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Pioneering studies in transition metal dichalcogenides have demonstrated convincingly the coexistence of
multiple angular momentum degrees of freedom—of spin (1/2 sz = ±1/2), valley (τ = K , K ′ or ±1), and
atomic orbital (lz = ±2) origins—in the valence band with strong interlocking among them, which results
in noise-resilient pseudospin states ideal for spintronic-type applications. With field modulation a powerful,
universal means in physics studies and applications, this work develops, from bare models in the context of
complicated band structure, a general effective theory of field-modulated spin valley orbital pseudospin physics
that is able to describe both intra- and intervalley dynamics. Based on the theory, it predicts and discusses the
linear response of a pseudospin to external fields of arbitrary orientations. Paradigm field configurations are
identified for pseudospin control, including pseudospin flipping. For a nontrivial example, it presents a spin
valley orbital quantum computing proposal, where the theory is applied to address all-electrical, simultaneous
control of sz, τ , and lz for qubit manipulation. It demonstrates the viability of such control with static field effects
and an additional dynamic electric field. An optimized qubit manipulation time ∼O (ns) is given.
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I. INTRODUCTION

The discovery of spin degree of freedom (DoF) in the
Stern-Gerlach experiment has opened up a new era in quan-
tum physics. Striking spin phenomena include spin Hall effect
[1–5] and spin-dependent transport such as giant [6,7] or
colossal [8,9] magnetoresistance, to name a few. Effective
field modulation with Rashba [10] or Zeeman [11,12] effects
plays a crucial role in pioneering studies and device proposals,
including, for example, spin FETs [13], spin quantum comput-
ing [14,15], and so on, in the category of spintronics [16,17].

With the rise of 2D materials [18–20] recent years have
seen a rapid expansion of research from spin to angular
momenta on various length scales. Notably, in 2D crystals of
hexagonal symmetry, “valley pseudospin”—a binary electron
DoF has emerged, which derives from the existence of doubly
degenerate, time-reversal-conjugated energy band valleys at
Dirac corners (K and K′) of Brillouin zone [21–23]. Exotic
topological transport phenomena arise due to the valley DoF,
such as valley Hall effect [21,23,24] in graphene [25–27]
and transition metal dichalcogenides (TMDCs) [28]. In these
materials, electron “valley” magnetic moments or angular
momenta [21,29] are manifested on the unit-cell-scaled orbital
motion and can interact with an in-plane electric field in the
form

HVOI ∝ (�k × �ε‖) · �μτ , (1)

*Corresponding author: yswu@ee.nthu.edu.tw

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

known as valley orbit interaction (VOI) (�k= in-plane electron
wave vector, �ε‖= in-plane electric field, and �μτ= valley mag-
netic moment) [30,31]. Such interaction is similar to the spin
orbit interaction (SOI) and constitutes a useful mechanism for
applications in the category of valleytronics.

Among 2D materials, TMDCs stand out as a unique family
characterized by the presence of strong SOI and plural angular
momentum DoFs—of spin, valley, and atomic orbital origins.
Pioneering studies [32–35] have convincingly demonstrated
the existence of rich quantum physics in TMDCs from intrigu-
ing interplay among coexisting DoFs and SOI. With TMDCs,
the spectrum of spintronic type physics is broadened for
varied applications. Figure 1 summarizes important elements
in single-particle, spintronic-type physics in solids, in the four
categories: spin, valley, spin valley, and spin valley orbital
(SVO), with the variety summarized here hosting a vast range
of possibilities, including all- spintronic and valleytronic
circuits. The figure places an emphasis on field control or
modulation of the physics. In general, electrical fields, as well
as magnetic fields in vertical [30,40–42] or in-plane directions
[30,43] can be introduced and coupled to the various magnetic
moments (or angular momenta), to tune the physics.

Figures 1(a) and 1(b) illustrate the modulation of electrical
nature via SOI and VOI mechanisms, respectively, showing
a similarity between the two, namely, that the presence of
an electric field results in an effective magnetic field ( �Beff )
and a corresponding interaction with the magnetic moment.
However, the similarity exhibited is superficial, since the
two mechanisms differ fundamentally in physics: SOI has a
relativistic origin, whereas VOI is a pseudorelativistic effect
determined by the band-structure physics. In addition, while
in the SOI case both the spin magnetic moment (�μs) and
electric field (ε) can be arbitrarily oriented, in the VOI case
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FIG. 1. The spintronic-type physics in solids, in the four categories: (a) spin, (b) valley, (c) spin valley, and (d) spin valley orbital physics,
with magnetic moments �μs, �μτ (τ = K, K ′ or 1, −1), and �μL in association with spin, valley, and atomic orbital DoFs, respectively. Panels
(a) and (b) show a unified methodology for electrical manipulation of electrons, based on the interaction between a pseudomagnetic field
�Beff ∝ �k × ε (ε= static electric field and �k = electron wave vector) and magnetic moments, e.g., �μs in (a) and �μτ in (b), with the interaction
mechanism being SOI in (a) for semiconductors such as InAs [36], InSb [37], InGaAs [38], etc., and VOI in (b) for 2pz electrons in graphene.
In panel (c), for conduction band electrons in TMDCs, spin and valley DoFs coexist, but the atomic orbital DoF is basically frozen at d0 with
feeble components of d±1 and p±1, [39] which induce a weak �μL as well as SOI coupling between spin and atomic orbital DoFs (∝ �μs · �μL). In
panel (d) for valence band holes in TMDCs, spin, valley, and atomic orbital (d±2) DoFs coexist, with a strong SOI-induced coupling between
spin and atomic orbital. In both panels (c) and (d), a conjugated relation due to the time-reversal symmetry (denoted by “T ” in the figure)
exists among spin, valley, and atomic orbital DoFs, where �μs and �μL are flipped for degenerate electron states opposite in τ .

the valley magnetic moment (�μτ ) derives from the circulating
current inside each hexagon of the honeycomb lattice and,
thus, always points out of plane (‖ẑ), which constrains the
corresponding ε( �Beff ) to be in-plane (out-of-plane), e.g., ε =
�ε‖, making VOI a valley index-conserved interaction. Overall,
the availability of and the flexibility in modulation via SOI or
VOI have profound implications for industrial applications,
e.g., electrical gate-controlled ICs.

Apart from the control, another critical issue—state coher-
ence faces spintronic type applications. Generally speaking,
robust state coherence is required for applications in a noisy
setting, in particular those at the room temperature. In connec-
tion with this respect, as well as for applications in general,
TMDCs exhibit the following band structure features with
important implications [29,39–42,44–47]. In the monolayer
case, they have a unit cell consisting of one transition metal
atom (M) and two chalcogen ones (X2), a semiconductor band
structure with direct band gap (1–2 eV) at Dirac points, and
valence (conduction) band edge states primarily derived from
the d±2 (d0) orbital of M. Due to the SOI in M, spin-orbit
splitting occurs at band edges, with the splitting much more
pronounced in the valence band (0.1–0.5 eV) than in the
conduction band (3–50 meV). The existence of band gap
makes it possible to create electric gate-defined confining
structures, e.g., quantum dots [48–51] or wires [52] useful for
general applications.

