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Bravais lattices are the most fundamental building blocks of crystallography. They are classified into groups
according to their translational, rotational, and inversion symmetries. In computational analysis of Bravais
lattices, fulfillment of symmetry conditions is usually determined by analysis of the metric tensor, using either
a numerical tolerance to produce a binary (i.e., yes or no) classification or a distance function which quantifies
the deviation from an ideal lattice type. The metric tensor, though, is not scale invariant, which complicates the
choice of threshold and the interpretation of the distance function. Here, we quantify the distance of a lattice from
a target Bravais class using strain. For an arbitrary lattice, we find the minimum-strain transformation needed to
fulfill the symmetry conditions of a desired Bravais lattice type; the norm of the strain tensor is used to quantify
the degree of symmetry breaking. The resulting distance is invariant to scale and rotation, and is a physically
intuitive quantity. By symmetrizing to all Bravais classes, each lattice can be placed in a 14-dimensional space,
which we use to create a map of the space of Bravais lattices and the transformation paths between them. A
software implementation is available online under a permissive license.
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I. INTRODUCTION

Many properties of a crystalline material are governed by
the geometry of its Bravais lattice and changes in the Bravais
lattice, both static and dynamic. For example, modification of
the Bravais geometry by the imposition of hydrostatic and/or
shear strains forms the basis of elastic strain engineering
[1], a field the successes of which include improved photo-
luminescence and electronic spectra in semiconductors [2–4],
vibrational properties in micromechanical oscillators [5], and
magnetic properties in multiferroics [6]. Alternatively, the
design of materials which can sustain repeated cyclic changes
in the Bravais lattice geometry is the fundamental aim of
shape memory alloy research [7–9].

In addition to the practical consequences for materials
engineering, there is a fundamental theoretical interest in the
classification of Bravais lattices. This has motivated the devel-
opment of many algorithms for lattice analysis. A traditional
lattice analysis method is straightforward to describe.

(1) Find a canonical description of the lattice.
(2) Classify the lattice according to the symmetries of its

cell parameters.
The most commonly used canonical description is the

Niggli-reduced [10,11] form of the lattice, which is defined
using the metric tensor. For a unit cell with lattice vectors �a,
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�b, and �c, the metric tensor is given by

G =
⎡
⎣g11 g12 g13

g12 g22 g23

g13 g23 g33

⎤
⎦ =

⎡
⎣�a · �a �a · �b �a · �c

�a · �b �b · �b �b · �c
�a · �c �b · �c �c · �c

⎤
⎦. (1)

Niggli reduction specifies a set of constraints which the metric
tensor must satisfy. After reduction, the Bravais class of a
lattice can be determined by inspecting the elements of its
metric tensor. For example, the Niggli-reduced form of the
primitive cubic lattice is the same as the conventional setting,
where the metric tensor satisfies

g11 = g22 = g33, (2a)

g23 = g13 = g12 = 0. (2b)

Similar conditions can be specified for each of the Bravais
lattice types. While constraints of this form provide a clean
theoretical description of Bravais classification, practical clas-
sification is complicated by the presence of noise. Lattice
parameters which have been determined by experiment are
subject to measurement errors, and even lattice parameters
obtained from computer simulations are subject to numerical
errors resulting from the use of floating-point arithmetic. Both
of these sources of error mean that symmetry conditions are
rarely fulfilled exactly.

Noise is treated in one of two ways, using either a tolerance
parameter or a distance calculation. A tolerance parameter, ε,
is used to permit approximate, rather than exact, fulfillment
of symmetry conditions. In this case, the cubic symmetry
conditions in Eq. (2) are relaxed:

|g11 − g22| � ε, |g11 − g33| � ε, |g22 − g33| � ε, (3a)

|g23| � ε, |g13| � ε, |g12| � ε. (3b)
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The tolerance parameter effectively defines a boundary be-
tween symmetry classes. Exactly where this boundary should
lie is decided by the user, but involves a degree of arbitrari-
ness: given a sufficiently large number of structures, there will
be lattices on either side of any boundary, the classification
of which is dependent on the exact choice of threshold. This
use of a tolerance parameter is the approach used by Grosse-
Kunstleve et al. [12] and in the lattice determination compo-
nent of the Spglib [13] space-group classification library.

To overcome the need for an a priori selection of a toler-
ance parameter, a distance can be calculated, which effectively
measures the degree of constraint violation:

d (GM ) = |g11 − g22| + |g11 − g33| + |g22 − g33| (4a)

+ |g23| + |g13| + |g12|. (4b)

By measuring the distances from each Bravais class, the
choice of distance threshold can be made a posteriori, and
informed by the available options. A variety of distance
functions on the metric tensor have been used in the literature
[14–17].

