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Vortex confinement transitions in the modified Goldstone model
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The modified XY model is a variation of the XY model extended by a half-period term, exhibiting a rich phase
structure. As the Goldstone model, also known as the linear O(2) model, can be obtained as a continuum and
regular model for the XY model, we define the modified Goldstone model as that of the modified XY model. We
construct a vortex, a soliton (domain wall), and a molecule of two half-quantized vortices connected by a soliton
as regular solutions of this model. Then we investigate its phase structure in two Euclidean dimensions via the
functional renormalization group formalism and full numerical simulations. We argue that the field dependence
of the wave function renormalization factor plays a crucial role in the existence of the line of fixed points
describing the Berezinskii-Kosterlitz-Thouless (BKT) transition, which can ultimately terminate not only at one
but at two end points in the modified model. This structure confirms that a two-step phase transition of the BKT
and Ising types can occur in the system. We compare our renormalization group results with full numerical
simulations, which also reveal that the phase transitions show a richer scenario than expected.
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I. INTRODUCTION

The Berezinskii-Kosterlitz-Thouless (BKT) transition
[1–4] is a topological phase transition of two-dimensional
systems, which divides a low-temperature phase with bound
vortex-antivortex pairs from a high-temperature phase with
free vortices. The phenomenon was first analyzed in terms of
the XY model, and one of its most important impacts was that
it showed that superfluidity and superconductivity can be real-
ized even in two dimensions. Even though in two dimensions
long-range order with continuous symmetry is forbidden by
the Coleman-Mermin-Wagner (CMW) theorem [5–7], there
is a possibility of quasi-long-range order, which shows alge-
braically decaying correlations. The BKT transition realizes
this scenario and it also has the unique feature of being a
continuous phase transition without breaking any symmetry.
It has been experimentally confirmed in various condensed
matter systems such as 4He films [8], thin superconductors
[9–13], Josephson-junction arrays [14,15], colloidal crystals
[16–19], and ultracold atomic Bose gases [20]. The XY model
shares common properties including the BKT transition with
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the two-dimensional linear O(2) or Goldstone model at large
distances or low energies, which is a regular version of the
XY model described by one complex scalar field, in which
the U(1) Goldstone mode for the XY model is complemented
by a massive amplitude (Higgs) mode. One of the merits of
the latter is to allow vortices as regular solutions in contrast to
the XY model in which vortices are singular configurations.

XY -like models do not necessarily show the BKT transi-
tion. For example, for sharply increasing spin-spin potential,
the phase transition between the paramagnetic and ferromag-
netic phases can be of first order [21]. It is not surprising that
the so-called modified XY model, where on a square lattice
the Hamiltonian of the rotor is extended with a π periodic
term

HmXY = −J
∑
〈i, j〉

cos(ϑi − ϑ j ) − J ′ ∑
〈i, j〉

cos[2(ϑi − ϑ j )], (1)

also shows a different scenario. It was predicted long ago that
for large enough J ′ coupling, there exists a nematic phase sep-
arated from the ferromagnet and the transition between them
is of Ising type [22,23]. This was also confirmed by numerical
calculations [24]. The Ising-type transition is related to the
presence of domain walls in this model. Moreover, it was con-
jectured that molecules and antimolecules of half-quantized
vortices play a crucial role for phase transitions, in contrast to
a pair of vortices and antivortices in the XY model. As of to-
day, the model (1) and its various modifications [25–33] are of
great importance and interest, especially due to their relevance
in condensed matter physics applications, e.g., superfluidity in
atomic Bose gases [34], arrays of unconventional Josephson
junctions [35], or high-temperature superconductivity [36].
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The BKT transition of the XY model was originally ana-
lyzed via a real-space renormalization group (RG) approach
[4], which is rather unconventional and not easily linkable to
the Wilsonian picture of the RG [37]. In the past, the func-
tional RG (FRG) approach, which adopts the Wilsonian idea
of mode elimination and averaging to the level of the effective
action [38], was also applied and developed in regard to the
BKT transition in both continuum [39–43] and lattice formu-
lations [44,45]. It turned out that the conventional Wetterich
formulation of the method was capable of showing signs in the
two-dimensional linear O(2) or Goldstone model of the line
of fixed points that is responsible for the topological nature
of the phase transition. This is remarkable in the sense that
no vortices need to be introduced explicitly, as opposed to the
older real-space RG description [4]. One of the shortcomings
of the treatment, however, is that because one is typically
solving the RG flow equation of the scale-dependent effective
average action via a derivative expansion, as an artifact, only
a line of quasifixed points is found. That is, the RG flow does
not stop along this line, but only slows down significantly
compared to other regions of the parameter space. It is worth
pointing out that recently in a dual lattice formulation of
the FRG, Krieg and Kopietz [45] exactly reproduced the RG
flow equations derived by Kosterlitz and Thouless [4] and
therefore the existence of a true line of fixed points was
established in terms of a momentum space RG. It would be
interesting, however, to develop a scheme in the ordinary
Wetterich formulation of the FRG, which could also lead to
a similar result.

The goal of this study is twofold. On the one hand, we
aim to show a rather simple approximation scheme of the
FRG flow equations that can show significant improvement
on the possibility of reaching a true line of fixed points in
the continuum version of the XY model and more importantly
argue that it can also be applied naturally to the modified XY
model, i.e., the continuum version of (1). In the framework of
a momentum space RG, we describe the two-step transition
in the latter model and we will also predict that fluctuations
may completely make the topological transition disappear.
On the other hand, we also aim to provide full numerical
simulation of the system and show that depending on the
value of the self-coupling of the scalar field, the structure
of the transitions is even richer than it is predicted by the
RG.

The paper is organized as follows. In Sec. II we intro-
duce the modified Goldstone model and construct classical
solutions, an integer vortex, a soliton, and a vortex molecule
of two half-integer vortices connected by a soliton in that
model. In Sec. III, after giving a brief review of the FRG, we
reproduce some earlier results of the BKT transition via the
FRG and also show the improvement announced above. Then
this scheme is applied to the modified XY model and we show
how a two-step transition can emerge in the system. In Sec. IV
we confirm this scenario via full numerical simulations and
reveal the nature of the corresponding transitions. Section V is
devoted to a summary. In Appendix A we show how to derive
the Hamiltonian of the modified Goldstone model from the
microscopic lattice model of the modified XY model, while
in Appendix B we derive some of the corresponding flow
equations of the FRG.

II. MODEL AND SOLUTIONS

A. Modified Goldstone model

In this study we are interested in the continuum version of
the XY model, i.e., the Goldstone model and its modification
[for its derivation from the microscopic Hamiltonian (1) see
Appendix A]

H =
∫

x

[
a| �∇ψ |2 + b| �∇ψ2|2 + λ

2
(|ψ |2/2 − ρ0)2

]
, (2)

where ψ is a complex scalar field and λ, a, and b are positive
coupling constants. The continuum version of the standard
XY model refers to b = 0 and in the modified XY model
we have b > 0. The field equation can be obtained from the
Hamiltonian (2) as

0 = δH
δψ∗ = −a�ψ − 2bψ∗�ψ2 + λ

2

( |ψ |2
2

− ρ0

)
ψ, (3)

which we call the modified Gross-Pitaevskii equation.

B. Classical solutions

Field equations (3) of the modified Goldstone model admit
superfluid (or global) vortex solutions. Here we show how
such a vortex solution transforms into a half-quantized vortex
molecule, when the second term of Eq. (2) becomes large
enough. As we wish to compare our results with earlier works
[24], in what follows we work in a simplified parameter space,
where a2 + b2 = 1, and thus the a = cos θ and b = sin θ

parametrization can be used. As it turns out, this choice also
helps perform the full numerical simulations of the thermo-
dynamics of the system more easily. The transformation of
the vortex solution can be seen in Fig. 1. One observes that
around θ ≈ 78◦, a clear picture of a vortex molecule emerges,
where two half-quantized vortices are connected by a one-
dimensional soliton. One expects that at finite temperature,
as a function of θ , somewhere close to the aforementioned
value, the emergence of the molecules will have an effect on
the phase structure of the system.

In a vortex molecule shown in Fig. 1, each of the two
vortices has a half-quantized circulation

∫
d�l ( �∇ arg[ψ]) = π

and the soliton connecting them has a π -phase jump. To
analyze the stability of the soliton, we determine the follow-
ing one-dimensional stable solution of the modified Gross-
Pitaevskii equation (3) in one dimension with the boundary
condition ψ (y → −∞) = √

2ρ0 and ψ (y → ∞) = √
2ρ0eiϕ .

Figure 2(a) shows the profiles of the soliton solutions, while
Fig. 2(b) shows the total energy H1D as a function of ϕ

and θ . It is clear that if H1D takes the maximum value at
some ϕ < π , then the soliton solution with ϕ = π becomes
locally stable (metastable) by having a positive energy barrier
�H1D ≡ H1D(ϕ = ϕmax) − H1D(ϕ = π ), where the maximal
angle ϕmax is the value of ϕ at which H1D takes the maximum.
Figure 2(c) shows the maximal angle ϕmax and the energy
barrier �H1D. The former starts to take a nonzero value
�H1D > 0, with ϕmax < π at around θ ≈ 15◦, above which
the soliton is therefore energetically stable. That is to say, the
appearance of vortex molecules and the stability of the soliton
are not related, and thus it is not the (de)stabilization of the
domain wall that lets molecules emerge.
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FIG. 1. Vortex solution of the field equations for λ = 8, ρ0 = 1/2,
and (a) θ = 0◦, (b) θ = 77◦, (c) θ = 78◦, and (d) θ = 85◦. It trans-
forms into a half-quantized vortex molecule around θ ≈ 78◦.
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FIG. 2. (a) Profiles of the amplitude |ψ |2 of the soliton solutions
for the modified Gross-Pitaevskii equation (3) with θ = 10◦ (black),
θ = 45◦ (red), θ = 80◦ (blue), and θ = 90◦ (green). (b) Dependence
of the energy H1D on θ and ϕ. (c) Dependence of the maximal angle
ϕmax and the energy barrier �H1D on θ . In the both panels, we set
λ = 8 and ρ0 = 1/2.