Figures 1(c) and 1(d) summarize the implications of
foregoing band structure features for pseudospin physics in
TMDCs. They show the coupling among spin, valley, and
atomic orbital DoFs, in the conduction and valence bands,
respectively. Due to such coupling, novel pseudospin states
emerge near the gap, as experimentally confirmed by the gen-
eration of valley polarization with optical excitations [32–34].
Notably, as shown in Fig. 1(c), since spin and valley in the
conduction band are only weakly SOI-coupled, they can be
used nearly independently and simultaneously [41]. Such ad-
vantage has recently been exploited, resulting in unique spin
valley quantum computing proposals [53–55] and versatile
electron qubit schemes [43,56].

However, as indicated in Fig. 1(d), a distinct type of pseu-
dospin physics exists in the valence band. At the valence band
maximum (VBM), a Kramers pair of states, denoted as |K〉
(or |VBM, K〉) and |K ′〉 (or |VBM, K ′〉) throughout the work,
are formed at K and K′ and characterized by opposite values
of quantum indices, (1/2 sz = 1/2, τ = 1 or K, lz = 2) and
(1/2 sz = −1/2, τ = −1 or K ′, lz = −2), respectively, where
sz, τ , and lz refer to spin, valley, and atomic orbital indices of
the electron, respectively. Such pair of states define a unique
“spin valley orbital pseudospin,” extremely noise-resilient
due to strong SOI-induced interlocking among sz, τ , and
lz against individual index fluctuations [29]. Experimentally
[57–59] and theoretically [60], the valley lifetime of holes
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is reported to be enhanced over that of electrons by 10–100
times reaching O (10 µs) at 5–10 K. Such advantage fosters
quite an exciting promise for pseudospin-based studies, appli-
cations at low temperatures such as quantum computing, and
also room-temperature devices such as pseudospin filters and
FETs, and it has motivated researchers from a wide range of
disciplines.

This work searches a theory for spin valley orbital pseu-
dospin physics studies and applications. Concerning the latter,
the following nontrivial issue is to be addressed, namely,
while the pseudospin coherence is a key advantage, the under-
lying mechanism for coherence—sturdy interlocking among
existing DoFs—also poses a tremendous challenge to the
control of pseudospins, especially in the case of pseudospin
flip manipulation. In view of such issue, this work proceeds
as summarized in the following. Overall, it formulates a
general theoretical framework for the pseudospin physics in
external fields, in the context of complicated TMDC band
structure. It starts by setting up multi-band “bare models,”
which account for effects of elastic valley-flip scattering due
to impurities in the bulk or boundaries of quantum structures.
Inclusion of such scattering, when combined with that of
spin and atomic orbital-mixing mechanisms as well as field
effects, enables the description of general pseudospin control
including pseudospin flipping. Bare models are then reduced
to an effective valence band theory encapsulating the low-
energy SVO physics including linear response of pseudospins
to external fields. Based on the theory, it discusses Rashba and
Zeeman-type effects in electric and magnetic fields, respec-
tively, of arbitrary orientations. Two paradigm configurations
of static external fields are identified for pseudospin control,
with one involving only vertical fields and the other in-plane
fields. For an example of applications, spin valley orbital
based quantum computing is proposed, with qubits formed
of quantum dot-confined holes. The theory is applied to
address the challenge in all-electrical, simultaneous quantum
control of spin, valley, and atomic orbital indices for qubit
manipulation, and demonstrate the viability of such control
with an additional dynamic, in-plane electric field in both con-
figurations. An optimized qubit manipulation time ∼O(ns) is
given.

This paper is organized as follows. To prepare for the
whole discussion of the work, Sec. II introduces elastic valley-
flip scattering. Section III presents the symmetry perspective
of SVO physics in external fields and demonstrates the two
configurations of interest for pseudospin control. Section IV
presents bare models and the main result—effective theory
of field-modulated SVO physics, with a discussion of Rashba
and Zeeman-type field effects. Section V presents the SVO-
based quantum computing—qubit states and qubit manipu-
lation via external field modulation. Section VI concludes
the study. Appendix A summarizes a few important matrix
elements used in this work. Appendix B provides a supple-
ment of certain mathematical details for bare models. Ap-
pendix C summarizes the main theoretical tool of this work—
Schrieffer-Wolff reduction, and applies it to the derivation
of effective theory, as well as systems of dynamic electric
field-driven qubits. Expressions of coupling parameters in
the theory in terms of bare ones are derived. Appendix D
presents a discussion of elastic scattering, including both

FIG. 2. (a) Illustration of an armchair nanoribbon and the first
Brillouin zone of underlying bulk lattice. The confinement potential
UQW is taken to be piecewise constant. A K-electron with wave
vector “K + k” is scattered into a K ′-electron with wave vector
“K′ + k′”. (b) Illustration of the QD potential profile, which consists
of a harmonic potential (Uquad ) in the armchair direction and UQW in
the zigzag direction.

valley-conserving and valley-flipping ones that enter bare
models.

II. ELASTIC VALLEY-FLIP SCATTERING

For complete pseudospin control, one must be able to
“rotate” a pseudospin arbitrarily, in the two-state space ex-
panded by {|K〉, |K ′〉}. This includes the pseudospin flip
|K〉 ↔ |K ′〉 as an important type of manipulation. As such flip
consists partially of reversing the valley index, the existence
of a mechanism to couple opposite valleys, or flip valley, is a
necessary condition for complete pseudospin control.

Elastic carrier scattering can change the wave vector and
compensate for the difference between K and K′, providing
valley-flip coupling. Such scattering occurs spontaneously at
impurities or, in a more controlled fashion, at boundaries in
quantum structures. We denote Uelastic as the corresponding
scattering potential energy.

For quantum structures, we focus specifically on the arm-
chair nanoribbon-based quantum wires (QWs) and quantum
dots (QDs) with confinement potentials shown in Fig. 2. In
these structures, since the wave vectors at K and K’ are normal
to the armchair edge, the edge scattering can effectively pro-
vide the wave vector difference needed for valley flip. In the
case of QDs, the scattering can be optimized using a triangular
QD with all armchair edges [61]. For a similar purpose, a
sharp confining boundary is preferred over a graded one. In
this work, however, we do not attempt to maximize valley-flip
scattering. Instead, we focus on structures with an intermedi-
ate coupling, for example, a rectangular QD defined by sharp
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armchair edges and graded zigzag edges, with a quadratic
confining potential profile in association with graded edges
as shown in Fig. 2. Such structures allow for an analytical
treatment as well as possible experimental realization, and
the corresponding study should be sufficiently informative for
assessing general quantum structures.

In general, all-gate patterning technique may be applied
to electrostatically define nanoribbons or QDs, depending
on the availability of advanced lithography facilities with
sharp, lateral pattern defining capacity [48–52]. In a somewhat
varied approach, the QD may be gate-patterned in an already
grown armchair nanoribbon, with ribbon edges serving as
boundaries of the QD on two sides. This approach would
require a passivation of the surface states [62] on armchair
edges. In yet another alternative, the QD may be fabricated
in a lateral TMDC-based heterostructure, where the valence
band offset between materials serves to confine a hole [63,64].
Overall, in general quantum structures, Uelastic can include
both electric gate-induced confinement potential and valence
band offset.