The commonality of existing methods is the use of the met-
ric tensor. While the metric tensor is a rotationally invariant
description of a lattice basis, it is not invariant to scale, which
complicates the choice of threshold and the interpretation of
the distance function.

In this paper we determine the distance of a lattice from
a chosen Bravais type using strain. The problem we aim
to solve is the following: given an observed lattice which
we wish to symmetrize, find the closest lattice in the target
Bravais class. The distance is determined by the minimum
strain needed to elastically deform a lattice such that the
symmetry conditions of the target Bravais class are satisfied.
Strain has the advantage of being a rotationally invariant and
physically intuitive quantity, and can be easily made scale
invariant. Furthermore, since the transformation between any
two lattices is a linear map, strain also represents the most
natural distance measure on lattices. In addition to lattice
classification, the other immediate application of this paper
is simply to symmetrize a lattice in a well-defined manner.

The rest of this paper is structured as follows: we define
a similarity measure for fixed Bravais lattices using the strain
tensor in Sec. II. We extend this to variable lattices in Sec. III,
which enables us to find minimum-strain symmetrizations.
The symmetrization method is illustrated in Sec. IV, and we
use it to present a map of the Bravais lattices in Sec. V.
Concluding remarks are given in Sec. VI.

II. QUANTIFICATION OF LATTICE SIMILARITY

The symmetrization procedure we develop in this paper is
based on quantification of the deformation from one lattice to
another. In this section we describe the necessary deformation
theory, which is a cornerstone of continuum mechanics.

A. Lattice basis comparison

A Bravais lattice, �A, is described by a lattice basis, A ∈
R3×3, which consists of three lattice vectors, described by the
columns of A. The lattice points lie at all integer combinations
of the lattice basis vectors, that is, a lattice point �p satisfies

�p = A�h where �h ∈ Z3. Here we wish to compare two lattices
geometrically.

Let �A and �B be Bravais lattices, with lattice bases
A ∈ R3×3 and B ∈ R3×3. We will compare the bases by
quantifying the minimum deformation necessary to map one
basis onto the other. There is a linear map, F ∈ R3×3, also
called the deformation gradient, which exactly transforms B
into A:

A = FB. (5)

We can remove the rotational dependence of F with the use of
a polar decomposition:

U =
√

FT F. (6)

Here U is a symmetric matrix containing pure stretches
only, known as the right stretch tensor. The Doyle-Ericksen
strain tensors [18] (or sometimes, the Seth-Hill strain tensors
[19,20]) are a generalized class of strain tensors of the form

E = 1

m
(Um − I) =

⎡
⎣ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

⎤
⎦, (7)

where m typically takes an integer value. In this paper we
choose m = 1, in which case E is the Biot strain tensor.

Combining Eqs. (5)–(7), we define a distance function
which quantifies the strain tensor norm:

d (A, B) = ‖E‖F = ‖
√

B−T AT AB−1 − I‖F (8)

where ‖X‖F =
√∑

i, j X 2
i j is the Frobenius norm.

The distance function is invariant to orthogonal transfor-
mations of A and B (trivially for A, and by the spectral
theorem for B). To provide some intuition for the distance
function, we can express it in terms of the principal stretches,
νi, of F:

d (A, B) =
√

(ν1 − 1)2 + (ν2 − 1)2 + (ν3 − 1)2. (9)

The principal stretches are equal to the eigenvalues of U,
and the distance is equal to the norm of the principal strains.
Alternatively, we can use the relationship between the polar
decomposition and the singular value decomposition to ex-
press the distance function in terms of the singular values, σi,
of F:

d (A, B) =
√

(σ1 − 1)2 + (σ2 − 1)2 + (σ3 − 1)2. (10)

The principal stretches and singular values are in fact identical
and differ only in their origin and interpretation; the former
formulation is from continuum mechanics and has a physical
meaning, while the latter is a more general formulation from
linear algebra which we use in this paper.

The distance function shown here is described in further
detail by Koumatos and Muehlemann [21], who also discuss
different choices of m.

B. Lattice correspondences

The similarity function, d , compares two lattice bases.
However, every lattice is generated by an infinite number of
bases. Any two bases, A and A′, which generate the same
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FIG. 1. The target lattice, �A (shown on the left), can be de-
scribed by an infinite number of bases, which differ by a unimodular
matrix, L. Three such lattice bases, AL1, AL2, and AL3, are shown
in orange, green, and red. A lattice, �B, is shown in the center, the
distance of which from �A we wish to determine. A single basis, B,
is shown. The correspondence AL1 = FB has the lowest associated
strain. Shown on the right is the best rigid match (prior to the stretch
operation).

lattice �A are related by A′ = AL, where L ∈ SL±
3 (Z) is a

unimodular matrix, that is, L ∈ Z3×3 where det (L) = ±1. We
call L the correspondence matrix.