It is worth noting that these configurations become singular
in the limit of λ → ∞, in which the model reduces to the mod-
ified XY model. Therefore, the modified XY model does not
allow these configurations as solutions to the field equations,
while the modified Goldstone model does.

C. Type of symmetry and (quasi)breaking of symmetry

Here we discuss the symmetry properties of the Hamilto-
nian [Eq. (2)] and show the possible (quasi)breaking patterns
of symmetries. The symmetry of the Hamiltonian with generic
parameters is of U(1) as a phase shift of the field, ψ → ψeiα

for the arbitrary α ∈ [0, 2π ). In the case of a = 0 and b > 0,
the two fields ψ and ψeiπ are identifiable, because the
Hamiltonian [Eq. (2)] is the functional of ψ2 rather than ψ .
Therefore, the symmetry of the Hamiltonian is only U(1)/Z2,
where the Z2 symmetry comes from the identification of
ψ ∼ ψ eiπ . This Z2 factor is essential for the presence of
(deconfined) half-quantized vortices.

Depending on the parameter regions, the U(1) or U(1)/Z2

symmetry is spontaneously broken in the ground state in
different patterns summarized as follows:

U(1)
U(1)��� 1 for a > 0, b = 0, (4a)

U(1)/Z2
U(1)/Z2��� 1 for a = 0, b > 0, (4b)

U(1)
U(1)/Z2��� Z2

Z2−→ 1 for b � a > 0, (4c)

U(1)
U(1)�⇒ 1 for a ≈ b. (4d)

Here the arrows ���, −→, and �⇒ denote quasibreaking of
symmetry via a BKT transition, ordinary symmetry breaking
with a thermodynamic phase transition, and simultaneous
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(quasi)breaking of symmetry, respectively. Here quasibreak-
ing means that the symmetry is not exactly broken due to the
CMW theorem in the thermodynamic limit but is locally bro-
ken at semimacroscopic scales with an algebraically decaying
correlation function.

Now let us explain each breaking pattern. In the simplest
case, i.e., for a > 0 and b = 0 [Eq. (4a)], the standard BKT
transition occurs with the quasibreaking of the U(1) symme-
try. In the opposite case, i.e., for a = 0 and b > 0 [Eq. (4b)],
the BKT transition occurs with the quasibreaking of the
U(1)/Z2 symmetry, for which half-quantized and anti-half-
quantized vortices start to form in pairs. In the case of b �
a > 0 [Eq. (4c)], two successive spontaneous (quasi)breaking
processes occur. At the first stage (at higher temperature) the
U(1) symmetry is quasibroken to a Z2 subgroup accompanied
by the BKT transition. At the second stage, at a temperature
lower than the BKT transition temperature, the remaining Z2

symmetry is further spontaneously broken due to the thermo-
dynamic transition. In this case, half-quantized and anti-half-
quantized vortices start to form pairs at the BKT transition and
domain walls appear at the thermodynamic transition. Some
domain walls have no end point forming loops as well as those
in the Ising model, but some others appear between two half-
quantized or two anti-half-quantized vortices forming vortex
or antivortex molecules as shown in Fig. 1. In the remaining
case of a ≈ b [Eq. (4d)], rather than a conventional BKT
transition, the BKT transition occurs with the quasibreaking
of U(1)/Z2 symmetry and the thermodynamic transition with
breaking of Z2 symmetry simultaneously. All vortices are
integers and domain walls do not have end points.

In the following sections, we study the modified Goldstone
model by the FRG and Monte Carlo simulation.

III. FUNCTIONAL RENORMALIZATION
GROUP CALCULATIONS

In this section, after giving a brief review of FRG, we
apply it to the modified Goldstone model approximately, at
the leading order of the derivative expansion, and obtain the
phase structure.

A. Flow equation: A review

Here we review the basics of the FRG. At the core of
the formalism lies the �k average effective action, in which
fluctuations of the dynamical fields are incorporated up to a
momentum scale k. The �k function obeys the flow equation

∂k�k = 1

2

∫
Tr

[(
�

(2)
k + Rk

)−1
∂kRk

]
, (5)

where �
(2)
k is the second derivative matrix of �k with respect to

the dynamical variables and Rk is a regulator function, which
is defined (in Fourier space) through a momentum-dependent
mass term

1

2

∫
p,q

ψ i(q)Ri j
k (q, p)ψ j (p), (6)

added to the classical Hamiltonian (or Euclidean action). We
denoted the set of fluctuating field variables by ψ . Here Rk is
supposed to give a large mass to modes that have momenta

q � k and leave the ones with q � k untouched. The classical
Hamiltonian by definition does not contain any fluctuations;
therefore, it serves as an initial condition for the RG flow of
�k=� at some microscopic scale �. The flow equation (5) then
needs to be integrated down to k = 0, where one obtains the
full free energy (or quantum effective action). One is free to
choose the Rk function such that it fulfills the requirement
of suppressing low-momentum modes, and in this paper we
employ the so-called optimal version

Rk (q, p) = Zk (2π )2(k2 − q2)�(k2 − q2)δ(q + p), (7)

where �(x) is the Heaviside step function and Zk is the wave
function renormalization factor.

B. Local potential approximation

Here we solve the flow equation (5) for the modified
Goldstone model approximately, using the ansatz for �k ,

�k =
∫

d2x

[
Zk (ρ)

2
( �∇ψ i )2 + λk

2
(ρ − ρ0,k )2

]
, (8)

where instead of a complex variable, the ψ i field is considered
as a two-component real vector ψ i = (ψ1, ψ2), while ρ =
ψ iψ i/2, and we have only kept the original couplings in the
effective potential. Namely, Eq. (8) is compatible with the
form of Eq. (2), but it comes with k-dependent couplings
and a field-dependent wave function renormalization factor
[Zk (ρ)]. In what follows we will consider the Zk (ρ) func-
tion in two separate approximations: (i) Zk (ρ) ≈ Zk (ρ0) and
(ii) Zk (ρ) ≈ Zk (ρ0) + Z ′

k (ρ0)(ρ − ρ0). Approximation (i) is
sometimes called the local potential approximation′ (LPA′),
with the prime referring to nontrivial wave function renormal-
ization. First we work with the LPA′ and the next section is
devoted to approximation (ii).

Projecting the flow equation (5) onto a subspace spanned
by homogeneous field configurations, we get (see also
Appendix B)

k∂k λ̄k = −2λ̄k
[
1 − η

(0)
k

] + λ̄2
k

2π

(
1 − η

(0)
k

4

)

×
[

1 + 9

(1 + 2ρ̄0,k λ̄k )3

]
, (9a)

k∂k ρ̄0,k = −η
(0)
k ρ̄0,k + 1

4π

(
1 − η

(0)
k

4

)

×
[

1 + 3

(1 + 2ρ̄0,k λ̄k )2

]
, (9b)

where we have introduced dimensionless rescaled variables
λ̄k = λkk−2Z−2

k and ρ̄0,k = ρ0,kZk . Here η
(0)
k = − k∂kZk/Zk

is the anomalous dimension at this order of the approximation,
where the wave function renormalization is evaluated at the
minimum point of the effective potential Zk ≡ Zk (ρ̄0,k ) (from
now on we think of the wave function renormalization as
a function of the rescaled field). If we project Eq. (5) onto
∼( �∇ψ t )2, where the index t refers to the transverse direction,
we arrive at the flow equation for Zk (see again Appendix B
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FIG. 3. Comparison of (a) the leading-order flow diagram with (b) the wave function renormalization improved one. The red flows are
stopped at (a) t = − log(k/�) = 10 and (b) t = 200, which shows that a significant stabilization of the line of fixed points is achieved with
the improved approximation. For completeness, the blue flows are stopped at (a) t = 1, 5, 5, 8 and (b) t = 2, 8.5, 20, 40.

for details),

k∂kZk (ρ̄) = −Zk (ρ̄ )
ρ̄λ̄2

k/π(
1 + M̄2

l,k

)2(
1 + M̄2

t,k

)2 , (10)

where M̄2
l,k = M2

l,k/Zkk2 and M̄2
t,k = M2

t,k/Zkk2, while M2
l,k

and M2
t,k are the longitudinal and transverse components of the

momentum-independent part of the �
(2)
k matrix, respectively,

M2
l,k = λk (3ρ − ρ0,k ), M2

t,k = λk (ρ − ρ0,k ), (11)

and thus

M̄2
l,k = λ̄k (3ρ̄ − ρ̄0,k ), M̄2

t,k = λ̄k (ρ̄ − ρ̄0,k ). (12)

Since in Eqs. (9) it is Zk = Zk (ρ̄0,k ) that appears through η
(0)
k ,

we evaluate Eq. (10) at ρ̄ = ρ̄0,k and get

η
(0)
k = ρ̄0,k λ̄

2
k

π (1 + 2ρ̄0,k λ̄k )2
. (13)

Now we can search for fixed points of Eqs. (9) and (13). The
flow diagram in terms of λ̄k and ρ̄0,k can be seen on the left
side of Fig. 3. We observe the line of quasifixed points and
note that the flow, even though significantly slowed down, is
clearly nonzero in the aforementioned region.