In this presentation, Uelastic is taken to be nonmagnetic and
an even function under the reflection z → −z. Generalization
of the theory to arbitrary Uelastic is possible at the cost of
increased presentation complexity. Specifically, we consider

(i) Uelastic =
∑

Ri

vimpurity(�r − �Ri ), (2)

where Ri denotes impurity position, in the case of a bulk with
a random, dilute distribution of identical impurities;

(ii) Uelastic = UQW(y)

= V0[θ (−Wy/2 − y) + θ (y − Wy/2)], (3)

in the case of a nanoribbon, where V0 is the barrier height and
Wy is the y dimension; or

(iii) Uelastic = UQD(x, y) = Uquad(x) + UQW(y),

Uquad(x) = (1/2)m∗ω2
x x2, (4)

in the case of a QD. The harmonic potential energy Uquad(x)
provides the x-confinement and gives a corresponding x
dimension Wx ∼ (h̄/m∗ωx )1/2 (m∗= hole effective mass =
O(me); me = electron mass in vacuum; ωx = frequency
parameter for the harmonic potential). In practical quantum
structures, Uelastic in (ii) and (iii) is defined basically with a
unit-cell scale resolution, meaning that Uelastic actually varies
insignificantly in a unit cell.

III. SYMMETRY PERSPECTIVE

For a SVO pseudospin, with more DoFs than just valley
involved, the elastic scattering mechanism alone is insufficient
to flip such pseudospin. In the case of nanoribbons, due to
the insufficiency, energy subbands are always valley-polarized
in spite of the ribbon edge scattering [62]. We provide an
analysis below for such valley rigidity, show that it has a
symmetry origin, and demonstrate configurations of external
fields that can successfully break the symmetry and lift the
rigidity, effecting a pseudospin-flip coupling for pseudospin
control.

A. Vertical configuration

This configuration consists primarily of a static, vertical
electric field εz. The following explains the role of εz in
symmetry breaking.

We use an armchair nanoribbon for the discussion. When
free of external fields, it has the symmetry of time-reversal
(T ), and mirror reflection with respect to the layer plane (Mz )
as well as the center axis (My). When εz �= 0, My, and T are
preserved but Mz is broken.

For εz = 0, energy eigenstates are valley-degenerate and
denoted as |K, kx, n〉 and |K ′, kx, n〉 (n = subband index, and
kx = wave vector in the x direction). In the general case where
εz may be finite, it can be shown that the common eigenstates
of both energy and My can be written in the following forms:

|±, kx〉y =
∑

m

Cm(εz )[|K, kx, m〉 ± i|K ′, kx, m〉], (5)

with

My|+, kx〉y = |+, kx〉y, My|−, kx〉y = −|−, kx〉y. (6)

Equation (5) expresses a possible occurrence of mixing
between subbands when εz� 0. For εz = 0, the mixing van-
ishes, and it reduces to the simple result where Cn = 1 and
Cm �=n = 0 for a certain subband of index “n,” for example.
Above, a subscript “y” is attached to the state to indicate that
the pseudospin is “polarized in the y direction,” as implied by
Eq. (6).

Under the Mz operation, the above eigenstates transform
into each other, with

Mz|+, kx〉y = |−, kx〉y, Mz|−, kx〉y = |+, kx〉y. (7)

Equation (7) implies the following. For εz = 0, with Mz

a symmetry of the system, the equation constrains |+, kx〉y

and |−, kx〉y or, the corresponding basis states—|K, kx, n〉
and |K ′, kx, n〉, for example—to be degenerate. For εz �= 0,
Mz becomes broken, invalidating the constraint. Effectively,
it implies a possible energy splitting between |+, kx〉y and
|−, kx〉y or, equivalently, a coupling between the basis states
|K, kx, n〉 and |K ′, kx, n〉. Such coupling can then be exploited
for the flip manipulation |K〉 ↔ |K ′〉. We denote the coupling
as H (Rashba)

εz
, and discuss its nature next.

Under the T operation, we have

T |+, kx〉y = i|−,−kx〉y, T |−, kx〉y = −i|+,−kx〉y, (8)

which constrains {|+, kx〉y, |−,−kx〉y} to be degenerate.
When combined with the possible |+, kx〉y − |−, kx〉y split-
ting, it implies the existence of a Rashba-type energy splitting
between “+” and “−” bands. A numerical tight-binding cal-
culation verifies this expectation, as shown in Fig. 3(a), which
presents Rashba-split subbands. From such splitting, H (Rashba)

εz

can be deduced with a simple perturbation-theoretical ar-
gument for two-state systems, which gives the following
Rashba-type form

H (Rashba)
εz

∝ εzkx, (9)

in the leading order when kx ∼ 0.
The requirement of fields varies in the case of a QD, as

shown in the top graph of Fig. 3(a). Two additional fields are
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FIG. 3. (a) Subband structure with Rashba type energy splitting,
in a WSe2 armchair nanoribbon in the vertical-field configuration,
with εz = 10 mV/a (solid black arrow) and Wy = 9a. (b) Subband
structure with Zeeman type energy splitting, in a WSe2 armchair
nanoribbon in the in-plane-field configuration, with Bx = 1T (solid
black arrow) and Wy = 9a. The tight-binding model parameters here
are adopted from Refs. [39,42]. Red thin dashed lines portray addi-
tional confinement, besides that provided by ribbon edges, for a QD.
Red dashed arrows denote additional fields required for pseudospin
control in the QD structure, in the two configurations.

introduced. First, in a QD it has the vanishing expectation
value 〈H (Rashba)

εz
〉QD ∝ 〈kx〉QD = 0 for the coupling. To get

around the issue, an ac electric field εac in the x direction, with
frequency ωac, is introduced into the configuration. Second,
for the ac field to work effectively, the carrier must be in
resonance with εac. Therefore, a vertical magnetic field Bz is
further included to Zeeman-split |K〉 and |K ′〉, with the corre-
sponding Larmor frequency ω⊥

L = (Zeeman energy)/h̄ ≈ ωac

satisfying the resonance condition. Section V provides more
details, when demonstrating a complete pseudospin control in
the QD case.

B. In-plane configuration

This configuration consists primarily of a static, in-plane
magnetic field. We again use the nanoribbon as an example
and take the magnetic field in the x direction (Bx ). With the
field, the spin Zeeman interaction ∝ sxBx is introduced into
the system (�s = Pauli spin operator), which can flip a spin and
hence assist the |K〉-|K ′〉 coupling. Other magnetic effects,
e.g., the Landau orbital quantization, cannot directly induce
pseudospin flip and, hence, would only produce higher-order
corrections.

In the presence of Zeeman interaction, the composite MzMy

and T My are both symmetry elements of the system. For
example, when applying to a spin, MzMy ∼ szsy and thus
commutes with sxBx.

The common eigenstates of energy and MzMy are given by

|±, kx〉x =
∑

n

Cn(Bx )[|K, kx, n〉 ± |K ′, kx, n〉], (10)

with

MzMy|+, kx〉x = −i|+, kx〉x, MzMy|−, kx〉x = i|−, kx〉x.

