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Annihilation of point defect pairs in freely suspended liquid-crystal films
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We study the annihilation of topological defect pairs in the quasi-two-dimensional geometry of freely
suspended smectic films. This elementary process is at the basis of all models describing the statistics of complex
defect patterns. We prepare pairs with opposite topological charges and retrieve the interaction mechanisms from
their trajectories. The square-root dependence of the defect separation on the time until annihilation and the
asymmetry in propagation velocities of the opponents predicted by theory are confirmed. The importance of
defect orientations is demonstrated. Trajectories are, in general, curved, depending on the mutual orientations
(phase mismatch) of the defects and on the orientation of the pair respective to the far, undisturbed director. The
experiments provide the basis for an adaption of the theoretical models to the real complexity of the annihilation.
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I. INTRODUCTION

Topological defects occur in a wide variety of physical
systems, for example, in soft matter [1–7], quantum sys-
tems [8–10], thin magnetic films [11–13], superfluid liquids
[14–16], and even cosmology [17–19]. Often, complex defect
patterns are generated after symmetry-breaking phase tran-
sitions. Their coarsening dynamics can be essential for the
establishment of the new, ordered state.

Many features of defect dynamics are universal. Liquid
crystals (LCs) were suggested as ideal model systems to
study such phenomena [18–21]. Their defect dynamics can
be observed in facile polarizing microscopy experiments, with
comparably simple equipment. The elementary process of pair
annihilations of topologically opposite-charged point defects
allows one to construct scaling solutions for more complex
defect patterns.

Nematics form the simplest LC mesophase, yet experi-
ments with nematics in sandwich cells are not easy to interpret
because of the influence of cell boundaries and the generally
three-dimensional (3D) character of the deformations [22].
Smectic C (SmC) freely suspended films [23] are the quasi-2D
analog of a polar nematic, ideally suited to study topological
defect dynamics [24–30]. Even though not all results obtained
from 2D LC systems can be generalized to 3D geometries,
the obvious value of such studies is twofold: Several other
systems that develop topological defects, e.g., thin magnetic
films, are also 2D, and the scaling of pair annihilation dy-
namics is independent of the dimensionality of the problem.
In this study, we explore the role of defect orientations in
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pairs with opposite topological charges during their mutual
attraction and annihilation.

Smectic phases possess one-dimensional positional order
in addition to the orientational order of nematics. The meso-
gens form layers which stabilize freely suspended films with
well-defined thicknesses, ranging from as few as two layers
up to several-thousand layers. These layers are stacked in the
film plane, and the mesogens in the simplest smectic A and
C phases can flow liquidlike within the layer plane. In SmC,
the mesogens have a preferred tilt to the smectic layer normal.
The c-director (projection of the tilt direction onto the film
plane) characterizes the local orientation of the mesophase.
Its dynamics is well described by continuum models. The
2D character of the problem simplifies modeling and reduces
boundary effects to the far-away film edges. An obvious
advantage of the 2D geometry is that the c-director field in
one-constant approximation can be found analytically from
solutions of the Laplace equation. The problem of interacting
topological charges is thus analogous to that of interactions of
electrical line charges.

The simplicity of the optical observations is another plus
of the thin-film geometry. Optical textures reflect the local
c-director orientations, and the types and positions of defects.
Yet even though such experiments are apparently quite simple,
there are only a few reports on defect dynamics in SmC
films [22,28–31], with none about pair annihilation. The polar
c-director can only form defects of integer strengths. It shares
this feature with all other systems where vortices of the vector
fields are relevant (e.g., [11,12]). Here, we are interested in
disclinations with the lowest possible topological charges.
The defect with charge S = +1 is a singular point of the
c-director field where the c-director rotates by 2π on a closed
loop around the disclination. On a closed path around the
S = −1 defect, the c-director rotates by −2π . A scenario of
primary interest is the annihilation of pairs with topological
charges S1,2 = ±1 (we may set S1 = +1, S2 = −1 without
loss of generality). The angle θ of the c-director with the x
axis at positions �r = (x, y) near the defect cores �Ri = (xi, yi ),
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FIG. 1. Point defects with topological charges +1 (bottom left)
and −1 (top right) in mismatch (δθ �= 0): Along the straight connec-
tion of the two cores, the c-director rotates. θ is the c-director angle
to the x axis, R is the defect separation, and ϕ1,2 and ϕD are explained
in the text. The top-left photo illustrates the relation between the c-
director (arrows) and color in the polarizing microscope with crossed
polarizers and a diagonal λ phase plate.

