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Intrinsic spin Nernst effect of magnons in a noncollinear antiferromagnet
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We investigate the intrinsic magnon spin current in a noncollinear antiferromagnetic insulator. We introduce
a definition of the magnon spin current in a noncollinear antiferromagnet and find that it is in general
nonconserved, but for certain symmetries and spin polarizations the averaged effect of nonconserving terms
can vanish. We formulate a general linear response theory for magnons in noncollinear antiferromagnets subject
to a temperature gradient and analyze the effect of symmetries on the response tensor. We apply this theory to
single-layer potassium iron jarosite KFe3(OH)6(SO4)2 and predict a measurable spin current response.
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I. INTRODUCTION

In recent years, advances in research on topological prop-
erties of electron systems [1] have encouraged explorations
of manifestations of topology in many other systems, e.g.,
magnonic [2–14], acoustic [15,16], photonic [17], etc. The
possibility of coupling between various degrees of freedom
has led to new visions for spintronics [18,19] and resulted in
new subfields such as spin caloritronics [20], in which spin
carriers are manipulated by exciting heat flows. The study of
spin currents is fundamental for the field of spintronics, and
the spins carried by magnons possess certain advantages over
electrons, e.g., low dissipation. At the same time, magnons
exhibit rich and fascinating physics associated with the topol-
ogy of magnonic bands, e.g., the thermal Hall effect has been
observed in collinear ferromagent Lu2V2O7 [21]. The spin
Nernst effect [22,23], akin to the spin Hall effect [24], can
also be realized in magnon systems [4,25–30].

Many spintronics concepts also apply to antiferromagnets
[31]. In particular, collinear antiferromagnets can exhibit the
spin Seebeck effect [32], spin pumping [33], spin-orbit torque
[34], the spin Nernst effect [25–28,30], etc. Noncollinear anti-
ferromagnets (NAFMs) have attracted considerable attention
in recent years, as such systems support nontrivial band struc-
ture topology. The anomalous Hall effect [35] and spin Hall
effect [36,37] have been realized in Mn3X (X = Ge, Sn, Ga,
Ir, Rh, or Pt) systems, where electrons act as charge or spin
carriers. Furthermore, the thermal Hall effect, mediated by
magnons, is also identified in NAFM insulators [30,38–41].
Nevertheless, the magnon-mediated spin transport in NAFMs
[42–44] has not yet been well explored, especially in the
context of the topology of magnon bands. NAFMs feature rich
magnetic point group symmetries, chirality, and easily tunable
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properties (e.g., by magnetic field). As a result, studies of
spin currents in NAFMs can bring new vitality to spintronics,
especially in the context of spin caloritronics. In contrast to the
unique spin polarization of a magnon current in the collinear
system, the spin current in NAFMs can be arbitrarily polar-
ized, which allows better control of the spin current. NAFMs
typically possess different ground states [45–47] depending
on the ambient environment, e.g., external field, temperature,
substrates, and one can envisage using the spin current as a
probe of the ground state. Meanwhile, many NAFM mate-
rials can also hold exotic quantum effects [48]. Studies of
spin currents in such systems can provide a new venue for
probing these materials [49]. Motivated by these interesting
possibilities, we initiate a discussion on the magnon-mediated
spin current physics in noncollinear antiferromagnets and
hope to stimulate subsequent research on, e.g., spin transport
in topological magnon insulators [50], optical generation of
magnon-mediated spin currents [51,52], and many others, as
has been discussed above.

In this paper, we formulate a linear response theory of
magnon-mediated spin transport induced by temperature gra-
dients in a noncollinear antiferromagnet, concentrating on
the intrinsic contribution not reliant on magnon lifetime. The
difficulty in considering a NAFM is similar to a typical spin
Hall system in which spin is not conserved [53]. Magnons
driven by temperature gradients require accounting for the
effects associated with the orbital magnetization [25,54]. We
start by discussing the definition of spin current in particle-
hole space by following Refs. [25,53], where spin noncon-
servation is signaled by a source term. Next, we develop a
linear response theory to temperature gradients for a general
observable, i.e., the source term (torque) or spin current, and
discuss the symmetry constraints. One of our main results
is the expression for the intrinsic spin Nernst response in
noncollinear antiferromagnetic insulators,
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FIG. 1. (a) Kagome antiferromagnet lattice with small out-of-
plane spin canting. (b) Spin order in-plane projection (shown in
red) and DMI vectors defined with a counter-clockwise circulation
(shown in black) for kagome antiferromagnet, where the dashed line
shows the mirror plane Mx .

where Jγ λ is the spin current with polarization γ , (� jS
n,k )γ λ

β

is the spin Berry curvature of magnons, and c1(x) = (1 + x)
ln(1 + x) − x ln(x) is an auxiliary function stemming from the
Bose-Einstein statistics of magnons. We apply our theory to
the kagome antiferromagnet KFe3(OH)6(SO4)2 (see Fig. 1)
and show that the in-plane Dzyaloshinskii-Moriya interaction
(DMI) leads to a measurable spin Nernst response. Our study
opens a way for future studies of fascinating physics related
to spin flows in noncollinear antiferromagnets, e.g., in the
context of different magnetic orders and material realizations.

II. SPIN NERNST RESPONSE

We consider a general antiferromagnet with noncollinear
ordering. To capture its magnonic excitations at low temper-
atures, we perform the Holstein-Primakoff transformation in
the limit of large S, which leads us to a general Hamiltonian

H0 = 1

2

∫
dr�†(r)Ĥ�(r), (2)

where �(r) = [b1(r) . . . bN (r), b†(r) . . . b†
N (r)]T is the

bosonic field and N the number of atoms in each unit
cell. The particle-hole space representation is necessary to
describe the anomalous coupling between magnons in an
antiferromagnet.

