + 1 + iν)
− 1. (B13)

The series equations (B9) and (B10) can be summed up
analytically [32]:

f̃ (θ ) = �(1 − iν)

�(1 + iν)
eiν ln sin2(θ/2)

[
ν

2p
csc2(θ/2) + ν ′ − ν

2p

]
,

(B14)

g̃(θ ) = �(1 − iν)

�(1 + iν)
eiν ln sin2(θ/2)

[
ν ′ − ν

2p
cot(θ/2)

]
. (B15)

As a result, the Coulomb amplitudes can be rewritten as

f (θ ) = f̃ (θ ) + 1

2ip

∑
jl

|κ|(aκ − ãκ )Pl (cos θ )

= f̃ (θ ) + 1

2ip

∑
l

[(l + 1)(aκ=−l−1 − ãκ=−l−1)

+ l (aκ=l − ãκ=l )]Pl (cos θ ), (B16)

g(θ ) = g̃(θ ) + 1

2ip

∑
l

(aκ=−l−1 − ãκ=−l−1 − aκ=l

+ ãκ=l )P
1
l (cos θ ), (B17)

where the corresponding series can be easily calculated nu-
merically.
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