i = {1, 2}, is θ = θi + Siϕi, where θi are the phases of the de-
fects and ϕi are the angles of the relative positions �r − �Ri with
the x axis (see Fig. 1). In addition to the phases of the defects,
the orientation of the pair, expressed by the angle ϕD between
the defect interconnection vector �R and the x axis, is important
for the dynamics of the pair, as we will show below.

II. PAIR ANNIHILATION MODELS

Models for defect interactions were developed for nematics
in one-constant elastic theory [32–34] and extended to SmC
films [24–27], where elastic anisotropy [25,26] and dynamic
influences [27] were included. The simplest model is derived
from linear superposition of single-defect equilibrium solu-
tions of the director field [32]. It assumes that the defects pass
through quasiequilibrium states. The force between them,
acting along the separation vector �R = �R2 − �R1, is −2πK/R
[34,35]. K is a mean elastic constant, R = | �R|. The drag
forces on the defects are approximately proportional to Ṙ [35],
and thus one obtains a time dependence R = √

2D1(t0 − t ),
where t0 is the annihilation time, D1 is a diffusion coefficient
that contains K , the rotational viscosity γ , and the Ericksen
number [35]. The defects approach each other on straight
paths. A peculiarity of the LC systems is the hydrodynamic
coupling of a nonuniform director reorientation to material
flow (backflow). Shear flow created by this coupling can,
in turn, support the reorientation of the director. Because
of an asymmetric coupling to backflow, which supports the
motion of +1 disclinations but counteracts the motion of −1
disclinations, the +1 defect is predicted to move considerably
faster than the −1 opponent [25]. The pair does not annihilate
halfway, but closer to the initial −1 position.

All these models implicitly assume that the defect orien-
tations match, i.e., that the c-director is constant along the
straight connection between the defect cores. Vromans and
Giomi [36] noticed that the mutual orientations of S = 1/2
defect pairs that had been disregarded so far are essential
features. Tang and Selinger [37] generalized this idea to
arbitrary defect strengths. For conjugated pairs with S1 = 1

and S2 = −1, their equations read

θ (�r) = arctan

(
y − y1

x − x1

)
− arctan

(
y − y2

x − x2

)

+ δθ

2

[
1 + ln(|�r − �R1|) − ln(|�r − �R2|)

ln(R) − ln(rc)

]
+ θ0,

δθ = θ2 − θ1 − 2ϕD − π, θ0 = θ1 + ϕD + π. (1)

The generalized equations for conjugated defect pairs with
charges S1,2 = ±S are found in Appendix A. Note that the
terms −π and +π in the definitions of δθ and θ0 arise from
the correct choice of the quadrants of the arctan functions used
in Ref. [37]. While these equilibrium distortions are exact,
they do not preserve the c-director far from the defects, θ∞ =
δθ/2 + θ0 = (θ2 + θ1 + π )/2. In experiments, one usually
studies defect dynamics under fixed boundary conditions,
and thus one needs to rotate these solutions to fix θ∞. We
choose θ ′

∞ = 0 (primed angles in the rotated system) without
loss of generality. In the primed system rotated by −θ∞, the
equilibrium solutions are given by

ϕ′
D = −π − θ1 − δθ

2
, θ ′

1 = θ1, θ ′
2 = −θ1 − π. (2)

The mismatch remains unchanged, δθ ′ = δθ , and the phase
of the +1 defect is preserved. Note that ϕ′

D and δθ are not
independent of each other in equilibrium. After a coordinate
transformation that fixes θ ′

∞, it becomes clear that the −1
defect always chooses an equilibrium mismatch angle in ac-
cordance with its position, and vice versa, in a given external
c-director field, corresponding to the energetic minimum. This
aspect was not noticed in Ref. [37] where the director field in
infinity was disregarded. The final annihilation can only occur
when the two defect phases match. In a conjugate ±S pair, the
two defects have two options to achieve phase match: either
one or both defects adjust their phases θi by rotating in place,
or the two defects have to relocate their positions in the film
to reach phase match. In connection with Eq. (2), this also
requires the adjustment of ϕD towards the far director.