Because of Bose-Einstein statistics, the eigenvalue prob-
lem has to be solved for the matrix σ3Hk [55], where
here and in what follows we use Pauli matrices σi act-
ing in the particle-hole space. Here Hk is the Hamilto-
nian matrix in momentum space, which can be diagonal-
ized by a paraunitary matrix Tk, i.e., T †

k HkTk = Ek, where
Ek = Diag(ε1,k . . . εN,k, ε1,−k . . . εN,−k ) is the matrix describ-
ing eigenvalues and Tk satisfies T †

k σ3Tk = σ3. We now write a
general theory applicable to bosonic systems where the Bloch
wave function corresponding to the band dispersion εn,k is
given by |ψn,k〉 = eik·r|un,k〉. We can then introduce a notation
[56]

σ3Hk
∣∣uR

n,k

〉 = ε̄n,k
∣∣uR

n,k

〉
,〈

uL
n,k

∣∣σ3Hk = ε̄n,k
〈
uL

n,k

∣∣, (3)

where in terms of the magnonic Hamiltonian |uR
n,k〉 = Tn,k and

〈uL
n,k| = T †

n,kσ3 are the right and left eigenstates of the pseudo-

Hermitian Hamiltonian, and ε̄n,k = (σ3Ek )nn. Hereafter, we
will only refer to the right eigenstates |uR

n,k〉 = |un,k〉. The nor-
malization relation reads 〈un,k|σ3|um,k〉 = (σ3)nm. Moreover,
the Hamiltonian (2) possesses particle-hole symmetry (PHS)
so that the Hamiltonian obeys σ1Hkσ1 = H∗

−k, which leads
to relations ε̄n+N,k = −ε̄n,−k and |un,k〉 = eiφnσ1|un+N,−k〉∗,
where φn is a redundant phase factor.

Because the temperature gradient is a statistical force and
does not directly enter the Hamiltonian, we introduce a pertur-
bation corresponding to a pseudogravitational potential, χ (r),
to account for the temperature gradient [25,54,57],

H ′ = 1

4

∫
dr�†(r)(χĤ + Ĥχ )�(r). (4)

With the perturbation, the total Hamiltonian is amended to
H= 1

2

∫
dr�̃†(r)Ĥ�̃(r), where �̃(r)=(1 + r · ∇χ/2)�(r).

To linear order, the system will respond to a temperature
gradient in the same way as to a perturbation with χ (r) =
−T (r)/T . We now introduce an arbitrary matrix Ô and
a local observable O(r) = 1

2�†(r)Ô�(r). In what follows,
we will mostly consider Ô = �̂α , which corresponds to
the magnon spin density operator given by �̂α = −σ0 ⊗
Diag(nα

1 , . . . , nα
N ), where α = x, y, z, σ0 describes the particle-

hole space, and nα
i (i = 1, . . . , N ) is the projection of n̂i

along α-axis with unit vector n̂i being the ground-state di-
rection of spin at position i in each unit cell. The time
evolution of this operator can be obtained from the Heisen-
berg equation applied to the total Hamiltonian (details in
Appendix A) [25]

∂O(r)

∂t
= i[H,O(r)] = −∇ · jO + SO. (5)

Here jO = �̃†(r)ĵO�̃(r) and SO = �̃†(r)ŜO�̃(r) correspond
to the local current and source densities, respectively,
with ĵO = 1

4 (v̂σ3Ô + Ôσ3v̂), ŜO = − i
2 (Ôσ3Ĥ − Ĥσ3Ô), and

v̂ = i[Ĥ, r]. To linear order in the temperature gradient,
the above densities are explicitly decomposed as ρθ =
ρ

[0]
θ + ρ

[1]
θ , with ρ

[0]
θ = �†(r)θ̂�(r), ρ

[1]
θ = 1

2�†(r)(θ̂rβ +
rβ θ̂ )�(r)∇βχ , where for θ one needs to substitute either jO

or SO. We will use a four-vector convention in which θ0 =
SO and θ = jO. The nonvanishing source term indicates the
nonconservation of the observable; for instance, when O(r)
corresponds to spin density, the source term represents torque
density. We note in passing that the source term dipole PO

can be defined as SO = −∇ · PO for vanishing total source
1
V

∫
drSO = 0, where V is the volume and PO = rSO. Thus, a

conserved current can be defined as J O = jO + PO to restore
the continuity equation [53]. The current term jO coincides
with the conventional definition in the literature of the spin
Hall effect [24]. In general, based on Eq. (5) we can interpret
jO as a spin current and SO as the torque. In our discussion
below, we concentrate on the spin current term.

We consider spatially averaged quantities �α = �[0]
α + �[1]

α

with �[0,1]
α = 1

V

∫
drρ[0,1]

θα
(r). The thermal response to linear

order in the temperature gradient reads

�α = 〈
�[0]

α

〉
neq + 〈

�[1]
α

〉
eq, (6)

where on the right-hand side the first term is evaluated
with respect to nonequilibrium states from the Kubo linear
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response calculation, while the second term corresponds to
orbital magnetization in the system and is evaluated with
respect to the equilibrium state. In total, we can express the
linear response as �α = (Sθα

β + Mθα

β )∇βχ , where Sθα

β and Mθα

β

correspond to the first and second terms in Eq. (6).
In the spirit of the Kubo response calculation [4,25], the

nonequilibrium part can be described by

〈
�[0]

α

〉
neq = lim

ω→0

1

iω
[�αβ (ω) − �αβ (0)]∇βχ. (7)

