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Coulomb drag between a carbon nanotube and monolayer graphene
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We study Coulomb drag in a system consisting of a carbon nanotube and monolayer graphene. Within the
Fermi liquid theory, we calculate the drag resistivity and find that the dimensional mismatch of the system
components leads to a dependence of the drag rate on the carrier density, temperature, and spacing, which is
substantially different from what is known for graphene double layers. Because of the competing effects of
forward and backward scattering, we identify features of the drag dependence on the electron density, which
allows us to control their relative contribution to the drag resistivity.
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I. INTRODUCTION

Coulomb drag in double-well systems has been of con-
siderable theoretical and experimental interest for several
decades. The emergence of graphene has significantly ex-
panded the physical regimes in drag experiments [1]. In
particular, the insulating barrier between the subsystems can
have a thickness down to a few atomic layers, which makes
the interaction phenomena more pronounced and gives ac-
cess to physics [2–6] which is unattainable in semiconductor
samples.

Many recent works address Coulomb drag in dimension-
ally symmetric graphene-based structures: drag between two
graphene layers has been studied both experimentally and
theoretically [7–15]. Coupled one-dimensional systems have
been also considered [16,17]. Clearly, the drag properties
depend essentially on the system dimensionality. One may
thus expect that a dimensional mismatch of the electronic
subsystems can significantly affect Coulomb correlations and
characteristics of the drag resistance. Until recently, however,
drag between dimensionally mismatched subsystems has at-
tracted less attention and has been limited to a few theoretical
works on conventional systems [18,19].

The recent experimental realization of graphene-based di-
mensionally mismatched electronic structures between a car-
bon nanotube (CNT) and a graphene monolayer [20] acts as
an excellent stimulus for further experimental and theoretical
work in this interesting direction. The plasmon spectrum
in systems of Coulomb coupled graphene nanoribbon and
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monolayer graphene has been recently calculated [21,22]. It is
predicted that due to the strong interlayer Coulomb coupling,
these hybrid systems behave effectively as one dimensional
(1D) and do not support two dimensional (2D) plasmon modes
with a square-root dispersion [21].

In the present paper, we study Coulomb drag in dimen-
sionally mismatched graphene systems, consisting of either a
metallic or a semiconducting CNT and monolayer graphene.
Adopting the Fermi liquid theory [23], we calculate the de-
pendence of the drag resistivity on the carrier density, temper-
ature, and spacing between the CNT and graphene. We find
that the screening effect, taken into account within the random
phase approximation (RPA), strongly suppresses the drag
rate and qualitatively changes its dependence on the system
parameters. The dimensional mismatch leads to a dependence
of the drag resistivity on the carrier density, temperature,
and spacing, which differs substantially from that known for
symmetric 2D-2D or 1D-1D electronic systems. Meanwhile,
the temperature and spacing dependence is found to be rather
close to the behavior obtained in Ref. [19] for conventional
1D-2D systems. We also show that the transresistivity for
systems with a semiconducting CNT exhibits a slight dip or
upturn depending, respectively, on the carrier density in a
CNT or graphene, at densities corresponding to the matched
Fermi wave vectors. This is because the 2D momentum is
not conserved in this hybrid system and the backscattering
events, which are, in general, possible in semiconducting
CNTs, are suppressed due to the presence of graphene. Thus,
these distinctive features in the density dependence of the drag
resistivity allow us to distinguish and tune the backward and
forward scattering contributions to 1D-2D drag.

II. THEORETICAL MODEL

We consider the following geometry (cf. Fig. 1). A carbon
nanotube of radius R is separated by a barrier of thickness
d from a graphene monolayer. The system has translational
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FIG. 1. (a) Schematic view of frictional Coulomb drag in a dimensionally mismatched graphene system. (b) Details of the geometry: the
bold lines show the x-z profile of Coulomb coupled carbon nanotube (metallic or semiconducting) of the radius R and monolayer graphene,
separated by a barrier with the εeff dielectric constant and of the thickness d along the z direction. The 0 � x1 � 2πR and −∞ < x2 < +∞
coordinates correspond, respectively, to the electron positions on the cylindrical surface of CNT and on the plane of graphene.