These models presuppose elastic isotropy, i.e., equal elastic
constants for c-director splay, KS , and bend, KB. This may be
used as a reasonable first approximation for our experiments
(where KS ≈ 2.2KB), except in the very vicinity of the +1
defect. When KB is lower than KS , which is the predom-
inant situation, all +1 defects adopt tangential orientation
(θ1 = ±π/2) in equilibrium. Such a pinning of the alignment
angle at a +1 vortex is typical for other systems too, e.g.,
in magnetic thin films. The deformation near the core is
pure bend and the c-director is pinned near the core. Even
small differences KB − KS suffice to fix the phase. This was
demonstrated in previous experiments [30], which revealed
some limitations of the classical models in SmC films.

This pinning is the only specific aspect that we need to
add in the description of our system: we set θ1 = π/2. For
θ1 = −π/2, all conclusions will be the same except that one
has to change the sign of the c-director. The −1 defects are
less affected by elastic anisotropy, their director field is only
slightly modified, and the phase θ2 only rotates the defect.
During the annihilation process, a mismatched pair (δθ �= 0)
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FIG. 2. (a),(b) Matching (δθ ≈ 0) and aligned (δφ ≈ 0) defect
pair on the way to annihilation. White arrows sketch the c-director.
The +1 defect (top) is approximately 1.8 times faster than the −1
defect. The black arrow in (b) indicates the outer director field.
(c) Defect trajectories respective to the annihilation point. The circles
mark the positions in (a) and (b). The white bar is 50 μm.

either has to move to an appropriate angle ϕ′
D or the −1 defect

has to rotate (change θ ′
2), or both.

In our experiments, we demonstrate the interrelation of
the two important orientation parameters, i.e., the phase mis-
match δθ of the pair and the misalignment δφ = ϕ′

D + π + θ1

relative to the far c-director. The definition of δφ is chosen
such that it reaches zero when the defect orientations match,
δθ = 0. This is a reasonable choice, as θ1 + (ϕ′

D + π ) is
exactly the c-director angle near the +1 core on the side
opposing the conjugate defect. The pair is considered aligned
when this angle equals θ ′

∞, i.e., when the −1 defect is oppos-
ing the direction where θ = 0 near the +1 defect.

III. EXPERIMENTAL RESULTS

We performed experiments with a room-temperature
smectic C mixture of 50:50 wt.% 5-n-octyl-2-[4-(n-
hexyloxy)phenyl]-pyrimidine and 5-n-decyl-2-[4-(n-
octyloxy) phenyl]-pyrimidine. Defects were created by
touching the homogeneously oriented freestanding film with
a hair tip. In 24 experiments, we obtained isolated defect
pairs. Initial separations R were of the order of 200 μm.
The initial alignment angle could not be controlled; it was
determined a posteriori from the video images. The defect
pairs were observed in a microscope under crossed polarizers
with a diagonal λ wave plate (550 nm, slow axis from top
right to bottom left). Video frame rates were 30 fps; in a few
experiments, 50 fps. The defect positions are easily localized
in the images, with an accuracy of approximately 1 μm. The
c-director orientations are retrieved from texture colors; the
accuracy is ≈10◦. The relation between the c-director �c and
optical texture is indicated in Fig. 1. We cannot determine
the sign of �c with our observation technique, and thus we
choose a given sense of direction and use this assignment
consistently for all experiments. This has no consequences
for the evaluation of the data; the equations are independent
of the sign of the tilt azimuth. It is possible that all arrows in
the images actually represent −�c.