C. Wave function renormalization improvement

The key to the improvement to be described here is to real-
ize how crucial the role of the wave function renormalization
factor Zk is in the previous description. In order to escape
from the CMW theorem, in the low-temperature phase Zk has
to diverge so that the renormalized field can condense (the
expectation value of the bare field is always zero). Since any
rescaling of the field should lead to the same description of
the system, one expects that any field derivative of the wave
function renormalization factor is proportional to Zk itself,
Z (n)

k ∼ Zk , which means that they also diverge, and in principle
none of them should be neglected, as also pointed out, e.g.,
in [41]. As announced in the preceding section, here we take
into account the first derivative of Zk , which will indeed lead
to a significant improvement in stabilizing the flow along the
(quasi)line of fixed points, but more importantly, it also makes
it possible to treat the modified Goldstone model in the FRG.

If we keep track of the field derivative of Zk , then it is
possible to take into account in ηk the implicit k dependence
coming from the change of the minimum of the effective
potential when the RG scale is varied, similarly to what was
done in earlier works, e.g., [46,47]. In principle, we should
have

ηk = −kdkZk

Zk
= −k∂kZk + Z ′

kk∂k ρ̄0,k

Zk

= η
(0)
k − wkk∂k ρ̄0,k ≡ η

(0)
k + �ηk, (14)

where dk refers to total differentiation and on the right-hand
side both Zk and Z ′

k are evaluated at ρ̄ = ρ̄0,k . We have also
introduced the notation �ηk = −wkk∂k ρ̄0,k with wk = Z ′

k/Zk .
Since Z ′

k has appeared in our formula, we also need to derive
a flow equation for it. This can be obtained from Eq. (10)
after applying d/d ρ̄ to the both sides (note that ∂k does
not commute with d/d ρ̄). Using that dM̄2

l,k/d ρ̄ = 3λ̄k and
dM̄2

t,k/d ρ̄ = λ̄k , we get

k∂kZ ′
k (ρ̄0,k )/Zk (ρ̄0,k )

= 4ρ̄2
0,k λ̄

2
k + 6ρ̄0,k λ̄k + 2ρ̄0,kwk − 1

π (1 + 2λ̄k ρ̄0,k )3
+ wkη

(0)
k , (15)

which leads to

k∂kwk = 4ρ̄2
0,k λ̄

2
k + 6ρ̄0,k λ̄k + 2ρ̄0,kwk − 1

π (1 + 2λ̄k ρ̄0,k )3

+ 2wkη
(0)
k − w2

k k∂k ρ̄0,k . (16)

At this point, it is important to mention that Eq. (15) is not
exact, as deriving Eq. (10) we let the field operators act only
on the potential part of the two-point correlation function and
not on Zk (ρ). This would have introduced a further Z ′

k (ρ)
dependence on the right-hand side of Eq. (10), which is
neglected here. The reason behind this is that we think of the
scheme in question as a first correction to the LPA′ in
the sense that we are motivated to derive the flow of wk in
the background flows of Zk , λ̄k , and ρ̄0,k of the LPA′, which
by definition are not affected explicitly by wk itself.

Now, once we return to the aforementioned flows, i.e.,
Eqs. (9), we notice that they do depend implicitly on wk ,
but only because of the new expression of the anomalous
dimension η

(0)
k → ηk = η

(0)
k + �ηk . This does not make much
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of a difference in the flow of λ̄k , but changes that of ρ̄0,k .
The reason is that Eq. (9b) becomes an implicit equation,
since k∂k ρ̄0,k also appears on the right-hand side through
�ηk ≡ −wkk∂k ρ̄0,k . After some algebra we arrive at

k∂k ρ̄0,k =
−η

(0)
k ρ̄0,k + 1

4π

(
1 − η

(0)
k
4

)[
1 + 3

(1+2ρ̄0,k λ̄k )2

]
1 − wk

[
ρ̄0,k + 1

16π

(
1 + 3

(1+2ρ̄0,k λ̄k )2

)] . (17)

The flow of λ̄k is analogous to Eq. (9a), but η
(0)
k is replaced by

ηk:

k∂k λ̄k = −2λ̄k[1 − ηk] + λ̄2
k

2π

(
1 − ηk

4

)

×
[

1 + 9

(1 + 2ρ̄0,k λ̄k )3

]
. (18)

Now we solve the coupled equations (13) and (16)–(18). The
corresponding flow diagram can be seen on the right-hand side
of Fig. 3. The comparison shows that taking into account the
derivative of the wave function renormalization factor in the
anomalous dimension significantly stabilizes the flow along
the line of (quasi)fixed points, as in the improved case the
freezing of the flow holds on ∼20 times longer in RG time
t = − log(k/�).

D. Phase structure

Now we are in a position to show that in the modified XY
model fluctuations can dramatically change the structure of
the line of fixed points, as seen in Fig. 3. First, note that the
ansatz of Eq. (8) and the approximation Zk (ρ̄ ) ≈ Zk (ρ̄0,k ) +
Z ′

k (ρ̄0,k )(ρ̄ − ρ̄0,k ) is compatible with the microscopic Hamil-
tonian of the modified XY model, since from Eq. (8) we have

�k =
∫

d2x

[
Zk + Z2

k wk (ρ − ρ0,k )

2
( �∇ψ i )2 + λk

2
(ρ − ρ0,k )2

]
,

(19)

which is equivalent to

�k =
∫

d2x

[
ak ( �∇ψ i )2+4bk (ψ j )2( �∇ψ i )2+λk

2
(ρ − ρ0,k )2

]
,

(20)

where ak = (Zk − Z2
k wkρ0,k )/2 and bk = Z2

k wk/16.
Equation (20) is now of the form of the original Hamiltonian
in Eq. (2) using the ψ i vector notation.

The reason why the RG flows of the ordinary XY model
can change dramatically is that, depending on the initial value
w� (or b�, equivalently) at the UV scale, ρ̄0,k can approach
a singularity, which sends the flows in the λ̄k-ρ̄k plane away
from the line of fixed points. What essentially happens is that
the line of quasifixed points terminates also at another end
point (see Fig. 4). The end point on the left corresponds to
a BKT transition at higher temperature and the new one on
the right signals another transition at lower temperature. Even
though the method does not make a definite prediction, this
should correspond to the Ising transition already reported in
earlier papers [22–24].

Analyzing the flow of ρ̄k , we note that already in the
ordinary XY model, i.e., for w� = 0, at first sight it might

FIG. 4. Flow diagram for the modified XY model with the initial
condition w� = 0.4. The red curves end on the line of fixed points,
while the blue ones deviate from it. The fixed line is terminating at
two end points, the left one corresponding to the high-temperature
transition (BKT) and the right one controlling the low-temperature
transition. The position of the latter depends on the initial value w�

(note that the position of the former is not sensitive to w�, if it exists).
The flows become divergent in the shaded region of the parameter
space in accordance with (21).

seem possible that the denominator on the right-hand side of
Eq. (17) becomes zero, but it turns out that this never happens.
The flow equation always makes wk decrease as fluctuations
are integrated out, and therefore the flows are regular. Note,
however, that if at the microscopic scale w� > 0, then k∂k ρ̄0,k

can indeed blow up.
The condition that needs to be met for a diverging flow is

w−1
� < ρ̄0,� + 1

16π

(
1 + 3

(1 + 2ρ̄0,�λ̄�)2

)
, (21)

which shows that for positive w� values the line of fixed
points can also terminate on the right (see Fig. 4), leading to
a two-step transition. For later reference, just as in Sec. II, we
restrict ourselves to the case

a2
� + b2

� = 1, (22)

i.e., we may use the parametrization a� = cos θ and b� =
sin θ (θ ∈ [0, π/2]), which leads to the following constraints:

cos θ = Z�(1 − Z�w�ρ0,�)/2, (23)

sin θ = Z2
�w�/16. (24)

Solving them for w� and Z�, we get

Z� = 2(cos θ + 8ρ0,� sin θ ), (25)

w� = 4 sin θ

(cos θ + 8ρ0,� sin θ )2
. (26)

Dropping the last term in the large parentheses on the right-
hand side of Eq. (21) (we are interested in a rough estimate),
we can get the following condition for the critical value
of ρ0,� belonging to the second end point of the line of
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(quasi)fixed points:

0 = − (cos θ + 8ρ0,� sin θ )2

4 sin θ

+ 2(cos θ + 8ρ0,� sin θ )ρ0,� + 1

16π
. (27)

For a given θ , we solve this equation for ρ0,� (see the
end point on the right-hand side of Fig. 4). Surprisingly,
if θ �= 0 is small, i.e., we are close to the XY model, the
solution ρ0,�|sol is always negative. This means that since
the flows blow up for initial values ρ0,� > ρ0,�|sol, unless
ρ̄0,�|sol ≡ Z�ρ0,�|sol ≈ 0.5 (which is the location of the origi-
nal end point of the BKT transition), the line of fixed points
completely disappears. The critical angle at which this hap-
pens is

θc ≈ 86.8◦. (28)

That is to say, for 0 �= θ < θc, if there is a transition in the
system, it cannot be of topological type, no matter how close
we are to the XY model (still, at θ = 0 we have one and
only one BKT transition). However, once θ > θc, the line
of fixed points starts to return to the picture, now equipped
with another end point, which indicates that there exist two
transitions. A higher-temperature transition has to be of BKT
type and a lower-temperature transition, presumably an Ising
transition [24], is expected to be of second order. Note that
the aforementioned structure heavily relies on the assumption
a2

� + b2
� = 1. Had we not had this constraint and just set,

e.g., a� ≡ 1, we would have found a two-step transition for
0 < b < bc (the higher-temperature one being topological)
and no topological transition for b > bc (here bc > 0 is some
positive constant).