invariance only along the y direction. The electronic states
in the CNT are described by the quantum numbers n, ν, s, k,
where the transverse quantization subband index is an integer,
n = 0,±1, . . . ; ν refers to the type of CNT (ν = 0 refers
to metallic nanotubes, both armchair and zigzag, while ν =
±1 correspond to semiconducting zigzag nanotubes). The
chirality index s describes the conduction (s = +1) and va-
lence (s = −1) bands, and k is the conserved wave vector
along the y direction. The single-particle energy spectrum in
CNT εn,ν

1D (s, k) = sh̄vgr

√
k2

n,ν + k2 , where kn,ν = (n − ν
3 )/R

and vgr is the electron velocity in graphene [28]. In mono-
layer graphene, the quantum numbers (s, �p) describe the
2D electron spinor states in the (x, y) plane with the in-
plane momentum �p and the single-particle Dirac spectrum
ε2D(s, | �p|) = svgr p. In the present work, we assume spin and
valley degeneracy with the degeneracy factors gs = 2 and
gv = 2 (interlayer Coulomb interaction is small for intervalley
electronic transitions because of the large values of the trans-
ferred momentum) and restrict ourselves to the consideration
of low temperatures and low levels of doping.

In a metallic (semiconducting) CNT with a 1D carrier den-
sity n1D ≡ N

L = 2πRn2D ≈ 1.9 × 106 cm−1, corresponding to
the areal density n2D ≡ N

L2 = 3 × 1012 cm−2 in graphene and
to the tube radius R = 1 nm, we find the 1D Fermi energy
ε1D

F ≈ 1128.8 K (250.7 K). Here N is the number of carriers
in CNT or graphene. Instead, for n2D = 3 × 1011 cm−2 taking
the Fermi energies in metallic (semiconducting) CNT and
graphene equal, ε1D

F = ε2D
F = 740.2 K, we have n1D ≈ 1.24 ×

106 cm−1 (3.24 × 106 cm−1). Note that ε1D
F ∝ n1D or n2

1D
and ε2D

F ∝ √
n2D, respectively, in a metallic or semiconduct-

ing CNT and in monolayer graphene. On the other hand,
the lowest intersubband gap between the n = +1 and n = 0
energy levels is �ε0

1D = h̄vgr/R ≈ 7624.5 K in metallic CNT
while �ε1

1D = h̄vgr/3R ≈ 2541.5 K in semiconducting CNT.
Thus, with these values the Fermi energies and temperatures
are smaller than the transverse quantization energy, ε1D

F , T �
�εν

1D, so that electronic transitions to the higher energy sub-
bands do not make a significant contribution to drag. We adopt
this lowest subband approximation in CNT and thus omit the
subband index n.

III. DRAG RESISTANCE

The drag resistance RD in the CNT-graphene systems can
be measured in two different configurations. In the first one,
a current IG flowing through the graphene monolayer induces
a voltage VCNT along the nanotube. Then, assuming that the
normalization length, L, is the same along the wire and
in both x and y directions in graphene, the drag resistance
R2D–1D

D = VCNT/IG = ρ2D–1D is given just by the transresistiv-
ity ρ2D–1D. In the second configuration, the roles of CNT and
graphene are switched, and the transresistance is determined
as R1D–2D

D = VG/ICNT = ρ1D–2DL/2πR. Thus, because of the
asymmetry of the CNT-graphene system the drag resistivity is
different in the two configurations; however, the drag resis-
tance measured along the wire or across graphene obeys the
Onsager reciprocal relation and is independent of the choice
of the configuration: RD ≡ R1D–2D

D = R2D–1D
D .

We shall assume that the electronic system can be de-
scribed as a Fermi liquid both in graphene and in the CNT. The
electrical current in the system is restricted by impurity scat-
tering and we adopt the Boltzmann equation approach [29],
treating interlayer interaction perturbatively. From the balance
of the carrier distribution due to the external electric field and
scattering events, we find the drag resistivity as

ρν
2D–1D = h

e2

1

n1Dn2DT

1

L2

∑
�q

∫
dh̄ω

v12(q)2|I (qx )|2
|ε1D-2D(�q, ω)|2

× 	ν
1D(qy, ω)	2D(�q, ω)

sinh(h̄ω/2T )2
. (1)

Here v12(q) = 2πe2e−qd/qεeff is the 2D Fourier transform of
the bare interlayer Coulomb interaction with q =

√
q2

x + q2
y

and εeff is the effective low-frequency dielectric function of
the insulating barrier. The form factor I (qx ) = eiqxRJ0(qxR)
with J0(x) the Bessel function of the first kind. We assume
that d 	 R.