(11)

The subscript “x” above indicates that the pseudospin is
“polarized in the x direction.”

Under T My, we have

T My|+, kx〉x = i|+,−kx〉x, T My|−, kx〉x = i|−,−kx〉x.

(12)

This constrains {|+, kx〉x, |+,−kx〉x} as well as {|−, kx〉x,

|−,−kx〉x} to be pairs of degenerate states. Therefore, the
subbands show a Bx-induced Zeeman-type splitting, denoted
as “h̄ω

‖
L,” between the “+” and “−“ states. This expectation is

confirmed by a numerical tight-binding calculation, as shown
in Fig. 3(b), which presents Zeeman-split subbands. With a
perturbation-theoretical argument, it points to the existence of
Bx-induced |K〉-|K ′〉 coupling.

In the in-plane configuration, electric pseudospin control
can be achieved by creating an electric coupling between “+”
and “−” bands with, for example, the VOI derived from a
static electric field εy. Based on Eq. (1), HVOI ∝ τεykx and,
hence,

〈+, kx|HVOI|−, kx〉x ∝ εykx, (13)

giving a coupling between the “+” and “−” states.
In the case of a QD, the coupling vanishes because

〈kx〉QD = 0. One can again solve the issue by introducing into
the configuration an ac electric field εac in the x direction, with
the frequency ωac satisfying the resonance condition ωac ≈
ω

‖
L, as discussed in Sec. V. The overall field configuration is

shown in the top graph of Fig. 3(b).
The above symmetry-based analysis not only yields use-

ful configurations for pseudospin control, it also sets up a
constraint on the construction of effective theory—the theory
should incorporate correct symmetry and reproduce the same
symmetry-breaking phenomena demonstrated above, as we
proceed to the next section and present the theory.

IV. THE EFFECTIVE THEORY

Valence (conduction) band edge states in a TMDC crystal
are primarily composed of d±2 (d0) orbitals of the metal atom
with the symmetry of even parity under Mz. However, as the
pseudospin flip |K〉 ↔ |K ′〉 requires multiple quantum index
mixing, it generally involves plural intermediate states both
near and distant from the band gap which derive from, besides
d0 and d±2, also d±1 with odd parity under Mz. Figure 4
summarizes the TMDC band structure, with a tabulation of
band edge states at Dirac points both near and away from the
gap. It describes the symmetry of their wave functions in terms
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FIG. 4. Irreducible representations and atomic orbital characters
of valence and conduction band states at K and K′, based on TMDC
band structure calculations, e.g., Ref. [47]. Lower-cased letters “p”
and “d” denote primary constituent atomic orbitals of states while
upper-cased letters “P” and “D” denote corresponding irreducible
representation indices of states. “c” denotes the bottom conduction
band, “c + 1” the next conduction band, and etc. Here, d-orbitals
come from metal M while p-orbitals from chalcogen X .

of the quasiatomic orbital notations, e.g., D0, P0, D±2, and
D±1, with corresponding wave functions �D0 ∼ z2, �P0 ∼ z,
�D±2 ∼ (x ± iy)2, and �D±1 ∼ (x ± iy)z. (Lower-cased letters
“p” and “d” are reserved for true atomic orbitals.) These
notations of ours correspond to the standard group irreducible
representations (IR) A1, A2, E1± and E2∓, respectively, of
C3h—the 2D hexagonal symmetry group and are introduced
here to describe states and specify in particular their transfor-
mation properties under C3h symmetry operations. For exam-
ple, |VBM, K〉 and |VBM, K ′〉 have IR indices D2 (or E1+)
and D−2 (or E1−), respectively, in our (standard) notations.
The figure also presents the primary constituent atomic orbital
of each state, e.g., d0, d±2, etc. As it shows, they are closely
correlated with the corresponding IR indices D0, D±2, etc.,
justifying the quasiatomic orbital notations introduced by us.
However, the correlation breaks down when atomic p-orbitals
of chalcogen (X ) are primary, due to the following reason. In
our convention, the metal ion (M) is taken to be the center
about which one performs a symmetry operation. Therefore,
in the case of p-orbitals the correlation would hold if they
belong to M but would not if they belong to X . Overall, the
IR index specifies the wave function symmetry of a state with
respect to the metal ion.

Nontrivial elements of C3h consist of C3 and Mz, with C3

the threefold rotation and Mz the mirror reflection with respect
to x-y plane. Table I tabulates transformation properties of
various states under C3 and Mz as well as the correspondence
between our and standard group-theoretical notations.

Under C3 and Mz, the states are transformed as follows:
(1) C3�D0(P0 ) = �D0(P0 ), C3�D∓1(±2) = ω±�D∓1(±2) , where

ω± = e±i2π/3;

TABLE I. Summary of the transformation of various states and
the correspondence between our and the standard group-theoretical
notations. ω± = e±i2π/3.

C3h irreducible representation
(standard notation) A1 A2 E1± E2±

Our notation D0 P0 D±2 D∓1

State symmetry ∼z2 ∼z ∼(x ± iy)2 ∼(x ∓ iy)z
Symmetry operation C3 1 1 ω± ω±

Symmetry operation Mz 1 −1 1 −1

(2) Mz�D0 = �D0 , Mz�P0 = −�P0 , Mz�D±2 = �D±2 ,

Mz�D±1 = −�D±1 .
A knowledge of the state symmetry and transformation

properties is useful when calculating matrix elements between
the states. Some key matrix elements used in this work are
given in Appendix A.

The effective theory of SVO physics is presented below, in
the context of complicated TMDC band structure summarized
in Fig. 4. It accounts for field effects in electric ε[ε = (�ε‖, εz ),
�ε‖ = (εx, εy)] and magnetic B [B = ( �B‖, Bz ), �B‖ = (Bx, By)]
fields, in the linear regime, and provides a theoretical frame-
work for field modulation-based studies and applications in
SVO physics.

The theory is intended to cover both intra- and interval-
ley electron dynamics, with the intervalley part describing
the |K〉-|K ′〉 coupling. Figure 5 illustrates some of leading-
order contributions to the coupling, by showing corresponding
quantum paths and intermediate states involved. Basically, for
a SVO pseudospin to flip, spin, valley, and wave function
symmetry (or IR) indices of the pseudospin must all switch.
As the figure shows, the IR index can be flipped by either
Uelastic-induced scattering or other couplings. Depending on
whether the IR index is conserved or not during Uelastic-
induced scattering, the paths are classified into Class A and
Class B as demonstrated in the figure: Class A of “IR-
diagonal” nature and Class B of “IR-flipped” nature.

Section IV A presents the theory and then discusses impor-
tant field effects based on the theory. Section IV B describes
bare models. Section IV C provides expressions of effective
coupling parameters.