In order to compare two lattices, rather than specific lattice
bases, we optimize the function:

min
L∈SL3(Z)

d (AL, B), (11)

which compares all possible bases of the first lattice against a
single basis of the second, and in doing so finds the optimal
lattice correspondence. This process is illustrated in Fig. 1.
For any two lattices �A and �B, it is easily shown that the
minimum distance shown in Eq. (11) is invariant to the choice
of lattice bases.

An efficient algorithm for determining the optimal lattice
correspondence is described by Chen et al. [22]. Their algo-
rithm proceeds by bounding the maximum norm of the opti-
mal correspondence matrix, and testing all correspondences
that lie within that sphere. We refer to their paper for further
details, as it applies to correspondences between fixed lattices
only.

III. QUANTIFICATION OF SYMMETRY BREAKING

In this section we extend the concept of the distance
function for fixed lattices to variable lattices, and demonstrate
its application to the symmetrization of Bravais lattices. After
describing a function for quantification of symmetry breaking,
we analyze some properties of the function, and provide some
visual examples.

A. Variable lattice bases

The distance function in Eq. (8) compares two lattices with
fixed parameters. In order to quantify symmetry breaking, we
introduce lattices with variable lattice parameters. As stated
above, the problem we aim to solve is the following: given an
observed lattice which we wish to symmetrize, find the closest
lattice in the target Bravais class. We will first consider this
problem for a fixed correspondence.

Let B ∈ R3×3 be a lattice basis which we wish to sym-
metrize, and let Z ∈ R3×3 be a variable lattice basis. The

TABLE I. Semidefinite program to calculate the minimum-strain
symmetrization of a lattice basis, B. Here, Z is a lattice basis matrix
the geometry of which respects the symmetry conditions of the target
Bravais type. The symmetry conditions are enforced using additional
linear constraints on the Gramian matrix, G.

Parameters: B ∈ R3 (P1)
Variables: Z ∈ R3 (P2)

G ∈ R3 G = GT (P3)
Minimize: 3 + Tr (B−T GB−1) − 2 Tr (ZB−1) (P4)

Subject to:

[
I

ZT

Z
G

]
� 0 (P5)

symmetrized basis is found by solving the problem

Z∗ = argmin
Z∈R3×3

dB(Z, B). (12)

Here, dB denotes the distance function in Eq. (8) subject
to geometric constraints on Z which enforce the symmetry
conditions of a chosen Bravais lattice type (B) (described
below).

We can rearrange the distance function in terms of the
Frobenius and nuclear norms of ZB−1. For a matrix X ∈
R3×3 with singular values [σ1, σ2, σ3], the Frobenius norm
is ||X||F =

√
σ 2

1 + σ 2
2 + σ 2

3 and the nuclear norm is ||X||∗ =
σ1 + σ2 + σ3. The distance function is then

d (Z, B) =
√

3 + ‖ZB−1‖2
F − 2‖ZB−1‖∗. (13)

Let G = ZT Z be the Gramian [23] matrix of Z. Then,
Tr (B−T GB−1) = ||ZB−1||2F . Using the Gramian form, the
minimization problem in Eq. (12) can be expressed as a
semidefinite program (SDP). Semidefinite programming is a
form of convex optimization which generalizes linear pro-
gramming [24]; in addition to a linear objective and linear
constraints, a SDP permits positive semidefiniteness con-
straints on matrix variables.

Table I shows a SDP for solving Eq. (12). The input
parameter is the lattice basis we wish to symmetrize (P1).
The matrix variables are the variable lattice basis (P2) and the
Gramian matrix (P3). The objective is to minimize the square
of the distance function (P4). By the Schur complement condi-
tion for positive semidefiniteness [25,26], the linear matrix in-
equality in (P5) enforces the condition G − ZT Z � 0 (where
the relation X � 0 means X is positive semidefinite). At the
optimum value of Z this inequality is tight, i.e., G = ZT Z.
In addition to the constraint (P5), we impose a set of linear
constraints on G in order to control the geometry of Z and
thereby enforce the symmetry conditions of a chosen Bravais
lattice type. The constraints for each Bravais type are shown
in Fig. 2.