The dynamical screening function of the hybrid 1D-2D
electronic system within the random phase approximation is
given [19,21] by ε1D-2D(�q, ω) = εeff

1D(qy, ω)ε2D(q, ω), where

εeff
1D(qy, ω) = ε1D(qy, ω) − Q1D-2D(qy, ω)
1D(qy, ω) (2)
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with

Q1D-2D(qy, ω) = 1

L

∑
qx

|I (qx )|2v12(q)2
2D(q, ω)

ε2D(q, ω)
. (3)

The intralayer dynamical screening functions (the Lindhard
polarization functions) in 1D [16,17,30,31] and 2D [32–34]
electronic systems are, respectively, denoted by ε1D(qy, ω)
[
1D(qy, ω)] and ε2D(q, ω) [
2D(q, ω)].

The nonlinear response function in the CNT [16] is

	ν
1D(qy, ω)

= e

π h̄μ1D

1

L

∑
s,s′;k,k′

δk′,k+qy F
ν

1D(s, k; s′, k′)

× Im
hν

1D(s, k; s′, k′)
[

f
(
εν

1D(s′, k′)
) − f

(
εν

1D(s, k)
)]

εν
1D(s, k) − εν

1D(s′, k′) + h̄ω + i0+ ,

(4)

while for graphene [13,14] it is given by

	
y
2D(�q, ω)

= e

π h̄μ2D

1

L2

∑
s,s′; �p, �p′

δ �p′, �p+�qF2D(s, �p; s′, �p′)

× Im
hy

2D(s, p; s′, p′)[ f (ε2D(s′, p′)) − f (ε2D(s, p))]
ε2D(s, p) − ε2D(s′, p′) + h̄ω + i0+ .

(5)

Here the spinor overlap factors, stemming from the
Coulomb matrix elements, are given in CNT (graphene)
by F ν

1D(s, k; s′, k′) = (1 + ss′ cos θν
kk′ )/2 [F2D(s, �p; s′, �p′) =

(1 + ss′ cos θ �p�p′ )/2] with θν
kk′ (θ �p�p′) the angle between

the vectors (kν, k) and (kν, k′) ( �p and �p′). The Fermi
functions are given by f (ε). We introduce also the functions
hν

1D(s, k; s′, k′) = τ ν
1D(k′)vν

1D(s′, k′) − τ ν
1D(k)vν

1D(s, k) and
hy

2D(s, p; s′, p′) = τ2D(p′)vy
2D(s′, p′) − τ2D(p)vy

2D(s, p) for
CNT and graphene. Respectively, the carrier mobilities
and velocities are μ1D, vν

1D(s, k) = ∂kε
ν
1D(s, k) and μ2D,

v
y
2D(s, p) = ∂pyε2D(s, p). In contrast to the mobility (a

quantity averaged over the carrier energy), the momentum
relaxation transport time τ (k) is a momentum-dependent

quantity, which is linear in the energy for the dominant type
of disorder scattering of Dirac electrons in graphene [35].
It has been shown, however, that the energy dependence
does not affect calculations of the nonlinear susceptibility in
graphene [13,14] and semiconducting CNT [17]; therefore,
we evaluate τ±1

1D (k) = τ 1
1D and τ2D(p) = τ2D at the Fermi level

and view them as constants. However, this approximation
is not justified for a metallic CNT where the function
h0

1D(s, k; s′, k′) with the constant relaxation time vanishes for
forward scattering events. Therefore, in this case we include
the energy dependence of the momentum relaxation time,
and assuming the relaxation time is linear in the energy [12],
τ 0

1D(k) = τ̃ 0
1D|k|, we find h0

1D(s, k; s′, k′) = τ̃ 0
1Dvgr(s′k′ − sk)

for a metallic CNT.

IV. LOW-TEMPERATURE REGIME

From here on, we restrict our discussion to the low-
temperature regime, T � ε1D

F , ε2D
F . In this case [36], only

electronic transitions within the s = s′ = 1 band contribute to
the nonlinear response functions and they can be calculated
analytically. In particular, for a metallic CNT [37], we find

	0
1D(qy, ω) = eτ̃ 0

1D

h̄μ1D

ω2

2π h̄vgr
[δ(ω + vgrqy) − δ(ω − vgrqy)].