IV. NUMERICAL SIMULATIONS

In this section we numerically investigate the equilibrium
properties of the modified Goldstone model defined in Eq. (2).

A. Preparation

The discretized Hamiltonian H�x from Eq. (2) becomes

H�x = H1 + H2,

H1 = a
∑
〈i, j〉

|ψi − ψ j |2 + b
∑
〈i, j〉

∣∣ψ2
i − ψ2

j

∣∣2
, (29)

H2 = λ�x2

2

∑
i

(|ψi|2/2 − ρ0)2,

where ψi is the field ψ at the discretized point �x = �xi and �x
is the lattice spacing (which serves as an ultraviolet cutoff
scale). In the limit of λ → ∞ and rewriting ψ = √

2ρ0eiθi ,
the discretized Hamiltonian H�x becomes equivalent to the
Hamiltonian HmXY in Eq. (1) for the modified XY model with
J = 4aρ0 and J ′ = 8bρ2

0 .
Now we numerically calculate equilibrium ensemble aver-

ages

〈 f 〉 =
∫ (∏

i dψidψ∗
i

)∑
i f e−H�x/T∫ (∏

i dψidψ∗
i

) ∑
i e−H�x/T

, (30)

by using the Monte Carlo technique. First, by fixing the
amplitude |ψi| of the field, we use the cluster Monte Carlo
technique with the Wolff algorithm [48]. Then, to accelerate
the equilibration process, we alternately apply the Wolff algo-
rithm to equilibrate the phase θi = arg[ψi] and the standard
Metropolis-Hastings algorithm to equilibrate the amplitude
|ψi|. For numerical parameters, we have used �x = 1 and
ρ0 = 1/2. Similarly to the preceding section, we parametrize
a and b as in Eq. (22),

a = cos θ, b = sin θ, a2 + b2 = 1. (31)

B. Correlation function and transition temperature

We first show our results for the two correlation functions

G1(r) =
∑

i

∑
r�|x j |<r+�x

�x2〈ψ∗
i+ jψi〉

N (r)L2
,

G2(r) =
∑

i

∑
r�|x j |<r+�x

�x2
〈
ψ∗ 2

i+ jψ
2
i

〉
N (r)L2

, (32)

where L is the system size and N (r) is the number of points
xi that satisfy r � |xi| < r + �x. When θ = 0 (θ = π/2),
we expect the standard BKT transition triggered by integer
vortices (half-quantized vortices) for ψi (ψ2

i ) and the algebraic
decay G1(r) ∝ r−η [G2(r) ∝ r−η] below the BKT transition
temperature. At the BKT transition temperature, the critical
exponent satisfies η = 1/4 [3,4]. To obtain the BKT transition
temperature, therefore, we can use the finite-size scaling of the
correlation functions, in which G(1,2)/r−1/4 is expected to be
a universal function of r/L. Figure 5 shows the dependence
of G1(r)/L−1/4 with θ = 0 and λ = 8 as a function of r/L
at T = 0.6T ∗, where T ∗ is the BKT transition temperature
for the standard XY model with θ = 0 and λ → ∞. The
expected universality of G1(r) is sufficiently satisfied at large
r, which therefore predicts that the BKT transition tempera-
ture is T BKT

1 � 0.6T ∗. In the same way, we can estimate the

FIG. 5. Finite-size scaling of G1(r) with θ = 0 and λ = 8 at the
BKT transition temperature T BKT

1 = 0.60T ∗ with the critical expo-
nent η = 1/4. The system sizes are L = 32 (crosses), L = 64 (open
squares), and L = 128 (open circles). We use the same symbols for
the system size L in all other figures unless otherwise noted.
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TABLE I. Specific values of θ1 and θ2 at λ = 8, 16, and ∞
(modified XY model).

λ θ1 θ2

8 50.8◦ 84.5◦

16 66.0◦ 79.6◦

∞ 64.2◦ 64.2◦

temperature T BKT
2 � 0.21T ∗ with θ = π/2 and λ = 8 from

the finite-size scaling of G2(r).
We further expect the appearance of a second-order Ising-

type phase transition [24], where the domain of definition for
the phase of the ψ field is spontaneously broken from [0, 2π ]
to [0, π ], which can be thought of as a spontaneous breaking
of a discrete Z2 symmetry. At the critical temperature for this
phase transition, the correlation function also shows algebraic
decay. Since the critical exponent η takes the same value
as that of the BKT transition temperature, i.e., η = 1/4 for
the two-dimensional Ising-type transition, we can use the
same finite-size scaling analysis as shown in Fig. 5. We here
define the temperature T1 (T2) at which G1(r) [G2(r)] shows
the algebraic decay G1 ∝ r−1/4 [G2(r) ∝ r−1/4]. Then, by
definition, T1 = T BKT

1 at θ = 0 and T2 = T BKT
2 at θ = π/2.

Denoting by θ1 and θ2 critical angles, we have found the
following results for T1 and T2.

(a) When θ is small, i.e., θ � θ1, then T1 > T2.
(b) When θ is large, i.e., θ2 < θ < π/2, then T1 < T2.
(c) When λ is finite, then θ1 < θ2. For θ1 < θ � θ2, neither

G1(r) nor G2(r) satisfies G1,2(r) ∝ r−1/4 at any temperatures
and both T1 and T2 are absent.

(d) When λ → ∞ for the modified XY model, then θ1 = θ2,
i.e., both T1 and T2 always exist at any θ .

The specific values of θ1 and θ2 are shown in Table I.

C. Superfluid density and specific heat

To determine the type of the transitions, we calculate the
superfluid density ρs defined as [49,50]

ρs = 1

(a + 4b)L2
lim
δ→0

F (δ) − F (0)

δ2
(33)

and the specific heat C = d〈H〉/dT , where F (δ) =
−T log〈e−H/T 〉 is the free energy under the argument-twisted
boundary condition ψ (x + L) = eiδ·Lψ (x). When a BKT
transition occurs at the transition temperature T BKT, the
universal jump �ρs of the superfluid density is

�ρs = T BKT

π
. (34)

On the other hand, for second-order transitions we expect
close to the corresponding critical temperature (T 2nd) that the
superfluid density obeys ρs ∝ (T 2nd − T )ζ . The critical expo-
nent ζ is obtained by the Josephson relation ζ = 2β − νη,
where β, ν, and η are the critical exponents of the order
parameter, the correlation length, and the correlation function,
respectively. By inserting β = 1/8, ν = 1, and η = 1/4 for
the Ising-type transition, we obtain ζ = 0, i.e., the superfluid
density also jumps at the transition temperature, similarly

FIG. 6. Temperature dependence of the superfluid density ρs

for λ = 8 and (a) θ = 0◦ and (b) θ = 10◦. The solid, dashed, and
dash-dotted lines show the relations ρs = T/π , T = T1, and T = T2,
respectively.

to the BKT transition. However, no universal relation holds,
which allows for a distinction between the two.

Figure 6 shows the dependence of the superfluid density
with respect to the temperature for θ = 0◦ [Fig. 6(a)] and
θ = 10◦ [Fig. 6(b)]. The solid line shows the relation ρs =
T/π . In Fig. 6(a) this line intersects ρs with a good accuracy
at T1, suggesting the standard universal relation related to
the BKT transition temperature, i.e., we indeed observe a
topological transition. In Fig. 6(b), however, ρs deviates from
the aforementioned line at T1 and therefore we expect that
the transition is of second order, with a nonuniversal jump
at the transition temperature. Here we relabel T1 ≡ T 2nd

1 . In
neither of the panels do we find any characteristic structure in
ρs at T = T2. We therefore conclude that the property of the
correlation function G2 ∝ r−1/4 is just the crossover and we
relabel T2 as the crossover temperature T2 ≡ T co

2 .
Figure 7 shows the dependence of the superfluid den-

sity on the temperature for θ = 60◦ [Fig. 7(a)] and θ = 85◦
[Fig. 7(b)]. As shown in Table I, the value θ = 60◦ is between
θ1 and θ2 for λ = 8, and we find neither a BKT nor a second-
order phase transition. Instead, what we see is a first-order
phase transition due to the sharp jump of the superfluid density
ρs [see Fig. 7(a)]. Because the temperature at which the
superfluid density ρs jumps does not really depend on the
system size L, its estimation is fairly simple. We denote this

FIG. 7. Temperature dependence of the superfluid density ρs

for λ = 8 and (a) θ = 60◦ and (b) θ = 87◦. The solid line shows
the relation ρs = T/π . The dash–double-dotted line in (a) shows the
estimated first-order transition temperature T 1st

∗ . The dashed and the
dash-dotted lines in (b) show T = T1 and T = T2, respectively.
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FIG. 8. Jump of the superfluid density �ρs normalized by �ρs0

for (a) λ = 8 and (b) λ = 16. The dashed and dash-doted lines show
θ1 and θ2, respectively.

transition temperature by T 1st
∗ . In Fig. 7(b), i.e., for θ = 87◦,

θ is larger than θ2 and the superfluid density ρs does show
the universal relation (34) at the corresponding temperature
T = T2. Therefore, we find again a BKT transition with
the aforementioned transition temperature, relabeling it as
T2 ≡ T BKT

2 .
Figure 8 shows the jump of the superfluid density �ρs at

the phase transition as a function of θ , normalized by �ρs0,
which is the value for the universal jump (34) for the BKT
transition. It is specifically defined as (note that T1, T 1st

∗ , and
T2 depend on θ )

�ρs0 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T1

π
, 0 � θ < θ1

T 1st
∗
π

, θ1 � θ < θ2

T2

π
, θ2 � θ � π

2
.