Here �αγ (iωm) = − ∫ β

0 dτeiωmτ 〈Tτ�
[0]
α (τ )Jq

γ (0)〉, with β =
1/(kBT ), where ωm is the bosonic Matsubara frequency.
Jq is the averaged heat current operator defined as
Jq = 1

V

∫
drjq(r), where the heat current density jq =

1
4�†(r)(Ĥσ3v̂ + v̂σ3Ĥ )�(r). This heat current expression
can be inferred from the energy conservation equation ρ̇E +
∇ · jq = 0, where ρE is the energy density of the system.
After performing the linear response calculation, the intrinsic
nonequilibrium coefficient reads

Sθα

β = 1

V

∑
nk

−
[(

�θ
n,k

)α

β
ε̄n,k + (

mθ
n,k

)α

β

]
g(ε̄n,k ). (8)

Here(
�θ

n,k

)α

β
=

∑
m( �=n)

(σ3)nn(σ3)mm
2Im[(θα,k )nm(vβ,k )mn]

(ε̄n,k − ε̄m,k )2
,

(
mθ

n,k

)α

β
=

∑
m( �=n)

(σ3)nn(σ3)mm
−Im[(θα,k )nm(vβ,k )mn]

ε̄n,k − ε̄m,k
, (9)

where (. . . )nm = 〈un,k| . . . |um,k〉 and g(ε̄nk ) is the Bose-
Einstein distribution. Here (�θ

n,k )αβ is the generalized Berry

curvature calculated for operator θ̂α . This Berry curvature
respects the sum rule

∑2N
n=1(�θ

n,k )αβ = 0, and PHS results in
the relation (�θ

n,k )αβ = (�θ
n+N,−k )αβ (1 � n � N).

The contribution corresponding to ρ
[1]
θα

is expressed as

Mθα

β = 1

2V

〈∫
dr�†(r)(θ̂αrβ + rβ θ̂α )�(r)

〉
eq

. (10)

To calculate this term, we can identify a thermodynamic
expression for Mθα

β by following Refs. [58–62]. We introduce
a perturbation coupled with a four-component fictitious field
hα (r), i.e., Ĥ1 = Ĥ0 − [θ̂αhα (r) + hα (r)θ̂α]. If the field varies
very slowly on the scale of the lattice constant, we can identify
a thermodynamic expression

Mθα

β = − lim
hα→0

1

V

∂�

∂ (∂rβ
hα )

(11)

where � is the thermodynamic grand potential of the sys-
tem. If we regard the local fictitious field and its gradient
as independent variables, we can assert a Maxwell relation
(∂Mθα

β /∂T )
hα,∂rβ hα

= [∂S/∂ (∂rβ
hα )]

T,hα
, where S is the en-

tropy. Taking both Eq. (11) and the Maxwell relation into
account, we are led to

M̃θα

β = ∂
(
βMθα

β

)
∂β

(12)

with M̃θα

β = − 1
V

∂K
∂ (∂rβ hα ) being an auxiliary quantity and K =

� + T S. We assume that the fictitious field takes the form
hα (r) = (h0

α/q) sin(q · r), with q = qêβ (β = x, y, z in three
dimensions and β = x, y in two dimensions). The auxiliary
quantity is calculated by picking up the appropriate Fourier
component

M̃θα

β = lim
hα→0

lim
q→0

−2

h0
αV

∫
drδK (r) cos(q · r), (13)

where δK (r) is the variation due to the fictitious field, which
can be obtained from perturbation theory [59]. Combining
Eqs. (13) and (12), we obtain (see details in Appendix B)

Mθα

β = 1

V

∑
nk

[(
�θ

n,k

)α

β

∫ ε̄nk

0
dηg(η) + (

mθ
n,k

)α

β
g(ε̄n,k )

]
.

(14)

By combining the nonequilibrium part in Eq. (8) with Eq. (14)
and canceling the orbital part (corresponding to a bound
current), we obtain the thermal response formula which con-
stitutes the main result of this paper:

�α = 2kB

V

N∑
n=1

∑
k

(
�θ

n,k

)α

β
c1[g(εn,k )]∇βT . (15)

Note that we express our result using particle bands (n � N)
by utilizing PHS.

It is useful to identify the symmetry constraints leading
to a vanishing source term response. In general, for the
averaged torque density, this can happen for only some of
the torque components. However, for an inversion symmetric
system, i.e., Hk = H−k, the Berry curvature of the torque term
satisfies (�SO

n,k )β = −(�SO
n,−k )β . Together with the relation

εn,k = εn,−k, this results in the vanishing of all torque com-
ponents in Eq. (15).

III. SPIN NERNST EFFECT IN KAGOME
ANTIFERROMAGNET

We use the result in Eq. (15) to calculate the spin Nernst
response tensor in a noncollinear kagome antiferromagnet in
Eq. (1) where the spin Berry curvature is calculated with re-
spect to operator ĵγ ,λ = 1

4 (v̂λσ3�̂
γ + �̂γ σ3v̂λ) corresponding

to the spin current. We can immediately identify that the spin
Berry curvature in Eq. (1) is even under the time reversal
transformation. As a result, the spin Nernst conductivity is
also even under the time reversal transformation, and this re-
sult will be used in the symmetry analysis below. Furthermore,
in a kagome antiferromagnet, due to the presence of inversion
symmetry, the averaged torque density (source term) vanishes.
We consider the Hamiltonian