A. Theory and field effects

The theory describes the quantum mechanics of near-
band-edge valence band states, in the pseudospin state space
expanded by {|K〉, |K ′〉}. A general state in the space is
expressed as |�〉 = FK |K〉 + FK ′ |K ′〉, where FK and FK ′ are
envelope functions. They are governed by the following wave
equation:

Heff

(
FK

FK ′

)
= E

(
FK

FK ′

)
, (14)

where Heff is the Hamiltonian. We divide Heff into diag-
onal (pseudospin-conserving) and off-diagonal (pseudospin-
flipping) parts, i.e.,

Heff = H (diag)
eff + H (off−diag)

eff . (15)
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FIG. 5. Examples of leading-order quantum paths for SVO
pseudospin flipping (|K〉 → |K ′〉), in the presence of (a) εz and
(b) �B‖. Panel (a) shows a four-step, Class A quantum path
(brown arrows) involving parity flip (VBM, K ) → (n2, D−1, ↑, K ),
SOI coupling (∝ �L · �s) (n2, D−1, ↑, K ) → (n1

′, D0, ↓, K ), �k · �p cou-
pling [65] (n1

′, D0,↓, K ) → (n4, D−2, ↓, K ), and elastic scatter-
ing (n4, D−2, ↓, K ) → (VBM, K ′). Panel (b) shows a two-step,
Class B path (purple arrows), which consists of elastic scatter-
ing (VBM, K ) → (v, D−2,↑, K ′) and spin flip (v, D−2, ↑, K ′) →
(VBM, K ′). Here, the notations |VBM, K〉[= (v, D2,↑, K )] and
|VBM, K ′〉[= (v, D−2, ↓, K ′)] are used in place of |K〉 and |K ′〉,
respectively, to explicitly indicate their locations at the valence band
maximum. (n1, D0, ↑), etc., denote intermediate states. “n1,” etc.,
are band indices. Specifically, “v” = valence band, h̄�L = angular
momentum operator, and �s = Pauli spin operator [�s‖ = (sx, sy )].

Each part is presented and discussed below. A number
of coupling parameters are present in Heff and reflect the
existence of rich physics in the pseudospin space. Overall,
five primary ones, {g⊥

eff , g(2)‖
eff , g(3)‖

eff , RVOI,eff , R(4)⊥
SOI,eff}, and two

secondary ones, {g(3,corr)‖
eff , R(4,corr)⊥

SOI,eff }, characterize Heff as well
as the linear response of a pseudospin to external fields, with
secondary parameter-dependent Hamiltonian terms taken to
be “corrections”, as they are dominated by corresponding
primary ones (see Appendix D). Exact role of each parameter
will become clear below. Expressions of these parameters are
presented in Sec. IV C and Appendix C.

The diagonal part governs the intra-valley dynamics and is
given by

H (diag)
eff = ( ��2/2m∗+e�ε‖ · �r+Uelastic )1 + H (val)

VOI + 1
2 E⊥

Z,effvz,

(16)

where �� = �p + e �A, �A = vector potential due to Bz, and
(vx, vy, vz ) = Pauli “pseudospin” operator in the pseudospin

state space. Specifically, vz = (1 0
0 −1) in the basis {|K〉, |K ′〉},

etc. The first term describes the orbital part of dynamics,
in external fields �ε‖ and Bz, and the potential Uelastic. The
remaining terms predict two important field effects on the
pseudospin part.

1. In-plane Rashba effect due to�ε‖

H (val)
VOI is the valley orbit interaction given by

H (val)
VOI = RVOI,eff ( �� × �ε‖)zvz. (17)

Let ε = εyŷ and B = 0. Then H (val)
VOI leads to a Rashba

energy term,

〈τ, kx, ky|H (val)
VOI |τ, kx, ky〉 = τα‖kx, α‖ = h̄RVOI,effεy, (18)

for bulk states [τ = 1 (or K) or −1 (or K′)], giving an energy
splitting “2α‖kx” between the states |K, kx, ky〉 and |K ′, kx, ky〉.
Here, α‖ is the corresponding Rashba effect constant. With
a similar argument, this effect exists in the nanoribbon case
between subband states of opposite valleys, e.g., |K, kx, n〉 and
|K ′, kx, n〉 (n = subband index) in both armchair and zigzag
nanoribbons.

As the effect arises out of the VOI, RVOI,eff is the only
relevant coupling parameter in the effect.

2. Vertical Zeeman effect due to Bz

E⊥
Z,eff = g⊥

effμBBz in the last term of H (diag)
eff . For ε = 0 and

B = Bzẑ, it results in a Zeeman type splitting “E⊥
Z,eff ” between

|K, kx, ky〉 and |K ′, kx, ky〉 in the bulk case as well as between
corresponding subband states in both armchair and zigzag
nanoribbons, with g⊥

eff the corresponding g factor in this effect.
g⊥

eff consists of two parts, namely, “ge” and “gvalley-orbital”
ge derives from the existence of �μs, giving ge = 2, while
gvalley-orbital from that of �μτ and �μL. For the expression of
gvalley-orbital, see Sec. IV C.

Note that g⊥
eff is the only relevant coupling parameter in the

present effect.
The off-diagonal part of Heff is given by

H (off−diag)
eff

= −iν+

{
1

�
R(4)⊥

SOI,effεz
{{

�+,U (IR−diag)
elastic e−2iKy

}
+

+ {
�−, R(4,corr)⊥

SOI,eff

(
U (IR−flip)

elastic

)
−e−2iKy

}
+
}

+ 1

�
μBB−

{
ig(2)‖

eff

(
U (IR−flip)

elastic

)
−e−2iKy

+ a

h̄
g(3)‖

eff

{[
�−,U (IR−diag)

elastic e−2iKy
]

+[
�+, g(3,corr)‖

eff

(
U (IR−flip)

elastic

)
+e−2iKy

]}}}
+ H.c. (19)

(B± = Bx ± iBy, �± = �x ± i�y, � = typical energy
gap, ν+ = 1

2 (vx + ivy) = (0 1
0 0), etc.) H (off−diag)

eff describes the
|K〉-|K ′〉 coupling and involves quite a few coupling param-
eters, namely, {g(2)‖

eff , g(3,corr)‖
eff , g(3)‖

eff , R(4)⊥
SOI,eff , R(4,corr)⊥

SOI,eff }. The
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superscript number of a parameter denotes the perturbation-
theoretical order of quantum paths involved in the corre-
sponding Hamiltonian term. Several valley-flipping potential
energy functions appear in H (off−diag)

eff . They are derived from
Uelastic, with the superscript “IR-diag” (“IR-flip”) indicating
that the underlying valley-flip scattering conserves (changes)
the irreducible representation index of electron state. Such
derived functions are obtained in Appendix D and given below
in a few cases of interest.

(i) In the case of a bulk with random, dilute distribution of
identical, short-range impurities on M sites,

U (IR−diag)
elastic (�r) =

∑
Ri

vimpurity(0)δ �R(�r), �Ri
,

�U (IR−flip)
elastic (�r) = U (IR−diag)

elastic x̂, (20)(
U (IR−flip)

elastic

)
± = U (IR−diag)

elastic .

�R(�r) is the lattice site nearest to �r. Basically, we do not
distinguish between IR- flipped and conserved potentials in
this case.