Figure 2 shows an initially matching (δθ = 0) and aligned
(δφ ≈ 0) defect pair. Such conditions (within approximately
10◦ accuracy) were achieved coincidentally in five experi-
ments. Equation (2) predicts that when the orientations match,
the misalignment with the director will be π/2. This agrees

FIG. 3. (a),(b) Mismatched (initial δθ ≈ 65◦) and misaligned
(initial δφ ≈ −36◦) defect pair on the way to annihilation. White
arrows sketch the c-director. The +1 defect (top) is ≈1.8 times faster
than the −1 defect. The black arrow indicates the outer director field.
(c) Trajectories respective to the annihilation point. Circles mark
the defect positions in frames (a)–(c). (d),(e) Mismatched (initial
δθ ≈ −50◦) and misaligned (initial δφ ≈ 79◦) pair. (f) Trajectories,
circles mark the defect positions in frames (d)–(f). The velocity ratio
is ≈1.7. The white bars represent 100 μm.

with our observations. Immediately before annihilation, we
found ϕ′

D → −π − θ1 = −3π/2 and δφ → 0 in all experi-
ments except one. When this relation is coincidentally fulfilled
already after preparation, δθ and δφ remain constant and
the defects follow straight paths. The +1 defect is much
faster than the −1 defect, in qualitative agreement with theory
[25,38].

The other 19 experiments randomly produced defect
pairs with either positive or negative misalignment δφ. Fig-
ures 3(a)–3(c) show typical examples with initially negative
δφ and positive δθ . The c-director changes along the defect
connection line and the texture adopts an S shape. The tra-
jectory is no longer straight; it has a mirrored-S shape. The
+1 defect is still faster than the −1 defect. This trajectory
of Fig. 3(c) is typical for all similar initial conditions. The
angle ϕ′

D changes during the approach, finally reaching 90◦.
Immediately before annihilation, the defects are both orien-
tation matched, δφ → 0, and aligned, δφ → 0. This holds
for all defect pairs independent of the initial angles. The
case of initially negative δθ and positive δφ produces the
opposite curvature, as shown in Figs. 3(d)–3(f). The texture
forms a mirrored S between the defects and the trajectory
has an S shape. For all defect pairs, the misalignment δφ

follows a square-root dependence on the time to annihilation
[Fig. 4(b)].

IV. DISCUSSION

For the test of the predictions of Ref. [37], it would be
informative to observe other initial combinations of δθ and
δφ, e.g., both with the same sign. In fact, this was never
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FIG. 4. (a) Mismatch δθ vs alignment ϕ′
D; the solid line represents δθ = −δφ. Even though individual experiments deviate by up to 20◦, it

is obvious that the two angles are correlated. Equation (2) predicts a linear dependence with slope −2 (dashed line) for the quasiequilibrium
configurations. (b) Time dependence of the pair alignment angle ϕ′

D for four selected defects. The solid and dashed lines represent δφ =
±9.0◦√t0 − t/

√
s. (c) Mismatch angles vs alignment angles during the approach of exemplary defect pairs with S and mirrored-S trajectories.

The dashed line represents Eq. (2).

achieved in our experiment. All initial combinations are
plotted in Fig. 4(a). There is an obvious correlation, irre-
spective of the deviations that are most probably caused by
global distortions of the film orientation when the defects are
created. Equation (2) suggests a relation δθ = −2δφ in the
quasiequilibrium states (elastic energy minima at fixed defect
positions), which is in clear contrast to the experiment.

The preparation technique produces random alignment an-
gles ϕ′

D, but it seems unlikely that touching the films creates
correlated combinations of δθ and δφ (even though this cannot
be strictly excluded). We cannot see the first few seconds after
defect formation for technical reasons, but we conclude that
the defects rearrange within this short period after creation,
irrespective of the initial conditions, into an orientation that
fulfills the condition δθ = −δφ, at least approximately. It is
reasonable to assume that the rotation of the −1 defect in
place can proceed much faster than a spatial displacement
of the same defect on a circle around the opponent. The
reason why there is a factor of nearly 2 between the calcu-
lated equilibrium states [37] and the experimental observation
at least for large |δφ| is not clear. A dynamic solution of
the differential equations for the c-director might elucidate
this.