H =
∑
〈i j〉

J1Si · S j + Di j · (Si × S j ) +
∑
〈〈i j〉〉

J2Si · S j, (16)

where the first and third terms represent nearest and second-
nearest neighbor Heisenberg exchange, and the second term
represents nearest neighbor Dzyaloshinskii-Moriya interac-
tion (DMI) with both in-plane and out-of-plane DMI vec-
tors, as shown in Fig. 1. The DMI vector can be ex-
pressed as Di j = Dpn̂i j + Dzẑ, where Dp and Dz correspond
to the in-plane and out-of-plane DMI strength, and n̂i j is
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an in-plane unit vector corresponding to the direction of the
in-plane DMI. The in-plane DMI can only arise when Mz

symmetry is broken [35]; i.e., time reversal followed by
mirror symmetry with respect to the kagome plane is not
a symmetry in such a case. This introduces a small out-
of-plane canting angle η to spin order with magnitude η =
1
2 tan−1( −2Dp√

3(J1+J2 )−Dz
) [30]. Here we consider the q = 0 phase

with spin order as shown in Fig. 1. The magnetic moments ori-
ent according to n̂i = (cos η cos φi, cos η sin φi, sin η), where
φi is the angle formed by the in-plane projection of mo-
ment with the x axis. Specifically, φA = π/2, φB = 7π/6,
and φC = −π/6. For the spin Nernst response, we iden-
tify Ô discussed above as the spin operator in the magnon
basis �(r) = [bA(r), bB(r), bC (r), b†

A(r), b†
B(r), b†

C (r)]T , i.e.,
�̂α = −σ0 ⊗ Diag(nα

A, nα
B, nα

C ). The spin conductivity tensor
of a spin-polarized current in a noncollinear antiferromagnet
[37,63] is restricted to a certain form by the magnetic space
group of the system. Given that the intrinsic spin Nernst tensor
in relation Jγ λ = α

γ

λβ∇βT is even under the time reversal
transformation, the symmetry constraints become

α
γ

λβ = det(R)Rγ γ ′Rλλ′Rββ ′α
γ ′
λ′β ′ , (17)

where the matrix R represents a symmetry element R (in
Cartesian coordinates) entering the antiunitary symmetry RT
or unitary symmetry R of the system (see Appendix C). As an
example, we focus on a system with two symmetries: mirror
reflection with respect to the y-z plane combined with time
reversal, MxT , and threefold rotation about the z axis, C3z.
The shape of the spin Nernst tensor corresponding to the
constraints in Eq. (17) becomes

[α̂x, α̂y, α̂z] =
[(−α1 0

0 α1

)
,

(
0 α1

α1 0

)
,

(
0 −α2

α2 0

)]
. (18)

Here, the MxT symmetry can be replaced by C2xT , twofold
rotation about the x axis and time reversal, which will lead us
to the same result. We note that our results are consistent with

FIG. 2. Plots for kagome antiferromagnet KFe3(OH)6(SO4)2.
(a) Energy bands. [(b), (d)] The spin Berry curvature for αy

yx for top,
middle, and lowest bands. Detailed plots of the spin Berry curvature
in the vicinity of the white regions, corresponding to the values
outside of the range of the scale bar, can be found in Fig. 4 in
Appendix B.

FIG. 3. Plots for kagome antiferromagnet KFe3(OH)6(SO4)2.
(a) Band structure. (b) Spin Nernst conductivity (SNC) αy

yx and
αz

yx , where αz
yx is scaled for visibility. Relevant parameters are J1 =

3.18 meV, J2 = 0.11 meV, |Dp|/J1 = 0.062, and Dz/J1 = −0.062.

the spin Hall response tensors in Mn3X (X = Rh, Ir, or Pt)
[36].

We apply our theory to a single layer of potassium iron
jarosite, KFe3(OH)6(SO4)2, for which the material param-
eters are J1 = 3.18 meV, J2 = 0.11 meV, |Dp|/J1 = 0.062,
and Dz/J1 = −0.062 [30,64]. We note, however, that the
magnon dispersion in this material can also be explained
by J2 = 0, in which case the flat band is broadened by
fluctuations [65]. The numerically obtained form of the spin
Nernst conductivities agrees with Eq. (18). In Fig. 2, we plot
the magnon bands and the spin Berry curvature for the y
polarization of the spin. The spin Berry curvature is peaked
at avoided crossings, which give the largest contribution to
the spin Nernst effect. The integral of the ordinary Berry
curvature gives the Chern numbers −3, 1, and 2, from the
bottom to the top bands in Fig. 2. In Fig. 3, we show
the spin Nernst response coefficients as a function of tem-
perature for the y and z spin polarizations. The spin Nernst
response sharply increases at temperatures sufficient to excite
magnons in the Brillouin zone where the spin Berry curva-
ture is large. The z-direction polarized spin current is two
orders of magnitude smaller than the current with in-plane
spin polarization, which is due to the fact that the canting
angle is fairly small, η = 1.9◦ [30]. By applying a magnetic
field, the canting angle and the spin Nernst response with the
z polarization direction can be substantially increased. The
predicted spin currents should be easily detectable in three-
dimensional structures as a temperature gradient of 20 K/mm
should result in a spin current of the order of 10−11 J/m2

according to Fig. 3, where α3D = α/c, with c being the
interlayer distance. Finally, we note that the spin Nernst effect
reported in Ref. [42] differs from the intrinsic effect reported
here as the former has the symmetry of the extrinsic effect.