(ii) In the case of quantum structures,

U (IR−diag)
elastic ≈ Uelastic,

�U (IR−flip)
elastic ≈ a �∇Uelastic,(

U (IR−flip)
elastic

)
± ≈ a

(
∂x ± i∂y

)
Uelastic (21)

(“a” = lattice constant).
The lengthy expression of H (off−diag)

eff has a number of
important mathematical features, which can be interpreted
from physics point of view, as follows. These features are
mostly closely connected with the pseudospin-flipping nature
of H (off−diag)

eff .
(i) Explicit vertical εz—and in-plane �B‖—dependences:

This feature agrees with the result in Sec. III of field configu-
rations derived with symmetry-based analysis for pseudospin
flipping manipulation.

(ii) Presence of the common factor “e−2iKy” throughout
the expression: This comes from the need to compensate for
wave vector difference between |K〉 and |K ′〉 in the flipping.

(iii) Presence of valley-flipping potential energy functions
throughout the expression: In particular, when �U (IR−flip)

elastic (�r) =
U (IR−diag)

elastic = 0, H (off−diag)
eff = 0, implying the absence of any

pseudospin flipping, as we would expect, for example, in the
trivial case of a defect-free bulk.

(iv) Presence of the momentum operator �� up to the first
order: Being a low-energy theory, Heff is primarily valid in
the vicinity of Dirac points. As will become clear later, its
derivation based on the Schrieffer-Wolff reduction involves a
perturbation—the “�k · �p” term up to the first order (�k = wave
vector relative to the nearest Dirac point). When making the
effective-mass approximation with the substitution h̄�k → ��
in the derivation, it results in the presence of �� in H (off−diag)

eff
also up to the same order.

(v) Separation of Uelastic into “IR-diag” and “IR-flip”
components: Quantum path Classes A and B have differ-
ent structures since they involve distinct scattering, namely,
IR-conserved and -flipped ones, respectively. This results in

a corresponding difference in the functional forms of de-
rived Hamiltonian terms, as is manifested in, for example,
U (IR−diag)

elastic - and (U (IR−flip)
elastic )−-dependent terms of the third-

order perturbation-theoretical order in H (off−diag)
eff , which en-

tangle with different operators, e.g., �− and �+, respectively.
This explains why the separation of Uelastic into “IR-diag” and
“IR-flip” components as well as a corresponding classification
of quantum paths into Classes A and B naturally enters the
formulation.

(vi) Presence of anti-commutators “{. . . .}+” in the εz-
dependent term and commutators “[. …]” in the �B‖-dependent
term: This difference in algebra leads to distinct functional
forms of the Rashba and Zeeman effects in association with
εz and �B‖. While a detailed discussion of the effects will
be presented below, here we briefly explain the correlation
between the algebra and the effects. Let kx be a quantum
index of the electron. With anti-commutators “{. . . .}+” in the
εz-dependent term, it is expected that {kx, ....}+ ∝ kx, giving a
linear-in-kx dependence in the εz-induced energy for kx ∼ 0,
which complies with the functional form – being odd in kx

of Rashba splitting obtained in Sec. III. While with commu-
tators “[. …]” in the �B‖-dependent term, it is expected that
[kx, ....] ∼ 0, hence forbidding any linear-in-kx dependence
in the �B‖-induced energy for kx ∼ 0, which complies with
the functional form—being even in kx of Zeeman splitting
obtained in Sec. III.

Below we consider the case of an armchair nanoribbon
in the x direction, for which Eq. (21) shows the presence of
confinement-induced �U (IR−flip)

elastic (�r) and U (IR−diag)
elastic . Therefore,

nontrivial consequences rising from pseudospin flipping are
expected. Specifically, Rashba and Zeeman effects due to
εz and �B‖, respectively, will be demonstrated, with detailed
mathematical expressions provided and shown to agree with
the result derived in Sec. III.

3. Vertical Rashba effect due to εz

For ε = εzẑ and B = 0, a coupling between subband states
|K, kx, n〉 and |K ′, kx, n〉 exists and is given by

〈K, kx ∼ 0, n|H (off−diag)
eff |K ′, kx ∼ 0, n〉 = iα⊥kx. (22)

Above,

α⊥ ≈ R(4)⊥
SOI,effεz

(
h̄2k2

y,n

2m∗

){
− 4

�

h̄2

√
2m∗V0

cos(KWy)

Wy

+ 8h̄

�

(
R(4,corr)⊥

SOI,eff

)a sin(KWy)

Wy

}
(23)

is the leading-order Rashba effect constant in the hard-wall

limit where V0 � h̄2k2
y,n

2m∗ (ky,n = (n + 1)π/W ). Thus, in the
subspace expanded by {|τ, kx, n〉’s, τ = K, K ′},

H (off−diag)
eff = −α⊥kxvy, (24)

where vy is the Pauli operator in the subspace. Due to the
coupling, energy eigenstates in the subspace are given by
|+, kx, n〉y and |−, kx, n〉y with a Rashba-split subband struc-
ture, in agreement with the result shown in Fig. 3(a). Our
theory yields a linear kx energy splitting “2α⊥kx” for states
near kx = 0. In addition, Eq. (23) predicts an oscillatory and
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decaying behavior in the energy splitting when increasing
Wy. Such prediction is numerically confirmed by the same
tight-binding calculation used to obtain Fig. 3(a).

In Eq. (22), subband state wave functions in the hard-wall
limit are given by

|τ, kx, n〉 = (1/Wx )1/2eikxxYn(y)|V BM, τ 〉,

Yn(y) = (2/Wy)1/2

{
cos(ky,ny), n = 2n′,
sin(ky,ny), n = 2n′ + 1,

(25)

which will be used again below.
Equation (23) indicates {R(4)⊥

SOI,eff , R(4,corr)⊥
SOI,eff } as the only

relevant coupling parameters in the present effect. More ex-
plicitly, we identify the SOI in the material as the under-
lying mechanism in the effect, based on the corresponding
expressions given below in Sec. IV C and Appendix C for the
parameters, which unambiguously indicates the SOI origin of
{R(4)⊥

SOI,eff , R(4,corr)⊥
SOI,eff }.

4. In-plane Zeeman effect due to
→
B‖

For ε = 0 and B = Bxx̂, a coupling exists between opposite
pseudospin states, which is given in the leading order by

〈K, kx ∼ 0, n|H (off−diag)
eff |K ′, kx ∼ 0, n〉 = −E‖

Z,eff/2,

E‖
Z,eff ≈ μBBx

(
h̄2k2

y,n

2m∗

){
− 8

�

(
g(3)‖

eff − g(2)‖
eff

)a sin(KWy)

Wy

− 16

�

(
g(3)‖

eff g(3,corr)‖
eff

)(√
2m∗V0

h̄
a

)
a cos(KWy)

Wy

}

(26)

in the hard-wall limit. Due to the coupling, energy eigen-
states in the subspace expanded by {|τ, kx, n〉’s, τ = K, K ′}
are given by |+, kx, n〉x and |−, kx, n〉x with a Zeeman-split
subband structure, in agreement with the result shown in
Fig. 3(b). Our theory yields a constant energy splitting “E‖

Z,eff ”
for states near kx = 0. In addition, Eq. (26) predicts an oscil-
latory and decaying behavior in the Zeeman energy splitting
when increasing Wy, and the prediction is numerically con-
firmed by the same tight-binding calculation used to obtain
Fig. 3(b).