(35)

We estimate the value of the jump �ρs by fitting the superfluid
density ρs at the transition temperature, i.e., T1 for 0 � θ < θ1,
T 1st

∗ for θ1 � θ < θ2, and T2 for θ2 � θ � π/2, via the func-
tion

ρs(θ, L) = �ρs(θ ) + a(θ )

L
, (36)

where a is a θ -dependent constant. For θ = 0 and θ > θ2,
the relation �ρs � �ρs0 is satisfied; therefore, we find BKT
transitions with the transition temperature T BKT

1 for θ = 0
and T BKT

2 for θ1 � θ � π/2. For other values, the universal
relation does not hold and the transition becomes of second
order for 0 < θ < θ1 and of first order for θ1 < θ � θ2.

Figure 9 shows the specific heat C. Whereas the specific
heat has a single peak near the transition temperature for
θ < θ2, i.e., in Figs. 9(a)–9(c), it has double peaks for θ � θ2,
suggesting two-step transitions. In the latter case, the first
and second peaks of the specific heat correspond to the
temperatures T1 and T2, respectively. Because the correlation
function G1 becomes G1 ∝ r−1/4 at T = T1 and the phase
at T < T1 should be continuously connected from the phase
with θ < θ2 (see Fig. 10), the transition at T1 should indeed
be of second order. The absence of the peak at T = T2 for
θ < θ1 consolidates our conclusion that here T2 gives not the
transition, but only a crossover as T co

2 .

FIG. 9. Temperature dependence of the specific heat C for λ = 8
and (a) θ = 0◦, (b) θ = 10◦, (c) θ = 60◦, and (d) θ = 87◦. The dash–
double-dotted line in (c) shows the estimated first-order transition
temperature T 1st

∗ . The dashed and dash-dotted lines in (a), (b), and
(d) show T = T1 and T = T2, respectively.

D. Phase diagram

Figure 10 shows the phase diagram of the modified Gold-
stone model in Eq. (29). For θ = 0, there is the standard
BKT transition with the transition temperature T1 ≡ T BKT

1 . At
T < T BKT

1 , integer vortex pairs are bounded to show a quasi-
long-range-order phase. For 0 < θ < θ1, this BKT transition
changes to a second-order phase transition with the transi-
tion temperature T1 ≡ T 2nd

1 , implying a true long-range-order
phase for T < T 2nd

1 with the breaking of the Z2 symmetry.
For θ1 � θ < θ2, the two temperatures T 2nd

1 and T co
2 defined

FIG. 10. Phase diagram in the θ -T plane for (a) λ = 8 and (b)
λ = 16. The thick line at θ = 0 is the quasi-long-range-order phase
with bounded integer vortex pairs. The violet and pink regions
indicate the true long-range-order phase and the quasi-long-range-
order phase with bounded half-quantized vortex pairs, respectively.
The solid, dashed, and dash-dotted lines correspond to the phase
boundaries for the BKT, second-order, and first-order transition tem-
peratures T BKT

2 , T 2nd
1 , and T 1st

∗ , respectively. The dotted line indicates
the crossover temperature T co

2 .
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FIG. 11. (a) Jump of the superfluid density �ρs and (b) phase
diagram in the θ -T plane for λ = ∞. The dashed line in (a) and those
in the colored regions in (b) are the same as those in Figs. 8 and 10,
respectively.

for 0 < θ < θ1 merge to one first-order transition temperature
T 1st

∗ . For θ2 � θ � π/2, this transition temperature T 1st
∗ splits

again into two transition temperatures T 2nd
1 and T BKT

2 . The
second-order phase transition ultimately disappears, as while
θ → π/2, T 2nd

1 → 0. Unlike the BKT transition for θ = 0,
the BKT transition for θ2 � θ � π/2 is triggered by the
correlation function G2 (not G1), and therefore we expect
the quasi-long-range-order phase by the bounding of half-
quantized vortex pairs at T 2nd

1 < T < T BKT
2 . Because the low-

temperature phases, i.e., T < T 1st
∗ for θ1 � θ < θ2 and T <

T 2nd
1 for θ2 � θ � π/2, should be continuously connected to

the long-range-order phase at 0 < θ < θ1, these phases should
also be of true long-range order.

Here we wish to establish the relationship between the
phase diagram and the (quasi)breaking patterns of symmetry
summarized in Eqs. (4a)–(4d). The BKT transition at the tem-
perature T BKT

1 with θ = 0◦ gives the quasibreaking U(1) ��� 1
in Eq. (4a). The second- and first-order phase transitions at
the temperatures T 2nd

1 and T 1st
∗ with 0◦ < θ � θ2, respectively,

give the simultaneous (quasi)breaking U(1) �⇒ 1 in Eq. (4d).
The two-step transition at the temperatures T BKT

2 and T 2nd
1

with θ2 < θ < 90◦ gives the two successive (quasi)breaking
of symmetries U(1) ��� Z2 −→ 1 in Eq. (4c). As for θ =
90◦, the BKT transition at the temperature T BKT

2 gives the
quasibreaking U(1)/Z2 ��� 1. Here the second-order phase
transition does not occur because of T 2nd

1 = 0 for θ = 90◦.
Finally, in Fig. 11 we show the jump of the superfluid

density �ρs and the phase diagram in the λ = ∞ limit, in
which the modified Goldstone model reduces to the modified
XY model. As the coupling λ increases, the region of the first-
order phase transition for θ1 < θ � θ2 shrinks and ultimately
disappears.

E. Vortex configurations

Here we discuss the relationship between topological de-
fects (such as integer and half-integer vortices and one-
dimensional solitons considered in Sec. II) and the corre-
sponding phase transitions. At the BKT transition temperature
T BKT

1 with θ = 0◦, the number of integer vortex-antivortex
pairs is changing rapidly due to their bounding. At the second-
and first-order transition temperatures T 2nd

2 and T 1st
1 , the

Z2 symmetry breaking causes the rapid decrease of one-
dimensional solitons. At the BKT transition temperature T BKT

2

FIG. 12. Snapshots of the vortex configurations and the phase
profiles for L = 64, λ = 8, and (a) θ = 10◦ and T = T 2nd

1 , (b) θ = 60◦

and T = T 1st
∗ , (c) θ = 87◦ and T = T BKT

2 , and (d) θ = 87◦ and
T = T 2nd

1 . The blue and red closed (open) circles denote the positions
of integer (half-integer) vortices and antivortices, respectively.

with θ > θ2, the number of half-integer vortex-antivortex
pairs changes rapidly. The vortex molecules, which contain
two half-quantized vortices, should be stable in order for the
BKT transition to exist at the temperature T BKT

2 . On the other
hand, the stability of one-dimensional solitons is enough for
the existence of the Z2 symmetry breaking. The stability of
vortex molecules for θ � 78◦ and of one-dimensional soli-
tons for θ � 15◦ in the case of λ = 8 is consistent with the
existence of T BKT

2 for θ > θ2 ≈ 84.5◦ and the Z2 symmetry
breaking at T 2nd

1 or T 1st
∗ for θ > 0.

We next show snapshots of vortex configurations and the
phase profile at the transition temperatures in Fig. 12. In all the
panels, most vortices and antivortices form paired states with
short distances. Furthermore, most of them lie on the solitons
that appear as boundaries between the two phases arg[ψ] ∼ 0
and arg[ψ] ∼ π .

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-180◦ -90◦ 0◦ 90◦ 180◦

(a)

P
(a

rg
[ψ

])

arg[ψ]

θ = 10◦ T = T 2nd
1

θ = 60◦ T = T 1st
∗

0

0.5

1

1.5

2

2.5

3

-180◦ -90◦ 0◦ 90◦ 180◦

(b)

P
(a

rg
[ψ

])

arg[ψ]

θ = 87◦ T = TBKT
2

θ = 87◦ T = T 2nd
1

FIG. 13. Distribution functions P(arg[ψ]) corresponding to the
snapshots of the phase profile with L = 128, λ = 8, and (a) θ = 10◦

and T = T 2nd
1 (black) and θ = 60◦ and T = T 1st

∗ (green) and (b)
θ = 87◦ and T = T BKT

2 (red) and θ = 87◦ and T = T 2nd
1 (black).
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Figure 13 shows the distribution function P(arg[ψ]) cor-
responding to the snapshot of the phase profile. In Fig. 13(b)
for θ = 87◦, the stability of one-dimensional solitons can be
clearly seen from the double-peaked structure of P(arg[ψ]) at
arg[ψ] = 0 and arg[ψ] = π . At T = T BKT

2 , the Z2 symmetry
is not broken and the heights of two peaks are the same.
On the other hand, breaking of the Z2 symmetry at T =
T 2nd

1 can be confirmed via the existence of imbalanced peaks
P(0) > P(π ). This imbalanced distribution can also be seen
in Fig. 12(d), where the region with arg[ψ] ∼ 0 is apparently
larger than that with arg[ψ] = π and arg[ψ] = −π . Note
that, in Fig. 13(a) for θ = 10◦ and θ = 60◦, however, the
double-peaked structure is absent and there is only one single
peak at arg[ψ] = 0. We believe that this absence comes from
finite-size effects and it is expected that the double-peaked
structure is restored with larger system size. We note that all
the peaked structures shown in Figs. 13(a) and 13(b) come
from finite-size effects and they become completely flat in the
thermodynamic limit due to the CMW theorem.