IV. CONCLUSIONS

We have developed a theory of magnon-mediated
intrinsic spin currents in insulating noncollinear
antiferromagnets and applied this theory to potassium
iron jarosite KFe3(OH)6(SO4)2. Our results are applicable
to two-dimensional (2D) and three-dimensional (3D)
systems, promising to reveal fascinating physics in
other layered quasi-2D antiferromagnets, e.g., silver iron
jarosite AgFe3(OH)6(SO4)2 [66], chromium jarosite
KCr3(OH)6(SO4)2 [67], vesignieite BaCu3V2O8(OH)2

[68], and 3D pyrochlore antiferromagnets LiGaGr4O8 and
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LiInGr4O8 [69,70]. Besides exploring material candidates,
one can also study the effect of magnetic order on the
spin Nernst effect, e.g., in kagome antiferromagnets other
possible spin chiralities exist [41,47]. Recently proposed
antiferromagnetic skyrmions with noncollinear magnetic
order [71] can also be explored using our theory.
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APPENDIX A: TIME EVOLUTION
OF A LOCAL OBSERVABLE

To derive the time evolution equation for a local observable
O(r) = 1

2�†(r)Ô�(r), we first prepare a basic knowledge
of the Hamiltonian operator and commutators in particle-

hole space by following Refs. [25,54]. The total Hamilto-
nian can be generally expressed as H = 1

2

∫
dr�̃†(r)Ĥ�̃(r)

with Ĥ = ∑
δ Hδeip̂·δ, in which eip̂·δ is the translation oper-

ator that satisfies eip̂·δ f (r) = f (r + δ). Here δ is the vector
shift between unit cells, �̃(r) = (1 + r · ∇χ/2)�(r). Based
on the basic commutators between bosons [ai(r), a†

j (r
′)] =

δi jδr,r′ , [ai(r), a j (r′)] = 0, we can construct commutators in
the particle-hole basis

[�i(r), �†
j (r′)] = (σ3)i jδr,r′ ,

[�i(r), � j (r′)] = i(σ2)i jδr,r′ ,

[�†
i (r), �†

j (r′)] = −i(σ2)i jδr,r′ (A1)

where σi (i = 1, 2, 3) are Pauli matrices acting in particle-hole
space. Now we use the above Hamiltonian and commutators
to perform a local observable time evolution calculation in two
steps. First, we work out the Heisenberg equation commuta-
tion as follows,

∂O(r)

∂t
= i[H,O(r)] = i

[
1

2

∑
δ

∫
dr′�̃†(r′)Hδ�̃(r′ + δ),

1

2
�†(r)Ô�(r)

]

= i

4

∑
δ

∫
dr′ξ (r′)(Hδ)i jξ (r′ + δ)Omn[�†

i (r′)� j (r′ + δ), �†
m(r)�n(r)]

= − i

2

∑
δ

[�̃†(r)Ôσ3Hδ�̃(r + δ) − �̃†(r − δ)Hδσ3Ô�̃(r)]. (A2)

Here we used the simplified notation ξ (r) = 1 + r · ∇χ/2. We also took advantage of particle-hole symmetry, i.e., �n(r) =
(σ1)nl�

†
l (r) and σ1Ôσ1 = Ô, where the second relation results from the first one. Next, we reduce the above result to a continuous

expression by properly sending the shift vector to an infinitely small value:
∂O(r)

∂t
= − i

2

∑
δ

[�̃†(r)Ôσ3Hδ�̃(r + δ) − �̃†(r − δ)Hδσ3Ô�̃(r)]

= −1

2

∑
δ

1

δ
[�̃†(r)Ôσ3(iδHδe

ip̂·δ)�̃(r) − �̃†(r − δ)(iδHδe
ip̂·δ)σ3Ô�̃(r − δ)]

= −1

2

∑
δ

1

δ

[
�̃†(r)

1

2
(Ôσ3v̂δ + v̂δσ3Ô)�̃(r) + �̃†(r)

1

2
(Ôσ3v̂δ − v̂δσ3Ô)�̃(r)

]

− 1

δ

[
�̃†(r − δ)

1

2
(Ôσ3v̂δ + v̂δσ3Ô)�̃(r − δ) − �̃†(r − δ)

1

2
(Ôσ3v̂δ − v̂δσ3Ô)�̃(r − δ)

]

= −1

4

∑
δ

1

δ
[�̃†(r)(Ôσ3v̂δ + v̂δσ3Ô)�̃(r) − �̃†(r − δ)(Ôσ3v̂δ + v̂δσ3Ô)�̃(r − δ)]

− 1

4

∑
δ

1

δ
[�̃†(r)(Ôσ3v̂δ − v̂δσ3Ô)�̃(r) + �̃†(r − δ)(Ôσ3v̂δ − v̂δσ3Ô)�̃(r − δ)]

= −1

4
∇ · [�̃†(r)(Ôσ3v̂ + v̂σ3Ô)�̃(r)] − i

2
�̃†(r)(Ôσ3Ĥ − Ĥσ3Ô)�̃(r). (A3)

Here we used the notation v̂δ = iδHδeip̂·δ and v̂ =
i
∑

δ δHδeip̂·δ = i[Ĥ, r]. In the last line, we take the limit
δ → 0 to obtain the continuous expression. We can easily
read out the current and source term as discussed in the main
text from the final result.

APPENDIX B: LINEAR RESPONSE THEORY

We provide a fully quantum mechanical derivation in this
section. As shown in the main text, the linear thermal response
for a given observable can be expressed as

�α = Lθα

β ∇βχ = (
Sθα

β + Mθα

β

)∇βχ, (B1)
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where Sθα

β and Mθα

β are the Kubo response and dipole moment
contribution, respectively. In the following, we will first cal-
culate the dipole moment part from a thermodynamic point of
view and then combine it with the Kubo part to arrive at the
final response formula. All calculations will be performed in
the full particle-hole space, and we will express the final result
in terms of particle space in the end.