We conclude that (1) the system establishes certain combi-
nations of δθ and δφ spontaneously, irrespective of the details
of the defect creation, and (2) either the experimental system
does not develop through quasiequilibrium states on the way
to annihilation, or the equilibrium states are different from
those predicted from one-constant elastic theory. A qualitative
estimation of the effects of elastic anisotropy, KS �= KB, on the
equilibrium alignment is given in Appendix B.

The “initial” angles in Figs. 3 and 4(a) were taken with
a short delay after the defect preparation, as soon as the
microscope was focused onto the film surface in the spot
where the defects appeared. This took a few seconds, differing
between individual runs. Thus, they do not reflect the true ini-
tial values after defect pair creation. Initial fast reorientations
of the c-director field are not accessible. After these transients,
the relations between misalignment and mismatch obviously
remain fixed until annihilation, where both δφ and δθ reach
zero. Figure 4(c) shows four typical experiments, two with

S-shaped and two with mirrored-S-shaped trajectories. The
two angles δθ and δφ remain strongly correlated, roughly
proportional to each other, although there is a slight ten-
dency of δθ to relax faster than δφ. Again, quasiequilibrium
configurations would correspond to δθ = −2δφ. This is the
consequence of the fixed θ1, a property that our system shares,
e.g., with thin permalloy films [11,12].

With respect to the model [37], our hypothesis is that the
equilibrium configurations for KS = KB are not appropriate
quantitative descriptions of the states that the annihilating
defect pair passes on its approach. The torque predicted from
the quasiequilibrium configurations in Ref. [37] is probably
causing an initial reorientation of the −1 defect, which is too
fast to be observed in our experiment. The relation δθ = −δφ

observed in our study is presumably a balance between the
torque exerted by the +1 opponent and the torque exerted by
the far c-director field. The latter is obviously not modeled in
Tang’s study [37] in a way that is appropriate to describe our
experiment with fixed boundary conditions.

The relaxation on curved trajectories, which at first
glance looks very similar to the numerical simulations in
Refs. [36,37], appears to be primarily caused by the torque of
the external director on the topological dipole. One can con-
sider this as an analog, with some peculiarities, of an electrical
dipole in a uniform external field. The electrical dipole tends
to align parallel to the external field to minimize its energy.
Likewise, the conjugated topological defect pair can optimize
its elastic energy, no matter what the mismatch angle is, by
choosing a proper orientation ϕ′

D respective to the uniform
far c-director �c0. If one defines the “topological dipole,” for
instance, as a unit vector �p = ( �R2 − �R1)/R pointing from the
+1 to the −1 defect, the energetic minimum is defined by
the angles in Eq. (2). In our experiments, where θ1 = π/2, the
topological dipole aims to align with an angle ϕ′

D = (−π −
δθ )/2 respective to �c0. We note that the situation of a fixed
θ1 = ±π/2 is quite common, not only for smectic films, but in
particular in systems where the divergence of the vector field
is suppressed or inhibited (vortex flow of an incompressible
liquid or splay of a magnetic or electric polarization). In the
general case of arbitrary integer or half-integer charges ±S,
one finds equilibrium orientations of the topological dipole
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defined by the vector from the +S to the −S core,

ϕ′
D = − δθ

2S
− 1

S
θ ′

1 − π (3)

(see Appendix A). The relaxation of δφ follows a similar
square-root time dependence as the defect separation R. This
produces the observed curved trajectories as seen in Fig. 2.
In half-integer pairs, both defects can rotate and the situation
is more complex (see Appendix A), but the combination of
the two torques of the conjugate defect and the far field,
respectively, remains effective.