The SDP shown above finds a symmetrized basis, Z∗,
by simultaneously finding the lattice parameters and the lat-
tice rotation. This solution is the closest lattice basis to B
under the defined distance function. The basis respects the
specified symmetry constraints, and represents the minimum-
strain symmetrization of the basis B. The resulting distance
quantifies the symmetry breaking of the target Bravais type.
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Body-centered cubic

Face-centered cubic

Body-centered tetragonal

Body-centered orthorhombic

Base-centered orthorhombic

Face-centered orthorhombic

Base-centered monoclinic

FIG. 2. Linear constraints on the Gramian matrices for each of the 14 three-dimensional Bravais lattices. The constraints are constructed
such that the symmetry conditions of the Bravais lattice are respected. The triclinic lattice type does not have any constraints on the form of
the Gramian; all lattices are trivially triclinic, since there are no symmetry conditions to satisfy.

B. Lattice correspondence search

By formulating the distance function as a SDP, we have
shown that the distance function is convex for a fixed lattice
correspondence. In order to find the minimum-strain solution,
however, we need to optimize over all lattice correspondences,
of which there are an infinite number. For fixed lattices, the

optimal correspondence can be found efficiently, owing to
the existence of an upper bound on the norm of the optimal
correspondence matrix [22]. For variable lattices no such
bound is known. Instead, we use a steepest-descent search
over lattice correspondences.

Starting from a good candidate correspondence, we search
the surrounding correspondences, iteratively, until no better
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TABLE II. A steepest-descent algorithm for finding the optimal
lattice correspondence.

1: procedure SYMMETRIZE(B, B, L)
2: d∗ = ∞ � Optimal distance
3: L∗ = I � Optimal correspondence
4: visited := ∅ � ‘Visited’ correspondences
5: found := True
6: While found do
7: found := False
8: Lc = L∗

9: for L ∈ L do
10: if LcL /∈ visited then
11: Z∗ := argminZ∈R3×3 dB (ZLcL, B)
12: if dB(Z∗LcL, B) < d∗ then
13: d∗ := dB (Z∗LcL, B)
14: L∗ := LcL
15: found := True
16: end if
17: end if
18: visited := visited ∪{LcL}
19: end for
20: end while
21: return {d∗, L∗}
22: end procedure

solution can be found. For the initial “good candidate” cor-
respondence, we use a right-handed Minkowski-reduced [27]
(MR) basis of the �B. A MR basis is a lattice basis the lattice
vectors of which are the shortest possible. It can be computed
efficiently [28].

We define the neighborhood of a correspondence as all uni-
modular matrices with positive determinant and the elements
of which have magnitude at most 1:

L = {L ∈ SL+
3 (Z)|−1 � li j � 1 ∀i, j}. (14)

The steepest-descent approach is shown in the algorithm
in Table II. The inputs to the algorithm are a MR basis
(B) of the lattice we wish to symmetrize, the target Bravais
type (B), and the correspondence neighborhood (L). The
algorithm keeps track of the minimum distance (line 2) and
the optimal correspondence (line 3), and maintains a set of
visited correspondences (line 4), i.e., correspondences which
have been tested. In each iteration (line 6) the search tests
all correspondences in the neighborhood of the current best
solution (line 9). Each time a correspondence is tested (line
12), the best solution (lines 13 and 14) is updated as needed.
Here dB denotes the distance function with the appropriate
linear constraints on G for a chosen Bravais type, B. The
algorithm iteratively tests the neighborhood of the current best
solution until no better solution can be found.

The neighborhood we define in Eq. (14) is motivated by
the need for a distance function which is continuous in the
presence of a continuous lattice deformation. The distance
function is continuous if we consider, at a minimum, all lattice
bases consisting of Voronoi-relevant vectors [29]. Voronoi-
relevant vectors are illustrated in Fig. 3. A theorem due to
Minkowski [30] states that the Voronoi-relevant vectors are
a nonstrict subset of all integer combinations of {−1, 0, 1} of

FIG. 3. Voronoi cells (Wigner-Seitz cells) in a 2D oblique lattice.
Voronoi-relevant vectors are those which pass through a Voronoi face
to an adjacent lattice point; they constitute a subset of the red lattice
points, which are combinations of {−1, 0, 1} of the MR basis vectors.

the MR basis vectors. The neighborhood defined in Eq. (14)
contains all right-handed unimodular matrices of this form.

With the lattice correspondence search in place, we can
perform minimum-strain symmetrization. This is illustrated
for a selection of lattice types in Fig. 4. Of the lattices shown,
only the monoclinic symmetrization has a small strain tensor
norm. Nonetheless, even for very dissimilar lattice types with
a correspondingly large strain tensor, we can still compute a
minimum-strain symmetrization.