1. Dipole moment contribution

In the main text, we have shown the relation Mθα

β =
− limhα→0

1
V

∂�
∂ (∂rβ hα ) . The thermodynamic definition of grand

potential reads � = E − T S − μN , where S, μ, and N are the
entropy, chemical potential, and particle number of the system
and E is the energy, which reads

E = 〈H〉eq = 1

2

2N∑
k,n=1

(σ3)nng(ε̄n,k )〈ψn,k|Ĥ |ψn,k〉. (B2)

Here we use the relation 〈�†
n,k�m,k〉 = (σ3)nmg(ε̄n,k ) with

�m,k = ∑
l (Tk )ml�k,l . Below we will assume the chemical

potential to be zero. If we regard the local fictitious field and
its gradient as independent variables, the variation of the grand
potential can be identified as

d� = −SdT − 〈
�[0]

α

〉
dhα − Mθα

β d (∂rβ
hα ), (B3)

from which we can identify the Maxwell relation(
∂Mθα

β

∂T

)
hα,∂rβ hα

=
[

∂S

∂ (∂rβ
hα )

]
T,hα

. (B4)

To get rid of calculations involving entropy S, we first intro-
duce an auxiliary quantity

M̃θα

β = − 1

V

∂K

∂ (∂rβ
hα )

(B5)

with K = � + T S = E (μ = 0). By utilizing Eq. (B4), we
obtain

Mθα

β = M̃θα

β + T
∂Mθα

β

∂T
(B6)

and hence the dipole moment contribution can be calculated
as

M̃θα

β = ∂
(
βMθα

β

)
∂β

. (B7)

If we regard the fictitious field term as a perturbation, the
variation of K to linear order reads

δK (r) = 1

2

∑
nk

δg(ε̄nk )(σ3)nn〈ψnk|Ĥ |ψnk〉

− g(ε̄nk )(σ3)nn〈ψnk|[θ̂αhα (r) + hα (r)θ̂α]|ψnk〉
+ g(ε̄nk )(σ3)nn(〈δψnk|Ĥ |ψnk〉 + 〈ψnk|Ĥ |δψnk〉),

(B8)

where |ψnk〉 = eik·r√
V

|unk〉 is the Bloch wave function of the
system. If we assume a special form of the fictitious field

hα (r) = h0
α

q
sin(q · r), (B9)

with q = qêβ , where α, β = x, y, z in three dimensions or
α, β = x, y in two dimensions, the auxiliary quantity can be
identified by picking up the appropriate Fourier component

M̃θα

β = lim
q→0

−2

h0
αV

∫
drδK (r) cos(q · r). (B10)

As an example, we calculate M̃
θy
x by taking q1 = qêx and

hα (r) = h
q sin(q1 · r)δα,y. Applying perturbation theory to lin-

ear order under the Bloch representation, we find

〈ψm,k±q1 |σ3|δψnk〉 = ih

2q

〈um,k±q1 |(θy,k + θy,k+q1 )|un,k〉
ε̄nk − ε̄m,k±q1

(B11)

and

|δψnk〉 =
∑

m

ih

2q
(σ3)mm

[
ei(k+q1 )·r|um,k+q1〉

〈um,k+q1 |(θy,k + θy,k+q1 )|un,k〉 ε̄nk − ε̄m,k+q1

− (q1 → −q1)
]
. (B12)

Here it is implied that we will use the operator under Bloch
representation henceforth, i.e., Ĥ → Hk = e−ik·rĤeik·r,
θ̂α → θα,k = e−ik·rθ̂αeik·r. This step is guaranteed by the
requirement that the operator θ̂α is well defined in a periodic
system. By using the results above, we obtain

M̃
θy
x = lim

q→0

1

2V

∑
k

∑
mn

1

i2q
g(ε̄nk )(σ3)nn(σ3)mmε̄nk

[ 〈unk|σ3|um,k+q1〉〈um,k+q1 |(θy,k + θy,k+q1 )|un,k〉
ε̄nk − ε̄m,k+q1

− (q1 → −q1)

]
+ c.c.

= lim
q→0

1

2V

∑
k

∑
mn

1

i2q
[g(ε̄nk )ε̄nk − g(ε̄m,k+q1 )ε̄m,k+q1 ](σ3)nn(σ3)mm

〈unk|σ3|um,k+q1〉〈um,k+q1 |(θy,k + θy,k+q1 )|un,k〉
ε̄nk − ε̄m,k+q1

+ c.c.

(B13)

Taking the limit, we get for m �= n,(
M̃

θy
x

)
1 = 1

V

∑
k

∑
m �=n

1

2
[g(ε̄mk )ε̄mk − g(ε̄n,k )ε̄n,k](σ3)nn(σ3)mm

i〈un,k|σ3|∂kx um,k〉〈um,k|θy|un,k〉
ε̄n,k − ε̄m,k

+ c.c.

= 1

V

∑
k

∑
m �=n

−1

2
[g(ε̄mk )ε̄mk − g(ε̄n,k )ε̄n,k](σ3)nn(σ3)mm

i〈un,k|vx|um,k〉〈um,k|θy|un,k〉
(ε̄n,k − ε̄m,k )2

+ c.c. (B14)
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For m = n, we have(
M̃

θy
x

)
2 = 1

V

∑
k

∑
n

1

2i
[g(ε̄n,k ) + g′(ε̄n,k )ε̄n,k][〈un,k|σ3∂kx un,k〉〈un,k|θy|un,k〉 + (σ3)nn〈∂kx un,k|θy|un,k〉] + c.c.