V. SUMMARY

In this paper, we first defined the modified Goldstone
model in Eq. (2) as a regular and continuum version of the
modified XY model and constructed a soliton, an integer vor-
tex, and a molecule of half-quantized vortices connected by a
soliton. Then we analyzed the phase structure of the modified
Goldstone model in two dimensions via two different ap-
proaches. First, by using the functional renormalization group
technique, we showed how to describe BKT transitions by
calculating the scale evolution of the effective Hamiltonian.
Based on earlier works, we constructed an approximation
scheme of the RG flow equations, where the field dependence
of the wave function renormalization is taken into account
at the lowest order. In the standard Goldstone model it has
led to a more accurate description of the underlying structure
of a line of fixed points and it has also turned out to be of
particular importance when one is interested in the role of the
modified kinetic term ∼| �∇ψ2|2, by revealing a second end
point of the line of fixed points. The FRG method predicts
that in the modified model there can exist a two-step phase
transition, depending on the ratio between the coefficients
of the standard and modified kinetic terms. It has also been
shown that even if the coefficient of the modified kinetic term
is not large enough to split the phase transition into two, it is
capable of completely destroying its topological nature.

In addition, this scenario has been verified to great accu-
racy via full numerical simulation of the system by the Monte
Carlo method. Through predicting critical temperatures and
calculating the superfluid density with the specific heat nu-
merically, we have confirmed the following properties of the
phase structure. If only the standard or modified kinetic terms
are present, the system undergoes one, and only one, phase
transition, which is of BKT type, corresponding to vortex
and half-vortex unbinding, respectively. If both terms are
present, depending on the ratio between their coefficients and
by assuming that their square sum equals unity (a2 + b2 = 1),
there exist either one or two transitions. If there is only one
transition, it is never topological and can be of both first
and second order. If there are two transitions, then the one

corresponding to the higher temperature is of BKT type,
presumably related to half-vortex unbinding, while the other
transition is of Ising type.

It would be interesting to improve upon the present renor-
malization group approximation scheme. Since higher-field
derivatives of the wave function renormalization factor could
also play an important role for BKT-like transitions, it would
be interesting to derive a tower of equations for the aforemen-
tioned factors and solve them simultaneously [46,47]. Further-
more, the present scheme has only predicted the existence of a
different end point of the line of fixed points, which indicated
a second transition, but due to the singular nature of the flows
below temperatures of the aforementioned transition, details
of the transition could not have been explored. It would be
particularly important to find a scheme which can overcome
this shortcoming.

The results of this paper can be contrasted to another model
admitting a vortex molecule solution of half-quantized vor-
tices connected by a soliton, that is, coherently coupled Bose-
Einstein condensates or two-gap superconductors [51] and
spin-1 spinor Bose-Einstein condensates under the quadratic
Zeeman field [52]. In this case, a two-step phase transition
does not occur when two components are coupled by a
Josephson interaction or a quadratic Zeeman field, while it can
occur when they are decoupled. Essential differences between
this case and that of the modified Goldstone model discussed
in this paper are yet to be clarified.

As an important application of the modified Goldstone
model, we suggest a two-dimensional crystal system, where
the perfect crystal is forbidden by the CMW theorem. In
this system, there are two different kinds of topological
excitations: a dislocation and a disclination corresponding
to spontaneous breaking of the translational and rotational
symmetries, respectively. The dislocation can be topologically
equivalent to a pair of disclinations. The Kosterlitz-Thouless-
Nelson-Halperin-Young theory predicts a two-step transition
[16,17], i.e., the BKT-like transition from the disordered
phase to the isotropic hexatic phase in which only the quasi-
long-range rotational order appears and disclinations are not
bounded into dislocations and the first-order transition from
the hexatic phase to the crystal phase having the quasi-long-
range rotational order and the long-range translational order.
The mechanism for the two-step transition in this system has
almost the same scenario as that for the modified Goldstone
model, i.e., dislocations and disclinations correspond to inte-
ger and half-integer vortices, respectively. Whereas a two-step
transition has been observed in a two-dimensional colloidal
crystal [18], single first-order transitions have been observed
in several two-dimensional crystal systems [53], and both
single and two-step transitions have been reported in a helium
film at low temperatures [19], depending on the density of
helium atoms. Our modified Goldstone model (2) can become
a toy model for these systems, i.e., a/b and λ correspond to the
ratio between the energies of disclinations and dislocations,
and the compressibility of the system, respectively, and may
give some intuitive guiding principle about the type of phase
transitions in this system.

Our study of the modified Goldstone model in two Eu-
clidean dimensions has revealed that there exist two-step
phase transitions related to half-quantized vortex molecules
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connected by domain walls. It is an open question whether
there is any higher-dimensional model allowing a two-step
phase transition. For instance, in three dimensions, a pair of
a monopole and an antimonopole connected by a string may
play a crucial role.
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APPENDIX A: CONTINUUM VERSION OF THE MODIFIED XY MODEL

In this Appendix we show how to derive the Hamiltonian (2) from the microscopic lattice model (1). The reformulation in
terms of a continuum theory is based on the equivalence of the partition function. By definition we have

Z =
∫

Dϑ exp

{∑
x,i

[
J

2
cos( �∇iϑx ) + J ′

2
cos(2 �∇iϑx )

]}
, (A1)

where �∇iϑx = ϑx − ϑx+i, the sum over x goes through the whole lattice, the sum over i refers to the neighbors (i = 1, . . . , 4),
and we absorbed the inverse temperature β into the couplings J and J ′. Introducing the notation �x = exp iϑx, we have

Z =
∫

Dϑ exp

{
1

4

∑
x,i

(
J�x�

∗
x+i + J ′�2

x �∗2
x+i + c.c.

)}
. (A2)

Now we introduce a complex field ψx via delta functions

Z =
∫

Dϑ Dψ Dψ∗ ∏
x

δ(ψx − �x )δ(ψ∗
x − �∗

x ) exp

{
1

4

∑
x,i

(
Jψxψ

∗
x+i + J ′ψ2

x ψ∗2
x+i + c.c.

)}
. (A3)

The δ functions can be represented using a complex auxiliary field αx:

Z =
∫

Dϑ Dψ Dψ∗DαDα∗ exp

{
−1

2

∑
x

[i(ψx − �x )αx + c.c.] + 1

4

∑
x,i

(
Jψxψ

∗
x+i + J ′ψ2

x ψ∗2
x+i + c.c.

)}
. (A4)

Using that ∫ 2π

0

dϑ

2π
exp(|α| cos ϑ ) = I0(|α|), (A5)

where I0 is the Bessel function, we get

Z =
∫

Dψ Dψ∗ exp

{
1

4

∑
x,i

(
Jψxψ

∗
x+i + J ′ψ2

x ψ∗2
x+i + c.c.

)} ∫
DαDα∗ exp

{
−1

2

∑
x

[iψxαx + c.c. − 2 log I0(|αx|)]
}

. (A6)

Using the notation ρx = |ψx|2/2, we define a potential term U (ρx ) through the equation

exp

{
−

∑
x

[
U (ρx ) + 2J|ψx|2 + 2J ′∣∣ψ2

x

∣∣2]} =
∫

DαDα∗ exp

{
−1

2

∑
x

[iψxαx + c.c. − 2 log I0(|αx|)]
}

, (A7)

and as a final step we take the continuum limit. Then∑
x,i

ψxψ
∗
x+i ≈ 4

∑
x

|ψx|2 +
∫

d2x ψ (x)�ψ∗(x), (A8a)

∑
x,i

ψ2
x ψ∗2

x+i ≈ 4
∑

x

∣∣ψ2
x

∣∣2 +
∫

d2x ψ2(x)�ψ∗2(x) (A8b)
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and the partition function takes the (continuum) form

Z =
∫

Dψ Dψ∗ exp

{
−

∫
d2x

[
J

2
| �∇ψ (x)|2 + J ′

2
| �∇ψ2(x)|2 + U (ρ(x))

]}
. (A9)

Note that we have rescaled the effective potential with the square of the lattice spacing. Using the notation a = J/2 and b = J ′/2
and expanding the potential around its minimum

U (ρ) ≈ λ

2
(ρ − ρ0)2, (A10)

we find that Eq. (A9) is the partition function of a system with the Hamiltonian

H =
∫

x

[
a| �∇ψ |2 + b| �∇ψ2|2 + λ

2
(|ψ |2/2 − ρ0)2

]
, (A11)

which completes the derivation.