C. Scale invariance and range of the symmetrization distance

We have described minimum-strain symmetrization for the
different Bravais lattice types. Here, we show that the distance

FIG. 4. Successively aggressive lattice symmetrizations. A tri-
clinic cell (blue) is symmetrized to each of the six primitive Bravais
lattice types. The symmetrized cells (orange) can be mapped onto the
triclinic cell with a pure stretch. The lattice parameters and rotations
of the symmetrized cells represent minimum-strain solutions.
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function is scale invariant, and that the scale invariance sets an
upper bound on the range of the distance function.

When comparing two fixed lattices, d (A, B) is dependent
on the scales of A and B. However, when using variable
lattices to quantify symmetry breaking, the resulting distance
is scale invariant. For a scaling factor, k ∈ R, we have

argmin
Z∈R3×3

dB(Z, B) = argmin
Z∈R3×3

dB(Z, kB). (15)

Due to the lattice parameters of Z being optimized, any
change in scale of B is accommodated by a corresponding
change in Z. This is a particularly useful property when
comparing symmetry breaking in cells of different sizes.

The scale invariance also sets an upper bound on the
maximum strain. For a chosen Bravais type and a correspon-
dence matrix L, the range of the distance function dB(ZL, B)
is [0,

√
2). The zero-strain solution is trivial. To show that

the interval is bounded from above by
√

2, we observe that
even the most constrained Bravais types (the cubic lattices)
accommodate a change in scale of Z. Representing this by
a parameter s ∈ R, the distance function (minimized over all
lattice correspondences) is given by

min
s ∈ R

L ∈ SL3(Z)

d (sAL, B)

= min
s ∈ R

L ∈ SL3(Z)

‖s
√

B−T LT AT ALB−1 − I‖F . (16)

Let �σ = [σ1, σ2, σ3] be the singular values of ALB−1. It can
be shown that the optimal scaling parameter is given by

s∗ = σ1 + σ2 + σ3

σ 2
1 + σ 2

2 + σ 2
3

. (17)

Expressed in terms of singular values, the distance function is

min
s ∈ R

L ∈ SL3(Z)

d (sAL, B) =
√

3 − (σ1 + σ2 + σ3)2

σ 2
1 + σ 2

2 + σ 2
3

, (18)

which attains a maximum (at
√

2) when �σ = [σ1, 0, 0]. The
rank of a matrix is equal to the number of nonzero singular
values. Let B−1 be a rank-1 matrix. Then ALB−1 is a rank-
1 matrix for every L ∈ SL3(Z) and any matrix A, and �σ =
[σ1, 0, 0]. Since a rank-1 matrix is not invertible, this vector of
singular values can only be attained asymptotically. Let B =
diag (1, κ, κ ). Then limκ→∞ �σ = [1, 0, 0]. It follows that

lim
κ→∞ min

s ∈ R
L ∈ SL3(Z)

d (sAL, diag(1, κ, κ )) =
√

2. (19)

The analysis shown here establishes the upper bound of the
distance function. A similar analysis for Bravais types with
more degrees of freedom is significantly more complicated.
The additional degrees of freedom, however, can only serve
to reduce the range of the distance function.

D. Implementation

We have presented the symmetrization procedure as a
semidefinite program. In addition to being the most compact
description, formulation as a semidefinite program is the most

convenient for analysis of the scale invariance and range of the
distance function. For a practical implementation, however, it
is less than ideal to rely upon semidefinite programming, as
SDP solvers are slow. Fortunately, any optimization approach
which achieves the same result as the SDP is equally valid.

By employing a quaternion parametrization, symmetriza-
tion can be done by solution of a constrained multivariate
polynomial, which can be solved efficiently using sequential
quadratic programming [31]. Further details are given in the
Appendix. Compared to the existing Bravais classification
methods this procedure has significantly higher computational
requirements, taking on the order of 0.3 s per cell. Despite the
increased computation time, the relevant comparison is not
between classification methods, but to the time required to
perform an experiment or an ab initio structure calculation.
In this regard, the increased computation time is of little
importance.

IV. SYMMETRIZATION DISTANCE VECTORS

The procedure we have described above finds a minimum-
strain symmetrization to a target Bravais type, and an associ-
ated symmetrization distance. By calculating the symmetriza-
tion distance from every Bravais type we obtain a vector of
length 14, which we will call a “distance vector.” We can de-
velop some intuition for the distance vectors by observing how
they change in the two-parameter Bravais lattices. Figure 5
shows the distance vectors for the tetragonal Bravais lattices,
along a path containing all possible permitted geometries
permitted by their respective symmetry conditions.