= 1

V

∑
k

∑
n

−1

2
[g(ε̄n,k ) + g′(ε̄n,k )ε̄n,k](σ3)nn(σ3)mm

i〈un,k|vx|um,k〉〈um,k|θy|un,k〉
ε̄n,k − ε̄m,k

+ c.c. (B15)

Above, vx = ∂kx H . In total, we have

M̃
θy
x = (

M̃
θy
x

)
1 + (

M̃
θy
x

)
2 = 1

V

∑
nk

g(ε̄nk )ε̄nk
(
�θ

n,k

)y

x + [g(ε̄n,k ) + g′(ε̄n,k )ε̄n,k]
(
mθ

n,k

)y

x. (B16)

The calculation of all other components is fully analogous to what we have done. The general result will be

M̃θα

β = 1

V

∑
nk

g(ε̄nk )ε̄nk
(
�θ

n,k

)α

β
+ [g(ε̄n,k ) + g′(ε̄n,k )ε̄n,k]

(
mθ

n,k

)α

β
, (B17)

with (
�θ

n,k

)α

β
=

∑
m( �=n)

(σ3)nn(σ3)mm
2Im(〈un,k|θα|um,k〉〈um,k|vβ |un,k〉)

(ε̄n,k − ε̄m,k )2
, (B18)

(
mθ

n,k

)α

β
= −

∑
m( �=n)

(σ3)nn(σ3)mm
Im(〈un,k|θα|um,k〉〈um,k|vβ |un,k〉)

ε̄n,k − ε̄m,k
. (B19)

Note the Berry curvature defined in Eq. (B18) exists in both particle and hole space. Finally, by using Eq. (B7) we obtain

Mθα

β = 1

β

∫ β

0
dβ̄M̃θα

β = 1

V

∑
nk

[(
�θ

n,k

)α

β

∫ ε̄nk

0
dηg(η) + (

mθ
n,k

)α

β
g(ε̄n,k )

]
. (B20)

Here we used the relation 1
β

∫ β

0 dβ̄g(ε̄n,k )ε̄n,k = ∫ ε̄nk

0 dηg(η) with g(η) = 1
eβ̄η−1

and d
dβ̄

[β̄g(ε̄n,k )] = g(ε̄n,k ) + g′(ε̄n,k )ε̄n,k.

2. Kubo-type response

The intrinsic part of the Kubo linear response in particle-hole space is

Sθα

β = 1

V

∑
m �=n

∑
k

i

2
(θα,k )nm[ε̄m,k(vβ,k )mn + (vβ,k )mnε̄n,k](σ3)nn(σ3)mm

g(ε̄nk ) − g(ε̄mk )

(ε̄nk − ε̄mk )2

= 1

V

∑
m �=n

∑
k

− i

2
(σ3)nn(σ3)mm

[ε̄n,k(vβ,k )nm + (vβ,k )nmε̄m,k](θα,k )mn

(ε̄nk − ε̄mk )2
g(ε̄nk ) + c.c.

= 1

V

∑
nk

−(
�θ

n,k

)α

β
ε̄nkg(ε̄nk ) − (

mθ
n,k

)α

β
g(ε̄n,k ). (B21)

3. Total response

When we add the Kubo formula and dipole moment contributions together, the total response reads

Lθα

β = Sθα

β +Mθα

β = 1

V

∑
nk

(
�θ

n,k

)α

β

[
−ε̄nkg(ε̄nk )+

∫ ε̄nk

0
dηg(η)

]
= − 1

V

∑
nk

(
�θ

n,k

)α

β

∫ ε̄nk

0
dηη

dg(η)

dη
= − 1

V

∑
nk

(
�θ

n,k

)α

β
c̃1(ε̄nk ),

(B22)

where c̃1(x) = ∫ x
0 dηη

dg(η)
dη

with g(η) = 1
eβη−1 . Using the relation −g(−η) = 1 + g(η), we have c̃(x) = c̃(−x). Therefore, the

response function can be reduced to

Lθα

β = − 1

V

N∑
n=1

∑
k

[(
�θ

n,k

)α

β
c̃1(εnk ) + (

�θ
n+N,k

)α

β
c̃1(−εn,−k )

] = − 1

V

N∑
n=1

∑
k

[(
�θ

n,k

)α

β
+ (

�θ
n+N,−k

)α

β

]
c̃1(εn,k )

= − 1

V

N∑
n=1

∑
k

[(
�θ

n,k

)α

β
+ (

�θ
n+N,−k

)α

β

][
c̃1(εn,k ) −

∫ ∞

0
dηη

dg(η)

dη

]

= −kBT

V

N∑
n=1

∑
k

[(
�θ

n,k

)α

β
+ (

�θ
n+N,−k

)α

β

]
c1[g(εn,k )] = −2kBT

V

N∑
n=1

∑
k

(
�θ

n,k

)α

β
c1[g(εn,k )]. (B23)
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Here we used the properties of Berry curvature shown in Eqs. (B24) and (B27) and the relation − ∫ ∞
εn

η
dg(η)

dη
= 1

β
c1[g(εn)].