APPENDIX B: FLOW EQUATIONS

In this Appendix we show how to derive the flow equations (9) and (10) of the LPA′. Using the notation

Uk (ρ) = λk

2
(ρ − ρ0,k )2, (B1)

with the help of Eq. (7), we derive from Eq. (5) that

k∂kUk = k4

4π

[
1 − ηk

4

](
1

k2 + M2
t

/
Z2

k

+ 1

k2 + M2
l

/
Z2

k

)
, (B2)

where M2
k,t and M2

k,l are the transversal and longitudinal components of the mass matrix M2
k , respectively,

M2
k,ab = M2

k,tδatδbt + M2
k,lδalδbl , M2

k,t = U ′
k (ρ), M2

k,l = U ′
k (ρ) + 2ρU ′′

k (ρ), (B3)

and ηk = − 1
Zk

dZk
dk is the anomalous dimension. Expanding the right-hand side with respect to ρ, we compare it with the left-hand

side and identify the flows k∂kλk and k∂kρ0,k leading to Eqs. (9a) and (9b), respectively.
For the flow of Zk and thus the expression of the anomalous dimension, we let the operator δ2/δψ j (−p)δψi(p) act on both

sides of Eq. (5). Then we arrive at

k∂k�
(2)
k,i j (p,−p) =

∫
q

k∂kRk (q)
[
�

(2)
k + Rk

]−1
ab (q)

[
�

(2)
k + Rk

]−1
cd (q − p)

[
�

(2)
k + Rk

]−1
ea (q)�(3)

k,bc j�
(3)
k,dei, (B4)

where �
(2)
k and �

(3)
k are the second and third functional derivatives of �k , respectively,

�
(2)
k,ab(q) = (

Zkq2δab + M2
ab

)−1
, (B5)

�
(3)
k,abc = λk (δabψc + δbcψa + δcaψb), (B6)

where we see that the �
(3)
k vertex is momentum independent in the LPA′ approximation (8). Note that, in principle, the wave

function renormalization factors in the broken phase are different for the longitudinal and transverse components. When deriving
the flow of Zk , we take into account only the transverse component. Assuming that ψi = δilψ is a homogeneous background, the
tt component of Eq. (B4) reads

k∂k�
(2)
tt (p,−p) = 2ρλ2

k

∫
q

k∂kRk (q)
[(

�
(2)
k + Rk

)−2
ll

(q)
(
�

(2)
k + Rk

)−1
tt

(q + p) + (
�

(2)
k + Rk

)−2
tt

(q)
(
�

(2)
k + Rk

)−1
ll

(q + p)
]
. (B7)

Since ∂kRk (q) ∼ �(k2 − q2), the integral is restricted to 0 < |q| < k, and we can substitute Zkq2 + Rk (q) → Zkk2 in the two-
point functions. Then we get

k∂k�
(2)
k,tt (p,−p) = 2ρλ2

k

∫
|q|<k

fk (q)
(
Zkk2 + M2

k,l

)−2[
Zk (q + p)2 + M2

k,t + Rk (p + q)
]−1 + {t ↔ l}, (B8)

where fk (q) = k[2kZk + (k2 − q2)∂kZk]. Now we project both sides of Eq. (B8) onto the O(p2) piece. The left-hand side is
simply

k∂kZk (ρ)p2, (B9)
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while for the right-hand side we have

2ρλ2
k(

Zkk2 + M2
k,l

)[ ∫
q+<|q|<k

�(x > 0)

(
fk (q)

Zk (p2 + 2pqx + q2) + M2
k,t

− fk (q)

Zkk2 + M2
k,t

)]
+ {t ↔ l} + O(p3), (B10)

where x = p̂q̂ and q+ = k − px + O(p2). After performing the integral, we compare Eqs. (B10) with (B9) and arrive at

k∂kZk (ρ)p2 = − ρλ2
kk4Z2

k

π
(
Zkk2 + M2

k,l

)2(
Zkk2 + M2

k,t

)2 p2, (B11)

which leads to Eq. (10).

[1] V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 59, 907 (1971) [Sov.
Phys. JETP 32, 493 (1971)].

[2] V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 61, 1144 (1972) [Sov.
Phys. JETP 34, 610 (1972)].

[3] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 5, L124 (1972).
[4] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
[5] S. R. Coleman, Commun. Math. Phys. 31, 259 (1973).
[6] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[7] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
[8] D. J. Bishop and J. D. Reppy, Phys. Rev. Lett. 40, 1727

(1978).
[9] D. U. Gubser and S. A. Wolf, Solid State Commun. 32, 449

(1979).
[10] A. F. Hebard and A. T. Fiory, Phys. Rev. Lett. 44, 291 (1980).
[11] R. F. Voss, C. M. Knoedler, and P. M. Horn, Phys. Rev. Lett. 45,

1523 (1980).
[12] S. A. Wolf, D. U. Gubser, W. W. Fuller, J. C. Garland, and R. S.

Newrock, Phys. Rev. Lett. 47, 1071 (1981).
[13] K. Epstein, A. M. Goldman, and A. M. Kadin, Phys. Rev. Lett.

47, 534 (1981).
[14] D. J. Resnick, J. C. Garland, J. T. Boyd, S. Shoemaker, and R. S.

Newrock, Phys. Rev. Lett. 47, 1542 (1981).
[15] R. F. Voss and R. A. Webb, Phys. Rev. B 25, 3446 (1982).
[16] B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978).
[17] A. P. Young, Phys. Rev. B 19, 1855 (1979).
[18] K. Zahn, R. Lenke, and G. Maret, Phys. Rev. Lett. 82, 2721

(1999).
[19] S. Nakamura, K. Matsui, T. Matsui, and H. Fukuyama,

Phys. Rev. B 94, 180501(R) (2016).
[20] Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, and J.

Dalibard, Nature (London) 441, 1118 (2006).
[21] E. Domany, M. Schick, and R. H. Swendsen, Phys. Rev. Lett.

52, 1535 (1984).
[22] D. H. Lee and G. Grinstein, Phys. Rev. Lett. 55, 541 (1985).
[23] S. E. Korshunov, Pis’ma Zh. Eksp. Teor. Fiz. 41, 216 (1985)

[JETP Lett. 41, 263 (1985)].
[24] D. B. Carpenter and J. T. Chalker, J. Phys.: Condens. Matter 1,

4907 (1989).
[25] M. Dian and R. Hlubina, Phys. Rev. B 84, 224420 (2011).
[26] Y. Shi, A. Lamacraft, and P. Fendley, Phys. Rev. Lett. 107,

240601 (2011).

[27] L. Bonnes and S. Wessel, Phys. Rev. B 85, 094513 (2012).
[28] D. M. Hübscher and S. Wessel, Phys. Rev. E 87, 062112 (2013).
[29] P. Serna, J. T. Chalker, and P. Fendley, J. Phys. A: Math. Theor.

50, 424003 (2017).
[30] D. X. Nui, L. Tuan, N. D. Trung Kien, P. T. Huy, H. T. Dang,

and D. X. Viet, Phys. Rev. B 98, 144421 (2018).
[31] G. A. Canova, Y. Levin, and J. J. Arenzon, Phys. Rev. E 94,

032140 (2016).
[32] M. Zukovic and G. Kalagov, Phys. Rev. E 96, 022158 (2017).
[33] M. Zukovic and G. Kalagov, Phys. Rev. E 97, 052101 (2018).
[34] L. Radzihovsky, P. B. Weichman, and J. I. Park, Ann. Phys.

(NY) 323, 2376 (2008).
[35] E. Korshunov, Europhys. Lett. 89, 17004 (2010).
[36] L. Komendová and R. Hlubina, Phys. Rev. B 81, 012505 (2010).
[37] I. Herbut, A Modern Approach to Critical Phenomena

(Cambridge University Press, Cambridge, 2007).
[38] P. Kopietz, L. Bartosch, and F. Schütz, Introduction to the

Functional Renormalization Group (Springer, Berlin, 2010).
[39] M. Gräter and C. Wetterich, Phys. Rev. Lett. 75, 378 (1995).
[40] G. v. Gersdorff and C. Wetterich, Phys. Rev. B 64, 054513

(2001).
[41] P. Jakubczyk, N. Dupuis, and B. Delamotte, Phys. Rev. E 90,

062105 (2014).
[42] P. Jakubczyk and W. Metzner, Phys. Rev. B 95, 085113 (2017).
[43] N. Defenu, A. Trombettoni, I. Nandori, and T. Enss, Phys. Rev.

B 96, 174505 (2017).
[44] T. Machado and N. Dupuis, Phys. Rev. E 82, 041128 (2010).
[45] J. Krieg and P. Kopietz, Phys. Rev. E 96, 042107 (2017).
[46] N. Tetradis and C. Wetterich, Nucl. Phys. B 422, 541 (1994).
[47] F. Rose and N. Dupuis, Phys. Rev. B 95, 014513 (2017).
[48] U. Wolff, Phys. Rev. Lett. 62, 361 (1989).
[49] P. M. Chaikin and T. C. Lubensky, Principles of Con-

densed Matter Physics (Cambridge University Press, Cam-
bridge, 2000).

[50] J. Thijssen, Computational Physics (Cambridge University
Press, Cambridge, 2007).

[51] M. Kobayashi, M. Eto, and M. Nitta, Phys. Rev. Lett. 123,
075303 (2019).

[52] M. Kobayashi, J. Phys. Soc. Jpn. 88, 094001 (2019).
[53] A. G. Naumovets, A. G. Lyuksyutov, and V. Polrovsky, Two-

Dimensional Crystals (Academic Press, New York, 1992).