The geometry of the primitive tetragonal lattice is the
simpler of the two. At φ = 0, the lattice is degenerate, with
lattice parameters c = 1 and a = 0; we denote this lattice the
“tall square,” since, in the limit φ → 0, the base is square.
As mentioned above, symmetrization cannot be performed
for degenerate lattices, so this degenerate state is achieved
only asymptotically. At φ = π/4, c = a and the lattice is
identical to the primitive cubic lattice, which is reflected by
the associated zero symmetrization distance. At φ = π/2, the
lattice is again degenerate, with lattice parameters c = 0 and
a = 1; we denote this lattice the “flat square.” Here, the sym-
metrization distance from the cubic Bravais types approaches
the maximum value of

√
2, as discussed in Sec. III C. The

path of the body-centered tetragonal lattice is similar to that of
the primitive tetragonal lattice, but rather than passing through
the primitive cubic lattice it contains the Bain transformation
[32,33], from the fcc to the bcc lattice

The distances from the primitive triclinic lattice type are
zero everywhere, since all lattices are trivially triclinic. Sim-
ilarly, it can be seen that the symmetrization distance for
rhombohedral symmetrization is never greater than the fcc
distance. Both lattice types have lattice vectors of equal
length, but the rhombohedral lattice has a variable angle.
The extra degree of freedom serves to reduce the strain. This
illustrates the important concept that Bravais lattices exist in a
hierarchy, whereby the symmetries of some Bravais types are
subsets of other types. The subset relationships are illustrated
in Fig. 6. In general we can state the following: for two lattice
types, B and B′, if the symmetries of B are a subset of those
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FIG. 5. Symmetrization distances for all geometries of the primitive and body-centered tetragonal lattices (modulo scale). Since the
symmetrization distance is scale invariant, these lattices can be parametrized using a single parameter: using the lattice parameters of
the conventional setting a = sin φ and c = cos φ. Zero-distance symmetrizations are not shown. In the primitive tetragonal figure, the
body-centered orthorhombic symmetrization distances are identical to the body-centered tetragonal distances and are not shown. Similarly, in
the body-centered tetragonal figure, the primitive monoclinic symmetrization distances are identical to the base-centered monoclinic distances,
and the primitive orthorhombic symmetrization distances are identical to the primitive tetragonal distances.

of B′, then

min
Z∈R3×3

dB(Z, B) � min
Z∈R3×3

dB′ (Z, B). (20)

This fact should be considered when classifying a lattice.
After imposing a threshold on the symmetrization distance,
multiple potential Bravais types can be assigned. In this case,
the Bravais type with the highest number of symmetries
should be selected.

FIG. 6. Hierarchy of symmetry relationships between Bravais
types. The Bravais types are arranged vertically according to the
number of degrees of freedom in the lattice. Presence of an upwards
path indicates a subset relationship. For clarity, Bravais types are
denoted by their Pearson symbols: a, triclinic; m, monoclinic; o,
orthorhombic; t, tetragonal; h, hexagonal; c, cubic; P, primitive; C,
base-centered; R, rhombohedral; I, body-centered; F, face-centered.

V. MAP OF THE BRAVAIS LATTICES

As shown above, by calculating the symmetrization dis-
tance from each Bravais type, we can assign every lattice
a 14-dimensional distance vector. It is instructive to con-
sider the space of possible distance vectors. To do so we
use truncated principal component analysis (PCA). Figure 7
shows a two-dimensional PCA projection of distance vectors.
Two projections have been used to illustrate the distance
vector space. The PCA projection in Fig. 7(a) is calculated
using the randomly sampled Bravais lattices, including many
degenerate lattices. While this projection is useful for studying
the complete space of Bravais geometries, it wastes a lot of
space on physically uninteresting lattices with degenerate ge-
ometries. The PCA projection in Figs. 7(b)–7(h) is calculated
using structures from the Crystallography Open Database [34]
(COD). Since only experimentally observed structures are
used (as filtered in earlier work by some of the authors [35]),
the region of interest for practical applications occupies a
significantly larger area.

The extreme vertices in Fig. 7(a) consist of the three cubic
Bravais types and six degenerate Bravais lattices. Within each
of the cubic Bravais types, lattices differ by a scale factor
only. Since the symmetrization distance is invariant to scale,
all lattices within a cubic Bravais type have the same distance
vector. Four of the other six extreme vertices are degenerate
states of the primitive tetragonal and primitive hexagonal
Bravais lattices: the tall square and flat square lattices (de-
scribed above), and the “tall hexagonal” and “flat hexagonal”
lattices, which are similar to the square variants but with
hexagonal bases. The two remaining extreme vertices, the
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noitcejorpDOC)b(noitcejorpecaps-siavarBlluF)a(

(c) Primitive monoclinic (d) Base-centered monoclinic (e) Primitive orthorhombic

(f) Base-centered orthorhombic (g) Body-centered orthorhombic (h) Face-centered orthorhombic