4. Property of Berry curvature

Here we provide two useful properties of Berry curvature defined in (B18).
(1) Summation rule:

2N∑
n=1

(
�θ

n,k

)α

β
=

∑
m �=n

(σ3)nn(σ3)mmIm

[ 〈un,k|θα|um,k〉〈um,k|vβ |un,k〉
(ε̄n,k − ε̄m,k )2

+ 〈um,k|θα|un,k〉〈un,k|vβ |um,k〉
(ε̄n,k − ε̄m,k )2

]
= 0. (B24)

In the middle step, we utilized the property that the band indices m, n can be interchanged.
(2) Mapping between particle and hole space.
We note that the velocity operator vk satisfies

σ1vkσ1 = σ1
∂Hk

∂k
σ1 = −v∗

−k. (B25)

At the same time, the particle-hole symmetry of the Hamiltonian enforces the relation

σ1θα,kσ1 = θ∗
α,−k, (B26)

which is clearly satisfied when we consider the current and source term response for a given operator Ô. Using the particle-hole
symmetry property of the eigenstates and eigenvalues, we are able to show(

�θ
n,k

)α

β
=

∑
m( �=n)

(σ3)nn(σ3)mm
2Im(〈un,k|θα,k|um,k〉〈um,k|vβ,k|un,k〉)

(ε̄n,k − ε̄m,k )2

=
∑

m+N ( �=n+N )

(σ3)n+N,n+N (σ3)m+N,m+N
2Im(〈u∗

n+N,−k|σ1θα,kσ1|u∗
m+N,−k〉〈u∗

m+N,−k|σ1vβ,kσ1|u∗
n+N,−k〉)

(ε̄n+N,−k − ε̄m+N,−k )2

=
∑

m( �=n+N )

(σ3)n+N,n+N (σ3)mm
2Im[(〈un+N,−k|θα,−k|um,−k〉)∗(〈um,−k| − vβ,−k|un+N,−k〉)∗]

(ε̄n+N,−k − ε̄m,−k )2
= (

�θ
n+N,−k

)α

β
. (B27)

5. Calculation of spin Berry curvature

In Fig. 4, we calculate the spin Berry curvature for kagome
antiferromagnet KFe3(OH)6(SO4)2 using

(
�θ

n,k

)α

β
=

∑
m( �=n)

(σ3)nn(σ3)mm
2Im[(θα,k )nm(vβ,k )mn]

(ε̄n,k − ε̄m,k )2
.

APPENDIX C: SYMMETRY ANALYSIS ON THE SPIN
NERNST TENSOR IN KAGOME ANTIFERROMAGNET

We perform a detailed analysis on the effect of the (mag-
netic) point group on the Nernst response tensor. Suppose the
Hamiltonian respects symmetry g with matrix representation
U (g) for unitary operation and U (g)K for antiunitary oper-
ation (containing time reversal) with K being the complex

FIG. 4. Spin Berry curvature plots for kagome antiferromagnet KFe3(OH)6(SO4)2. (a) Middle energy band. (b) Lowest energy band.
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conjugate operator. Here U (g) corresponds to the point group
operation on spin mode orbitals, which is a unitary matrix that
satisfies U (g)† = U (g)T . On the other hand, the point group
symmetries do not mix particle and hole symmetry, such that
[σ3,U (g)] = 0. For the unitary case, we assume

U (g)HkU †(g) = HM(g)k, (C1)

where M(g) is the matrix acting on momentum variables. We
can deduce that

|ψn,M(g)k〉 = U (g)|ψn,k〉, εM(g)k = εk. (C2)

As a consequence, by inserting the symmetry operation in the
matrix elements of an observable, we find

〈ψn,k|Â|ψm,k〉 = 〈ψn,M(g)k|U (g)ÂU (g)†|ψm,M(g)k〉. (C3)

Similarly, for the antiunitary case,

U (g)H∗
kU †(g) = HM(g)k, (C4)

such that

|ψn,M(g)k〉 = U (g)K|ψn,k〉, εM(g)k = εk. (C5)

These relations will lead to

〈ψn,k|Â|ψm,k〉 = 〈ψn,M(g)k|U (g)ÂU (g)†|ψm,M(g)k〉∗. (C6)

If the operator Â satisfies

U (g)ÂiU (g)† =
∑

j

R(g)i j Â j, (C7)

and we combine this with the element’s symmetry relation,
we can obtain a transformation relation for the spin Nernst
response coefficient

α
γ

λβ = ±Rs(g)γ iR
v (g)λ jR

v (g)βkα
i
jk, (C8)

where the plus and minus signs correspond to unitary and
antiunitary symmetry and Rs/v (g) stands for the transforma-
tion matrix for the spin and velocity operator, respectively.

Moreover, suppose the involved nonmagnetic point group
symmetry U (g) corresponds to a spatial operation with matrix
form R in Cartesian coordinates. If ĝ is a unitary operation,

Rs(g) = det(R)R, Rv (g) = R. (C9)

For antiunitary operation,

Rs(g) = −det(R)R, Rv (g) = −R. (C10)

Plugging Eqs. (C9) and (C10) into Eq. (C8), we find

α
γ

λβ = det(R)Rγ γ ′Rλλ′Rββ ′α
γ ′
λ′β ′ . (C11)

In the kagome AF, we focus on two symmetries of the
system: the mirror reflection with respect to the y-z plane plus
time-reversal ĝ1 = MyzT , and the threefold rotation about
the z axis ĝ2 = C3z. It is straightforward to obtain the matrix
representation in Cartesian coordinates of these two symmetry
operations:

R(g1) =
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠, R(g2) =

⎛
⎜⎝− 1

2 −
√

3
2 0√

3
2 − 1

2 0
0 0 1

⎞
⎟⎠.

(C12)
By applying these symmetries to Eq. (C11), the spin Nernst
response tensor (only considering in-plane driven response)
can be fixed to

αx =
(−α

y
yx 0

0 α
y
yx

)
, αy =

(
0 α

y
yx

α
y
yx 0

)
,

αz =
(

0 −αz
yx

αz
yx 0

)
, (C13)

where α
y
yx and αz

yx correspond α1, α2 in the main text indi-
vidually. Here we comment that the g1 symmetry can also be
replaced by C2xT , the twofold rotation about the x axis plus
time reversal.
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