(6)

The screening function in Eqs. (1)–(3) can be approxi-
mated in the static limit, ε1D–2D(�q, 0). In graphene, we
use the static polarizability 
2D(q, 0) = −2k2D

F /π h̄vF for
q < 2k2D

F [32] and we have ε2D(q, 0) = 1 + 4αgrk2D
F /q with

αgr = e2/h̄vFεeff. In numerical calculations, we take εeff = 4
mimicking a hexagonal-BN barrier. In a metallic CNT,
the static polarizability is approximated as 
1D(qy, 0) =
−1/π2 h̄vF [16,30] while the bare interaction in ε1D(q, 0)
is v1D(q) = 2h̄vFαgrI0(|qy|R)K0(|qy|R) [28], and we find
εeff

1D(qy, 0) as a one-dimensional integral and calculate it nu-
merically. Here I0(y) and K0(y) are the modified Bessel func-
tions of the first and second kinds. In a semiconducting CNT,
the static polarizability 
1D(qy, 0), according to its definition,
is represented as an additional one-dimensional integral in
εeff

1D(qy, 0).

FIG. 2. The temperature dependence of the drag resistivity between (a) a metallic or (b) semiconducting CNT and graphene. Symbols
show the transresistivity in the log-log scale with (the lower set) and without (the upper set), including the screening effect for spacing d = 30,
10, and 3 nm (down-up). The radius of CNT R = 1 nm and the carrier densities n2D = 3 × 1011 cm−2 and n1D = 1.24 × 106 cm−1 (n2D =
2.7 × 1012 cm−2 and n1D = 3.71 × 106 cm−1) in a metallic (semiconducting) CNT-graphene hybrid system. The solid thin lines represents the
T β power law behavior as a guide to the eye with β = 2 (the upper set) and β = 3.7 (the lower set) on the left panel and with β = 2 (the upper
set) and β = 3.3, 3.5, and 3.6 (the lower set, down-up) on the right panel.
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FIG. 3. The drag resistivity between (a) a metallic or (b) semiconducting CNT and graphene as a function of spacing d . Symbols show
the transresistivity in the log-log scale with (the lower set) and without (the upper set) including the screening effect at different temperatures
T = 30, 100, and 300 K (down-up). The other parameters are the same as in Fig. 2. The solid thin lines represent the d−β behavior as a guide
to the eye with β = 2, 2.7, 3; 0.8, 0.9, 1 and β = 2.5, 3.1, 3.3; 0.8, 1, 1 (down-up), respectively, on the left and right panels.

V. NUMERICAL RESULTS AND DISCUSSION

We first discuss the temperature dependence of the drag
resistivity between a CNT and graphene. As seen in Fig. 2,
the transresistivity without screening shows approximately the
familiar T 2 dependence, which originates from the interplay
between the 1D-2D phase space behavior in drag scattering
events at low T and the long wavelength singularity of the
unscreened interaction. In contrast to drag in conventional
2D systems [29], here the integrations over qx, qy, and ω

are not decoupled into products of one-dimensional integrals.
Therefore, the static screening effect, along with the strong
suppression of the absolute drag resistivity, changes qualita-
tively the drag behavior as a function of T and substantially
enhances this dependence (cf. Fig. 2). We observe a similar
effect also for the interlayer spacing dependence of drag. In
the absence of screening, the overall weak dependence on d
(cf. Fig. 3) is due to the long wavelength singularity of the
unscreened interaction, which is much stronger in this hybrid
1D-2D system than in 1D-1D electronic systems. Even after
screening is turned on, the drag resistivity remains a weakly
decreasing function with d for small values of d � 10 nm.
For relatively large values of d � 50 nm, the decrease of the
drag resistivity becomes rather strong and can be fitted by a
power law function d−β with β ∼ 3 at T � 300. The index β

decreases with a decrease of T .

Note that the drag resistivity as function of T and d shows a
qualitatively similar behavior for metallic and semiconducting
CNTs. As seen, however, in Figs. 4 and 5, this is not the case
for the drag resistivity as a function of the carrier density.
In Fig. 4, we show the drag between a metallic CNT and
graphene as a function of the carrier density in graphene.
These plots show that the drag resistivity is approximately
inversely proportional to n1.5

2D and n0.5
2D, respectively, with and

without including the screening effect. We find also that in
this low-T regime ρ1

2D–1D ∝ 1/n1D. This rather stable density
behavior of the transresistivity in a wide range of density
variations both in a metallic CNT and graphene is stipulated
by the forward scattering events of Dirac electrons.