Two-parameter Bravais lattices:
Primitive hexagonal Primitive tetragonal
Primitive rhombohedral Body-centered tetragonal

FIG. 7. Two-dimensional maps of the space of Bravais lattices, obtained using PCA projections of the 14-dimensional distance vector
space. Theoretical, randomly sampled structures are shown in gray. Experimentally observed lattices from the Crystallography Open Database
(COD) are marked with blue points. Two projections are used to illustrate the data: in (a) the projection matrix is calculated using the randomly
sampled structures; in (b) the projection matrix is calculated using the COD structures. Regions occupied by each of the monoclinic and
orthorhombic lattice types in the COD projection are shown in (c)–(h).

“flat rectangular” and “tall rectangular” lattices, are degener-
ate states of the primitive orthorhombic lattice, the cell vectors
of which have sufficiently different lengths that two degrees
of freedom are insufficient to accommodate a low-strain
symmetrization.

The tetragonal and hexagonal Bravais types have two de-
grees of freedom. As shown above, the scale invariance of the
symmetrization distance means that the distance vectors of
these Bravais types exist on a line. The Bain transformation
(from fcc to bcc), which can be achieved by tracing the body-
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FIG. 8. Fraction of variance explained by each PCA component
(dark blue), and the cumulative sum of the explained variance
(light blue). The projection matrix is calculated using experimental
structures taken from the Crystallography Open Database.

centered tetragonal transition line, is widely studied due to
its energetic accessibility in iron-based materials. It is note-
worthy that the small strain required for this transformation is
reflected by the proximity of the fcc and bcc distance vectors.

The orthorhombic lattices have three degrees of free-
dom. Distance vectors of these lattice types exist on a two-
dimensional manifold. The monoclinic lattices have four de-
grees of freedom and exist on a three-dimensional manifold.
The two-dimensional PCA projection captures the symmetry
subset relationships shown in Fig. 6, but also introduces a
degree of spurious overlap. The overlap is worse for lattices
with more degrees of freedom. For example, the path traced by
the body-centered tetragonal lattice appears to self-intersect
at multiple points. These crossings are resolved in a three-
dimensional projection. Similarly, the spaces occupied by
the primitive and base-centered monoclinic lattices appear to
overlap, despite being disjoint.

To explain the overlap, we observe that five parameters
are sufficient to describe a Bravais lattice if scale is ignored,
and that the space of distance vectors is therefore a nonlinear
five-dimensional manifold embedded in R14. It is therefore
inevitable that a two-dimensional projection contains spurious
overlap. The loss of information resulting from PCA projec-
tion is shown in Fig. 8. PCA is a linear projection and there-
fore requires more than five dimensions to capture the full
distance vector space. Nonetheless, even a two-dimensional
projection explains most of the variance and is useful for
visualizing the space of lattices, and particularly for studying
phase transitions.

Although the hcp crystal structure is not a Bravais lattice,
we have marked it on the projection for reference. In structure
maps based on energetic descriptors [36], the hcp and fcc
structures are typically close together, due to their small
energetic differences. Geometrically, however, the primitive
hexagonal and fcc lattices are far apart, since a large strain is
required to transform one lattice into the other. The difference
between an energetic map and our map can be described in
terms of transformation paths: an energetic map encodes dif-
ferences in the energetic end points of the transition, whereas
our map encodes the lattice deformation of the transition
itself.

VI. CONCLUSION

We have described a method for symmetrization of Bravais
lattices using strain, which is a physically intuitive quantity
that also has the attractive features of rotation and scale
invariance. A distance from each Bravais type is determined
by quantifying the strain necessary for symmetrization. This
allows classification to be performed without the need for an
a priori selection of a tolerance parameter.

By projecting the distance vectors using PCA, we obtain
insight into the positions of lattices in an abstract Bravais
space, where distances are determined by displacive defor-
mations only. The symmetrization procedure finds minimum-
strain solutions, rather than minimum-energy solutions, and
considers the Bravais lattice only. Indeed, a correct analysis
of a material’s lattice type requires that a primitive unit cell
can be identified. Factors which complicate this, such as per-
turbations of the atomic basis coordinates within a unit cell,
are not accounted for when considering the Bravais lattice
only. Nonetheless, we envisage that the method will be useful
for a range of experimental and computational applications.
Ongoing work aims to combine the symmetrization distance
presented here with an atomic basis to create a distance on
space groups.

A software implementation (C++ with PYTHON wrappers)
is available online [37].

ACKNOWLEDGMENT

This work was supported by Grant No. 7026-00126B from
the Danish Council for Independent Research.