013081-14

http://www.jetp.ac.ru/cgi-bin/dn/e_032_03_0493.pdf
http://www.jetp.ac.ru/cgi-bin/dn/e_034_03_0610.pdf
https://doi.org/10.1088/0022-3719/5/11/002
https://doi.org/10.1088/0022-3719/5/11/002
https://doi.org/10.1088/0022-3719/5/11/002
https://doi.org/10.1088/0022-3719/5/11/002
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1007/BF01646487
https://doi.org/10.1007/BF01646487
https://doi.org/10.1007/BF01646487
https://doi.org/10.1007/BF01646487
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRevLett.40.1727
https://doi.org/10.1103/PhysRevLett.40.1727
https://doi.org/10.1103/PhysRevLett.40.1727
https://doi.org/10.1103/PhysRevLett.40.1727
https://doi.org/10.1016/0038-1098(79)91094-9
https://doi.org/10.1016/0038-1098(79)91094-9
https://doi.org/10.1016/0038-1098(79)91094-9
https://doi.org/10.1016/0038-1098(79)91094-9
https://doi.org/10.1103/PhysRevLett.44.291
https://doi.org/10.1103/PhysRevLett.44.291
https://doi.org/10.1103/PhysRevLett.44.291
https://doi.org/10.1103/PhysRevLett.44.291
https://doi.org/10.1103/PhysRevLett.45.1523
https://doi.org/10.1103/PhysRevLett.45.1523
https://doi.org/10.1103/PhysRevLett.45.1523
https://doi.org/10.1103/PhysRevLett.45.1523
https://doi.org/10.1103/PhysRevLett.47.1071
https://doi.org/10.1103/PhysRevLett.47.1071
https://doi.org/10.1103/PhysRevLett.47.1071
https://doi.org/10.1103/PhysRevLett.47.1071
https://doi.org/10.1103/PhysRevLett.47.534
https://doi.org/10.1103/PhysRevLett.47.534
https://doi.org/10.1103/PhysRevLett.47.534
https://doi.org/10.1103/PhysRevLett.47.534
https://doi.org/10.1103/PhysRevLett.47.1542
https://doi.org/10.1103/PhysRevLett.47.1542
https://doi.org/10.1103/PhysRevLett.47.1542
https://doi.org/10.1103/PhysRevLett.47.1542
https://doi.org/10.1103/PhysRevB.25.3446
https://doi.org/10.1103/PhysRevB.25.3446
https://doi.org/10.1103/PhysRevB.25.3446
https://doi.org/10.1103/PhysRevB.25.3446
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1103/PhysRevLett.82.2721
https://doi.org/10.1103/PhysRevLett.82.2721
https://doi.org/10.1103/PhysRevLett.82.2721
https://doi.org/10.1103/PhysRevLett.82.2721
https://doi.org/10.1103/PhysRevB.94.180501
https://doi.org/10.1103/PhysRevB.94.180501
https://doi.org/10.1103/PhysRevB.94.180501
https://doi.org/10.1103/PhysRevB.94.180501
https://doi.org/10.1038/nature04851
https://doi.org/10.1038/nature04851
https://doi.org/10.1038/nature04851
https://doi.org/10.1038/nature04851
https://doi.org/10.1103/PhysRevLett.52.1535
https://doi.org/10.1103/PhysRevLett.52.1535
https://doi.org/10.1103/PhysRevLett.52.1535
https://doi.org/10.1103/PhysRevLett.52.1535
https://doi.org/10.1103/PhysRevLett.55.541
https://doi.org/10.1103/PhysRevLett.55.541
https://doi.org/10.1103/PhysRevLett.55.541
https://doi.org/10.1103/PhysRevLett.55.541
http://www.jetpletters.ac.ru/ps/1444/article_21975.pdf
https://doi.org/10.1088/0953-8984/1/30/004
https://doi.org/10.1088/0953-8984/1/30/004
https://doi.org/10.1088/0953-8984/1/30/004
https://doi.org/10.1088/0953-8984/1/30/004
https://doi.org/10.1103/PhysRevB.84.224420
https://doi.org/10.1103/PhysRevB.84.224420
https://doi.org/10.1103/PhysRevB.84.224420
https://doi.org/10.1103/PhysRevB.84.224420
https://doi.org/10.1103/PhysRevLett.107.240601
https://doi.org/10.1103/PhysRevLett.107.240601
https://doi.org/10.1103/PhysRevLett.107.240601
https://doi.org/10.1103/PhysRevLett.107.240601
https://doi.org/10.1103/PhysRevB.85.094513
https://doi.org/10.1103/PhysRevB.85.094513
https://doi.org/10.1103/PhysRevB.85.094513
https://doi.org/10.1103/PhysRevB.85.094513
https://doi.org/10.1103/PhysRevE.87.062112
https://doi.org/10.1103/PhysRevE.87.062112
https://doi.org/10.1103/PhysRevE.87.062112
https://doi.org/10.1103/PhysRevE.87.062112
https://doi.org/10.1088/1751-8121/aa89a1
https://doi.org/10.1088/1751-8121/aa89a1
https://doi.org/10.1088/1751-8121/aa89a1
https://doi.org/10.1088/1751-8121/aa89a1
https://doi.org/10.1103/PhysRevB.98.144421
https://doi.org/10.1103/PhysRevB.98.144421
https://doi.org/10.1103/PhysRevB.98.144421
https://doi.org/10.1103/PhysRevB.98.144421
https://doi.org/10.1103/PhysRevE.94.032140
https://doi.org/10.1103/PhysRevE.94.032140
https://doi.org/10.1103/PhysRevE.94.032140
https://doi.org/10.1103/PhysRevE.94.032140
https://doi.org/10.1103/PhysRevE.96.022158
https://doi.org/10.1103/PhysRevE.96.022158
https://doi.org/10.1103/PhysRevE.96.022158
https://doi.org/10.1103/PhysRevE.96.022158
https://doi.org/10.1103/PhysRevE.97.052101
https://doi.org/10.1103/PhysRevE.97.052101
https://doi.org/10.1103/PhysRevE.97.052101
https://doi.org/10.1103/PhysRevE.97.052101
https://doi.org/10.1016/j.aop.2008.05.008
https://doi.org/10.1016/j.aop.2008.05.008
https://doi.org/10.1016/j.aop.2008.05.008
https://doi.org/10.1016/j.aop.2008.05.008
https://doi.org/10.1209/0295-5075/89/17004
https://doi.org/10.1209/0295-5075/89/17004
https://doi.org/10.1209/0295-5075/89/17004
https://doi.org/10.1209/0295-5075/89/17004
https://doi.org/10.1103/PhysRevB.81.012505
https://doi.org/10.1103/PhysRevB.81.012505
https://doi.org/10.1103/PhysRevB.81.012505
https://doi.org/10.1103/PhysRevB.81.012505
https://doi.org/10.1103/PhysRevLett.75.378
https://doi.org/10.1103/PhysRevLett.75.378
https://doi.org/10.1103/PhysRevLett.75.378
https://doi.org/10.1103/PhysRevLett.75.378
https://doi.org/10.1103/PhysRevB.64.054513
https://doi.org/10.1103/PhysRevB.64.054513
https://doi.org/10.1103/PhysRevB.64.054513
https://doi.org/10.1103/PhysRevB.64.054513
https://doi.org/10.1103/PhysRevE.90.062105
https://doi.org/10.1103/PhysRevE.90.062105
https://doi.org/10.1103/PhysRevE.90.062105
https://doi.org/10.1103/PhysRevE.90.062105
https://doi.org/10.1103/PhysRevB.95.085113
https://doi.org/10.1103/PhysRevB.95.085113
https://doi.org/10.1103/PhysRevB.95.085113
https://doi.org/10.1103/PhysRevB.95.085113
https://doi.org/10.1103/PhysRevB.96.174505
https://doi.org/10.1103/PhysRevB.96.174505
https://doi.org/10.1103/PhysRevB.96.174505
https://doi.org/10.1103/PhysRevB.96.174505
https://doi.org/10.1103/PhysRevE.82.041128
https://doi.org/10.1103/PhysRevE.82.041128
https://doi.org/10.1103/PhysRevE.82.041128
https://doi.org/10.1103/PhysRevE.82.041128
https://doi.org/10.1103/PhysRevE.96.042107
https://doi.org/10.1103/PhysRevE.96.042107
https://doi.org/10.1103/PhysRevE.96.042107
https://doi.org/10.1103/PhysRevE.96.042107
https://doi.org/10.1016/0550-3213(94)90446-4
https://doi.org/10.1016/0550-3213(94)90446-4
https://doi.org/10.1016/0550-3213(94)90446-4
https://doi.org/10.1016/0550-3213(94)90446-4
https://doi.org/10.1103/PhysRevB.95.014513
https://doi.org/10.1103/PhysRevB.95.014513
https://doi.org/10.1103/PhysRevB.95.014513
https://doi.org/10.1103/PhysRevB.95.014513
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevLett.123.075303
https://doi.org/10.1103/PhysRevLett.123.075303
https://doi.org/10.1103/PhysRevLett.123.075303
https://doi.org/10.1103/PhysRevLett.123.075303
https://doi.org/10.7566/JPSJ.88.094001
https://doi.org/10.7566/JPSJ.88.094001
https://doi.org/10.7566/JPSJ.88.094001
https://doi.org/10.7566/JPSJ.88.094001