In the case of a semiconducting CNT and graphene, both
forward and backward scattering processes mediate drag and
their relative contribution to drag can be controlled by varying
the ratio of the carrier densities. In Fig. 5, the vertical thin
lines indicate the carrier densities n∗

2D = 2.7 × 1012 cm−2

(left panel) and n∗
1D = 3.71 × 106 cm−1 (right panel) for

matched Fermi wave vectors in graphene and CNT, k1D
F =

k2D
F . These lines separate different drag scattering regimes.

At low densities in graphene, backscattering is suppressed by
the presence of a graphene monolayer. Mediated by small-
angle scattering events, the drag resistivity decreases with an
increase of n2D. We observe, however, that against this overall

FIG. 4. The dependence of the drag resistivity between a metallic CNT and graphene on the carrier density in graphene (a) for d = 30,
10, and 3 nm (down-up) at T = 100 K and (b) at T = 30, 100, and 300 K (down-up) for d = 10 nm. In each panel, the lower (upper) set of
symbols show log-log plots of the transresistivity with (without) including the screening effect. The radius of CNT is R = 1 nm and the carrier
density n1D = 1.24 × 106 cm−1. The solid thin lines represent the n−0.5

2D (the upper line) and n−1.5
2D (the lower line) behaviors as a guide to the

eye.
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FIG. 5. The dependence of the drag resistivity between a semiconducting CNT and graphene on the carrier density in graphene (a) for a
fixed density n∗

1D = 3.71 × 106 cm−1 in the CNT and (b) on the density in the CNT for a fixed density n∗
2D = 2.7 × 1012 cm−2 in graphene. The

symbols are the log-log plots of the transresistivity calculated with (the lower set) and without (the upper set) including the screening effect
for d = 30, 10, and 3 nm (down-up) at T = 100 K. The radius of CNT is R = 1 nm. The solid thin lines represent the n−β2

2D and n−β1
1D behaviors

as a guide to the eye, respectively, on the left panel with β2 = 0.5 (the upper line) and β2 = 1.5, 1.45, 0.9, and 0.75 (the lower lines, down-up)
and on the right panel with β1 = 2.9 (the upper line) and β1 = 0.3 and 3.6 (the lower lines, down-up).

monotonic background, the transresistivity shows a slight dip
at the matching density n2D = n∗

2D (cf. the left panel in Fig. 5).
This feature is due to the backward scattering channel, which
opens for n2D > n∗

2D.
On the right panel in Fig. 5, it is seen that the drag

resistivity shows an upward trend as a function of n1D. In this
case, backward scattering events become open for densities
in CNT smaller than n1D < n∗

1D, and result in a strengthened
enhancement of the drag resistivity with a decrease of n1D.
With a further decrease of n1D, the scattering phase space
decreases and the dependence of the transresistivity on n1D

becomes rather weak. Note that the manifestation of a se-
quence of different scattering regimes with variation of the
carrier densities is more pronounced in samples with small
values of the spacing d where backscattering is significant and
leads to the interplay of the small and large-angle scattering
contributions to the drag resistivity.

VI. CONCLUSIONS

We have worked out the Fermi liquid predictions for a
system consisting of a CNT and monolayer graphene. The
overall physics is dominated by the dimensionality mismatch.

This leads to a qualitatively novel picture of drag than that
of dimensionally symmetric graphene structures. Metallic and
semiconducting CNTs show qualitatively different behav-
ior. In particular, in structures consisting of semiconducting
CNTs, the drag resistivity exhibits new features due to the
competing effects of forward and backward scattering and
by adjusting the charge densities one can tune the accessi-
ble scattering processes contributing to the drag resistivity.
This study paves the way for further exploration of new
phenomena induced by the interplay of the fundamental
properties of systems, the dimensionality, and interaction,
under various physical circumstances. In particular, we briefly
mention a few interesting issues as an extension of our re-
sults: Coulomb drag at high temperatures; drag between a
Luttinger liquid in a CNT and a Fermi liquid in graphene;
and the effect of quantizing magnetic fields on drag in hybrid
systems.
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