APPENDIX: NUMERICAL SOLUTION

Here we rework the distance expression in Eq. (P4) into a
multivariate polynomial. We perform a substitution

Z = Q
n∑

i=1

xiTi, (A1)

where Q ∈ SO(3) is a right-handed orthogonal matrix, and
{Ti | i ∈ 1 . . . n} is a set of n matrices (a “template”) which,
in conjunction with a vector �x ∈ Rn, parametrizes a Bravais
lattice type. The template maintains the desired symmetry by
construction. For example, a primitive orthorhombic basis has
a template

T1 =
⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦T2 =

⎡
⎣0 0 0

0 1 0
0 0 0

⎤
⎦T3 =

⎡
⎣0 0 0

0 0 0
0 0 1

⎤
⎦.

(A2)

A primitive rhombohedral lattice has a template

T1 =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦T2 =

⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦. (A3)

Similar templates can be constructed for the other Bravais
lattice types.

In order to express the distance function as a multivari-
ate polynomial we parametrize the orthogonal matrix using
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quaternions. Briefly, quaternions are numbers of the form
�q = [q1, iq2, jq3, kq4] which generalize the complex numbers
[38]. Unit quaternions are a useful parametrization of SO(3),
the space of rotations. The quaternion-derived rotation matrix
is given by

Q =
⎡
⎣ 1−2q2

3−2q2
4 2q2q3 − 2q1q4 2q2q4 + 2q1q3

2q2q3 + 2q1q4 1−2q2
2−2q2

4 2q3q4 − 2q1q2

2q2q4 − 2q1q3 2q3q4 + 2q1q2 1−2q2
2−2q2

3

⎤
⎦.

(A4)

The distance function can then be expressed as

3 +
∥∥∥∥∥

n∑
i=1

xiTiB−1

∥∥∥∥∥
2

F

− 2 Tr

(
Q

n∑
i=1

xiTiB−1

)
, (A5)

which is a multivariate polynomial of degree 6. We can reduce
the degree with a variable substitution. Let H ∈ Rn×n be the
symmetric matrix with elements

Hi j = 〈TiB−1, T jB−1〉F . (A6)

Then H is positive semidefinite by construction and the eigen-
values of H are non-negative. As such, we can perform a
Mahalonobis decomposition

H−1/2 = ��−1/2�T (A7)

also known as ZCA whitening or sphering [39,40]. Here
� is an orthogonal matrix the columns of which are the
eigenvectors of H and � = diag (λ1, λ2, . . . , λn) is a diagonal
matrix of the eigenvalues of H. Per the definition of H∥∥∥∥∥

n∑
i=1

xiTiB−1

∥∥∥∥∥
2

F

= �xT H�x (A8)

and, therefore,∥∥∥∥∥
n∑

i=1

(H−1/2�x)iTiB−1

∥∥∥∥∥
F

= 1 ∀�x : ‖�x‖ = 1. (A9)

With this transformation made we can solve an equivalent
constrained problem of degree 3:

max
q∈R4,�x∈Rn

Tr

[
Q

n∑
i=1

(H−1/2�x)iTiB−1

]

subject to ‖�q‖ = 1 ‖�x‖ = 1. (A10)

An appropriate scaling of �x can be found postsolution. A
consequence of the Mahalonobis transformation is that all

FIG. 9. Function landscape for a primitive orthorhombic cell,
after application of the Mahalonobis transformation. The axes are the
cell parameters �x. At each point the optimal orthogonal component
(Q) has been determined. Due to application of the Mahalonobis
transformation the maxima (shown in red) are symmetric and have
identical function values.

maxima of this equation are symmetrically equivalent and
have equal solution values (see Fig. 9).

Equation (A10) can be solved using stepwise iteration [41].
This is guaranteed to converge to a local maximum (rather
than a saddle point) but only at a linear convergence rate. On
the other hand, by solving the Lagrangian form of Eq. (A10)
we can use Newton-Raphson iteration to achieve quadratic
convergence. We have found that a good compromise is to
perform stepwise iteration for 10–20 iterations (to get close
to the maximum), and then switch to Newton-Raphson (to get
fast convergence).

The total number of iterations required is dependent on
the number of template variables, but even for monoclinic
templates convergence is typically achieved within 20 iter-
ations. For cubic templates the problem reduces to a polar
decomposition, and convergence is achieved in a single step-
wise iteration. A larger number of correspondences must be
investigated for highly skewed cells, but for cells of typical
crystal structures the running time does not exhibit large devi-
ations. Calculation of the symmetrization vectors for 22 000
structures in the Crystallography Open Database takes ≈2 h
running on a single core of a 2014 Macbook Pro. On a modern
HPC server node this is reduced to a few minutes.
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