In a previous study of the same material in thin-film
geometry, the repulsion of +1 defects was investigated. These
were initially localized in a small trap in the film. After
mechanical release [30], the defect group explodes in a radial
direction. There, the mutual phases of the defects have no
influence on the trajectories. All +1 defects have fixed phase
angles θi = ±π/2 which do not change during the repulsion.
When two such defects interact with each other, a change of
the pair alignment angle ϕD will not affect the mutual phase
relation: the orientation of the +1 defects is described by a
scalar [37]. The influence of the far director field in those
experiments was also irrelevant. Around a group of n defects
of this type, the c-director performs a 2πn rotation (reflected
in a sun-ray-like texture), so the far c-director has no uniform
orientation. The consequence of these peculiarities is that in
these experiments, no tangential forces are effective and all
trajectories are straight.

V. SUMMARY

We have demonstrated that the shape of trajectories of
mutually annihilating topological defect pairs is equally in-
fluenced by their relative orientations (mismatch) and the
surrounding vector field (misalignment), both being of equal
importance. They are not independent of each other. We sus-
pect that this is a common feature of topological defect pairs
in many other 2D systems. During approach, misalignment
and mismatch decay to zero, depending on the time until an-
nihilation by a square-root law. The classical theories [25,32–
34] remain valid for the special case of aligned, matching
pairs. The c-director configurations during the approach are
qualitatively similar to quasiequilibrium states determined
from the solutions of the Laplace equation [37], but differ
quantitatively. This may be caused in our films by flow
coupling [25], elastic anisotropy [4,25], or the finite film area.
An explanation of this discrepancy requires further studies.
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APPENDIX A: DIRECTOR FIELDS AROUND
CONJUGATED POINT DEFECTS

We consider a 2D vector field (c-director) or director
field (n-director) which is characterized by a unit vector that
is oriented at an angle θ (�r) respective to the x axis in a
two-dimensional plane (x, y). Further, we assume that the
equilibrium configurations are defined by solutions of the
Laplace equation. For the liquid crystal systems considered
here, this means that we assume that the elastic constants for
bend, KB, and splay, KS , are equal.

For general pairs of conjugated defects with S1 = S and
S2 = −S, the equations given by Tang and Selinger [37] for
the solutions of the Laplace equation read

θ (�r) = S arctan

(
y − y1

x − x1

)
− S arctan

(
y − y2

x − x2

)

+ δθ

2

[
1 + ln(|�r − �R1|) − ln(|�r − �R2|)

ln(R) − ln(rc)

]
+ θ0,

δθ = θ2 − θ1 − 2SϕD − Sπ,

θ0 = θ1 + S(ϕD + π ). (A1)

The terms −Sπ and +Sπ in the definitions of δθ and θ0

arise from the correct explicit choice of the quadrants of the
arctan functions used in Ref. [37]. The angle ϕD defines the
orientation of the connection vector from the core of the +1
defect to the core of the −1 defect respective to the coordinate
axis x. The c-director field far from the two defects approaches
the uniform value θ∞ = δθ/2 + θ0, i.e.,

θ∞ = θ1 + θ2 + Sπ

2
, (A2)

which depends upon the phases of the two defects, which
are in general not constant during their mutual approach and
annihilation. In experiments, the far director field is usually
fixed and independent of the defect configurations. Therefore,
it is useful for an interpretation of the equilibrium config-
urations to consider them with respect to the far c-director
orientation. We rotate the coordinate system such that the
infinitely far c-director is along x′, i.e., θ ′

∞ = 0. Thus, the new
equations for the c-director field near the two defect cores
are transformed to θ ′ = θ ′

1 + Sϕ′. With the transformations
θ ′ = θ − θ∞, ϕ′ = ϕ − θ∞, the new phase angles are

θ ′
1 = S + 1

2
θ1 + S − 1

2
θ2 + S − 1

2
Sπ (A3)

and

θ ′
2 = −S + 1

2
θ1 − S − 1

2
θ2 − S + 1

2
Sπ. (A4)

In the special case of the lowest topological strength S = 1
of a polar vector field, one obtains

θ ′
1 = θ1, θ ′

2 = −θ1 − π, (A5)

whereas for the lowest strength half-integer defects of nonpo-
lar (nematic) orientation fields, S = 1/2, one finds