Note that {g(2)‖
eff , g(3)‖

eff , g(3,corr)‖
eff } are the only relevant cou-

pling parameters in the present effect.
As the coupling parameters {g⊥

eff , g(2)‖
eff , g(3)‖

eff , g(3,corr)‖
eff ,

RVOI,eff , R(4)⊥
SOI,eff , R(4,corr)⊥

SOI,eff } determine magnitudes of the vari-
ous effects just discussed, order-of-magnitude expressions for
them are relevant and presented below for reference:

g⊥
eff = O[|Pvc|2/me�̄

2],

g(2)‖
eff = O

[
�

�so
λ

(IR−flip)
]

ge,

g(3)‖
eff = O

[
�̄

�so

]
ge,

g(3,corr)‖
eff = O[λ

(IR−flip)
],

RVOI,eff = O
[(

eh̄/me
2
)|Pvc|2/�̄2

]
,

R(4)⊥
SOI,eff = O

(
�soea2

h̄�

)
,

R(4,corr)⊥
SOI,eff = O

[
�

�so
λ

(IR−flip)
]
. (27)

[e = electron charge magnitude, �so= spin-orbit gap param-
eter in valence band, � = typical gap, Pvc= momentum ma-
trix element between conduction band minimum (CBM) and
VBM states in the same valley, and λ

(IR−flip)
is dimensionless

and represents the typical coupling strength for simultaneous
valley and IR index flipping relative to that for only valley
flipping (see Appendices B and D)]. Note that in the case
of g-factor, Eq. (27) yields g⊥

eff = O(1). For comparison, the
experimental value is given by g⊥

eff � 9 [66].
With Heff completely specified above, a summary of

symmetry properties of Heff is due here. In the case of
quantum structures, it can be verified that Heff respects T
and Mz, if we ignore external fields. Moreover, if Uelastic

is taken to be an even function of y, then it also respects
My, consistent with our choice of x axis in the armchair
direction.

B. Bare models

We introduce below only “minimal” bare models essential
for deriving primary parameter-dependent Hamiltonian terms
in Heff . Appendix B presents certain mathematical details of
the models and also an extension that can generate secondary
terms.

As illustrated earlier in Fig. 5, quantum paths are di-
vided into two classes—Class A of “IR-conserved” nature
and Class B of “IR-flipped” nature. They will be identified
and presented below for each configuration, according to the
two following rules. First, they contribute terms to H (off−diag)

eff

up to the first order in momentum ��. This rule is adopted
based on the evidence given in Sec. IV A that H (off−diag)

eff
with such terms produce vertical Rashba and in-plane Zee-
man effects in agreement with those in Sec. III derived
with symmetry-based analysis. Second, they generate primary
parameter-dependent terms in H (off−diag)

eff , i.e., those involving
{g(2)‖

eff , g(3)‖
eff , R(4)⊥

SOI,eff}. The two rules define the scope of mini-
mal models.

1. Twelve-state model for the vertical configuration

In the vertical configuration, the coupling between |K〉
and |K ′〉 comes primarily from the four-step quantum paths
consisting of (1) valley-flip scattering, (2) SOI-induced
spin flipping, (3) �k · �p coupling, and (4) εz-induced par-
ity mixing. With an analysis based on permutation of the
four steps, such paths involve ten intermediate states, with
five characterized by (D0, ↑, K ), (D0, ↓, K ), (D−2, ↓, K ),
(D−1, ↑, K ), or (D1, ↓, K ), in valley-K , and the rest
by (D0, ↑, K ′), (D0, ↓, K ′), (D2, ↑, K ′), (D−1, ↑, K ′),
or (D1,↓, K ′), in valley-K′, and the paths can be to-
tally captured by a 12-state �k · �p model constructed in
the following space, with basis states including the two
VBM states in addition to the intermediate ones, namely,
{|ϕ1〉=|VBM, K〉, |ϕ2〉=|� (n1 )

D0
,↑, K〉, |ϕ3〉=|� (n1

′ )
D0

,↓, K〉,
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FIG. 6. Four types of quantum paths, all belonging to Class A, for |K〉 → |K ′〉 in the vertical field configuration. They generate the
R(4)⊥

SOI,eff -dependent Hamiltonian term in H (off−diag)
eff . Each type consists of two paths of same color but different line styles, one solid and the

other dashed, with opposite operator sequences. (n1, D0,↓), etc. denote intermediate states.

|ϕ4〉=|� (n2 )
D−1

,↑, K〉, |ϕ5〉 = |� (n3 )
D1

,↓, K〉, |ϕ6〉=|� (n4 )
D−2

,↓, K〉,
|ϕ7〉=|VBM, K ′〉, |ϕ8〉=|� (n1 )

D0
,↓, K ′〉, |ϕ9〉=|� (n1

′ )
D0

,↑, K ′〉,
|ϕ10〉=|� (n2 )

D1
,↓, K ′〉, |ϕ11〉=|� (n3 )

D−1
,↑, K ′〉, |ϕ12〉=|� (n4 )

D2
,↑,

K ′〉}. Superscripts “n1,” etc., are representative band indices
of intermediate states. Here, we have used the notations
|VBM, K〉 and |VBM, K ′〉 in place of |K〉 and |K ′〉, respec-
tively, to explicitly indicate their locations at the valence band
maximum. ϕ7–ϕ12 are time reversal conjugates of ϕ1–ϕ6. This
is essential to ensure that the model so constructed satisfies
the T -symmetry, in the absence of any magnetic field. In the
model, quantum paths for the |K〉-|K ′〉 coupling are classified
into four types, according to the intermediate states involved,
as depicted in Fig. 6. Corresponding contributions from them
to the coupling are all given by fourth-order perturbation-
theoretical expressions. In contrast, other contributions
that involve intermediate states outside the 12-state space,
such as those of (D2, sz = ±1, K ) or (D−2, sz = ±1, K ′),
are generally of higher order. An example is given
below:

(VBM, K )
εzz→ (

�
(n2 )
D−1

,↑, K
) �L·�s→ (

�
(n1 )
D0

,↓, K
) �k· �p→ (

�
(v)
D2

,↓, K
)

Uelastic→ (
�

(n4 )
D2

,↓, K ′) �k· �p→(VBM, K ′), (28)

which is fifth-order and O[(h̄/me)�k · �p/�] smaller than lead-
ing, fourth-order ones [� = O(eV)].

The wave equation in the bare model is formu-
lated in the effective-mass approximation. Let the wave
function |�〉 = ∑

i Fi(x, y)|ϕi〉, where Fi’s are envelope

functions. Fi’s satisfy the following Hamiltonian equation:∑
j

(H⊥)i jFj = EFi,

H⊥ = Hband + H�k· �p + HSOI,off−diag + H⊥
ε

+ H⊥
Z + Udiag + UK↔K ′ . (29)

H⊥ is the Hamiltonian. Matrix elements of the various
terms in H⊥ are given in Appendix B. Hband describes the
“bare” energy bands of an electron and consists of only
diagonal matrix elements given by

(Hband )i j = (Ei + p2/2m⊥
i )δi j, (30)

where m⊥
i is the “bare” mass and Ei is the band edge energy

for basis state |ϕi〉. H�k. �p describes the �k · �p coupling “ h̄
me

�k · �p”.
We divide the SOI into HSOI,off−diag—the SOI-induced spin
flipping and the diagonal part, with the latter shifting the
band edge and merged into Hband. H⊥

ε describes εz-induced
parity-mixing between states. H⊥

Z describes the Zeeman inter-
action due to Bz.