θ ′
1 = 3

4θ1 − 1
4θ2 − 1

8π, θ ′
2 = − 3

4θ1 + 1
4θ2 − 3

8π. (A6)

One can easily recognize that θ ′
1 + θ ′

2 + Sπ = 0 gives the
correct boundary condition θ ′

∞ = 0 in all cases.
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FIG. 5. Equilibrium c-director orientations around defect pairs
with strengths ±1, calculated with Eq. (A1) for fixed defect posi-
tions. δφ = (−π/4, 0, π/4) from left to right. The defect cores are
marked by circles (red for +S, blue for −S). The top row shows
the c-director fields, with orientation θ∞ = 0 (magenta arrows) in
infinity. The bottom row sketches the corresponding optical images
with crossed polarizers and diagonally inserted wave plate. Dotted
arrows: see text.

The phase mismatch δθ remains invariant under transfor-
mations of the coordinates because it is defined by the reori-
entation of the c-director along the straight line connecting the
two defect cores. The defect misalignment angle changes to

ϕ′
D = ϕD − θ∞ = ϕD − θ1

2
− θ2

2
− Sπ

2
. (A7)

We replace ϕD by the misalignment angle δθ and obtain

ϕ′
D = − δθ

2S
− S − 1

2S
θ2 − S + 1

2S
θ1 − S + 1

2
π. (A8)

In terms of the primed quantities (angles respective to the c-
director at infinity), using Eqs. (A3) and (A4), one obtains

ϕ′
D = − δθ

2S
− 1

S
θ ′

1 − π. (A9)

These solutions are visualized in Figs. 5 and 6. The c-
director or director fields, respectively, are shown for three
situations in each figure. In the middle, the mutually matching,
aligned pairs are shown. In both figures, we have arbitrarily
chosen θ1 = π/2. In the |S| = 1 case, this corresponds to our
experimental situation. In general, other orientations may be
conceived as well. In particular, in (strongly polar) smectic C
films with KS < KB, one could have the situation θ1 = 0 or
θ1 = π . In the general (nematic) |S| = 1/2 case, there exist
solutions for arbitrary angles θ1 that are equivalent. This is
shown exemplarily in Fig. 7.

In the special case of |S| = 1, the geometrical interpreta-
tion of the misalignment is immediately evident: ϕ′

D = −π −
θ1 is the angle of the c-director near the core of the positively
charged defect at the side opposite to the conjugate defect
(head of dotted arrows in Fig. 5). This means that when
two aligned and mutually matching defects annihilate, they
leave a nondistorted c-director field behind. If ϕ′

D �= −π − θ1,
then the c-director on the connecting axis at both sides of

FIG. 6. Equilibrium director orientations around defect pairs
with strengths ±1/2, calculated with Eq. (A1) for fixed defect
positions. The defect cores are marked by circles (red for +S, blue
for −S). The top row shows the c-director fields, with orientation
θ∞ = 0 (magenta arrows) in infinity. The bottom row sketches the
corresponding optical images with crossed polarizers and diagonally
inserted wave plate.

the pair differs from the boundary condition θ ′
∞ = 0; this is

denoted by the term “misalignment” (δφ) of the pair. After
a hypothetical annihilation of such a pair, the c-director field
would be defect free but distorted at the annihilation site; it
would have to rotate locally to become uniform. Thus, it is
justified to describe the misalignment by the angle δφ = ϕ′

D +
π + θ1. In equilibrium configurations defined by Eq. (A1), for
fixed defect positions, this misalignment is linearly related
to the mismatch. In the experiments with the freestanding
smectic films, a similar linear relation is found, although with
a different factor.

This situation is specific for the ±1 pair. In all other cases,
the situation is more complex and a simple geometrical in-
terpretation of misalignment is not immediately evident. This
is demonstrated in Fig. 7. The figure shows three examples of
±1/2 defect pairs that match each other (δθ = 0). The relation
given in Eq. (A9) is fulfilled in all three situations, and the
defects can annihilate each other approaching on a straight
path, leaving an undistorted director with orientation θ ′

∞ = 0

FIG. 7. Mutually matching director orientations around defect
pairs with strengths ±1/2, calculated with Eq. (A1) for fixed defect
positions and different phase angles θ1 of the +1/2 defect (red dots).
Since δθ = 0 for all these configurations, they can annihilate without
rotating the defects (i.e., without changing θ1,2). Dotted lines: see
text.
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behind. Note that this orientation is (and remains) equal to that
of the director on the connecting line, at the sides opposing
the partner defect, as indicated by dotted lines in the figure.
For the general definition of misalignment of defect pairs, one
may introduce δφ in analogy to the |S| = 1 case from Eq. (A9)
by

δφ = ϕ′
D + 2θ1 + π. (A10)

Then, the defect pairs in Fig. 6 would have δφ =
(−π/2, 0, π/2) (from left to right), and the defect pairs in
Fig. 7 would have δφ = 0. The theoretical relation between
misalignment and mismatch angles in one-constant approxi-
mation would be δφ = −δθ .

APPENDIX B: BEYOND ONE-CONSTANT
APPROXIMATION: DISTRIBUTION OF SPLAY

AND BEND CONTRIBUTIONS

We will analyze here whether the deviation of the mea-
sured δφ(δθ ) from the theory can be attributed to the
elastic anisotropy present in the experiment, but neglected
in the analytical model. The splay and bend contributions to
the elastic deformations of the c-director are not uniformly
distributed around the defect pair. This is irrelevant in one-
constant approximation where both contributions are related
to an average elastic constant K . In the case of KB �= KS ,
the equilibrium configurations are no longer computable from
solutions of the Laplace equation. Analytical solutions are
only available for very special geometries. In the present
problem of the defect pair, the nonlinear differential equation
describing the equilibrium has to be solved numerically. The
numerical calculation of the exact energies of the equilibrium
solutions in that case is not straightforward because the en-
ergy density becomes very large near the defect cores. We
can, however, estimate the influence of an elastic energy by
considering the distribution of splay and bend in the c-director
field. Figure 8 shows three situations where a ±1 defect pair
is aligned (center) and misaligned by a positive or negative δφ

(left and right, respectively). The logarithm of the local elastic
energy densities of the splay (green) and bend (purple) terms
was calculated and color coded.

In the situation present in our experiment, KS = 2.2 KB,
the system will tend to compress bent regions in favor of

FIG. 8. Distribution of splay (green) and bend (purple) regions in
the xy plane in the vicinity of a defect pair with different alignment
angles ϕD in the equilibrium director configurations calculated with
Eq. (A1). The color saturation reflects the logarithm of the splay
and bend energy, respectively. In the case of KS > KB, it is expected
that the splayed (green) regions spread out, while the bent (purple)
regions contract. This suggests that the +1 defect is relocated closer
to the −3π/2 alignment respective to the −1 defect (yellow arrows)
in both misaligned geometries, increasing the discrepancy to the
experimentally observed δφ ≈ −δθ .

expanding splay regions (compared to the one-constant so-
lutions). One may expect that in Fig. 8, the bent c-director
region (purple) below the −1 defect will contract, and the
splayed (green) regions at both sides of this region will ex-
pand. In a simplistic interpretation, this means that in the left
image, where δφ is positive, the +1 defect will be relocated
clockwise around the −1 defect, reducing ϕ′

D and δφ. In the
right image, the +1 defect relocates counterclockwise, thus
increasing δφ. This effect is opposite to the observation in
the experiment where we find |δφ| much larger than the value
|δθ |/2 predicted in the one-constant model.

One may conclude from these considerations that the
elastic anisotropy has an influence on the relation between
misalignment and mismatch. However, it seems that it is
not the primary cause of the observed differences between
experiment and the model given by Eq. (A1) since the elastic
anisotropy effects apparently increase the discrepancy. An
accurate computation of the actual equilibrium configurations
at KS �= KB will be needed to verify this relation quantitatively.
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Science 313, 954 (2006).
[4] J. Brugués, J. Ignés-Mullol, J. Casademunt, and F. Sagués,

Phys. Rev. Lett. 100, 037801 (2008).
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