Udiag and UK↔K ′ both derive from Uelastic. See Appendix D
for a detailed discussion. Udiag is the valley-conserving part,
with

(Udiag)i j = ηiUelasticδi j, (31)

where ηi is the relative potential strength for basis state |ϕi〉,
for a bulk, ηi = 1 for all states. For quantum structures, η1 =
η7 = 1 for the valence band states, and ηi �=1,7 depends on
band offsets. It differs from unity if band offsets result in a
difference in the quantum confinement potentials for |ϕ1〉 and
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FIG. 7. Four types of quantum paths for |K〉 → |K ′〉 in the in-plane-field configuration, with Type I, II, and III in Class A and Type IV in
Class B. Class A paths generate the g(3)‖

eff -dependent Hamiltonian term, while Class B paths generate the g(2)‖
eff -dependent term, in H (off−diag)

eff .

|ϕi〉. UK↔K ′ is the valley-mixing part given by

(UK↔K ′ )i�6, j�7 = (UK↔K ′ ) j�7,i�6
∗

= λi, jU
(derived)
elastic (�r; Gi, Gj )e

−2i �K ·�r . (32)

U (derived)
elastic is a potential energy function derived from Uelastic.

Gi and Gj are the irreducible representation indices of |ϕi〉
and |ϕ j〉, respectively. λi, j is a relative, dimensionless strength
parameter which depends on state indices. In particular, λi, j is
both spin and parity diagonal, since U (derived)

elastic is nonmagnetic
and even in z, the same as Uelastic. We provide U (derived)

elastic below
in a few cases of interest.

(i) In the case of a bulk with dilute, random distribution of
identical, short-range impurities on the M sublattice,

U (derived)
elastic (�r; Gi, Gj ) =

∑
Ri

vimpurity(0)δ �R(�r), �Ri
. (33)

(ii) In the case of quantum structures,

U (derived)
elastic (�r; Gi = Gj ) ≈ Uelastic(�r); (34)

U (derived)
elastic (�r; Gi �= Gj ) ≈ a(∂x, ∂y)−sgn(Gi,Gj )Uelastic(�r).

(35)

Above, sgn(Gi, Gj ) = −sgn(Gj, Gi ) = +, for (Gi, Gj ) =
(D0, D2), (D2, D−2), and (D−1, D1), and sgn(Gi, Gj ) = 0 oth-
erwise. (∂x, ∂y)0 = 0 and (∂x, ∂y)± = ∂x ± i∂y.

2. Eight-state model for the in-plane configuration

In the presence of an in-plane magnetic field �B‖, the
coupling between |K〉 and |K ′〉 comes from two-step quantum
paths consisting of (1) elastic scattering and (2) magnetic
field-induced spin flipping, or three-step ones consisting of

(1) elastic scattering, (2) magnetic field-induced spin flipping,
and (3) �k · �p coupling. Corresponding quantum paths are clas-
sified into four types as depicted in Fig. 7, with contributions
to the theoretical expressions involving intermediate states
of (D±2, sz = ±1, τ = K , K ′). Quantum paths using other
intermediate states make higher-order contributions, such as
the example given below

(VBM, K )
�k· �p→ (

�
(n′ )
D0

,↑, K
) �s‖· �B‖→ (

�
(n′ )
D0

,↓, K
)

Uelastic→ (
�

(n)
D0

,↓, K ′) �k· �p→(VBM, K ′), (36)

which is fourth order and O[(h̄/me)�k · �p/�̄] smaller than
third-order ones [� = O(eV)].

For the in-plane configuration, an 8-state �k · �p model is
constructed in the space with basis states {|ϕ1〉 = |VBM, K〉,
|ϕ2〉 = |� (v)

D2
,↓, K〉, |ϕ3〉=|� (n)

D−2
,↑, K〉, |ϕ4〉=|� (n)

D−2
,↓, K〉,

|ϕ5〉= |VBM, K ′〉, |ϕ6〉=|� (v)
D−2

,↑, K ′〉, |ϕ7〉 = |� (n)
D2

,↓, K ′〉,
|ϕ8〉 = |� (n)

D2
,↑, K ′〉}, where ϕ5–ϕ8 are time reversal conju-

gates of ϕ1–ϕ4.
The corresponding bare Hamiltonian is described below:

H‖ = Hband + H�k· �p + HSOI,off−diag + Udiag

+ UK↔K ′ + H‖
VOI + H‖

ε + H‖
Z . (37)

The first five terms on the right-hand side have the same
interpretations as their corresponding parts in H⊥. H‖

VOI
is

the VOI due to �ε‖, and H‖
ε is the electric potential energy

due to �ε‖. H‖
Z describes the Zeeman interaction due to �B‖.

We ignore the Landau orbital quantization in view of its
significant suppression by the vertical confinement in a 2D
layer. Detailed matrix elements of the various terms in H‖ are
given in Appendix B.

013076-11



FENG-WU CHEN AND YU-SHU G. WU PHYSICAL REVIEW RESEARCH 2, 013076 (2020)

C. Effective coupling parameters

A Schrieffer-Wolff transformation is performed on both models, reducing them to corresponding effective theories in the
small space expanded by {|K〉, |K ′〉}; see Appendix C. The reduction obtains coupling parameters in the effective theory in
terms of both band structure and “bare coupling” parameters, providing an important revelation to the connection between the
SVO physics and underlying band structure.

From the reduction of 12-state model,

R(4)⊥
SOI,eff =

√
3

8
�

(−i

me

)
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

∑
n1

′∈D0,
n2∈D−1,
n4∈D−2

λv,n4�
(n1

′,n2 )
so

(
eζn2v

)
Pn4n1

′

(EVBM − En2,↑,K )(EVBM − En1
′,↓,K )(EVBM − En4,↓,K )

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

∑
n1∈D0,
n3∈D1,
n4∈D−2

λv,n4�
(n3,n1 )
so

(
eζn4n3

)
Pn1v

(EVBM − En1,↑,K )(EVBM − En3,↓,K )(EVBM − En4,↓,K )

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣ ∑

n1,n1
′∈D0,

n2∈D−1

λn1
′,n1�

(n1
′,n2 )

so

(−eζn2v

)
Pn1v

(EVBM − En1,↑,K )(EVBM − En2,↑,K )(EVBM − En1
′,↓,K )

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

∑
n1∈D0,
n2∈D−1,
n3∈D1

λn2,n3�
(n3,n1 )
so

(−eζn2v

)
Pn1v

(EVBM − En2,↑,K )(EVBM − En3,↓,K )(EVBM − En1,↑,K )

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (38)

g⊥
eff = ge + gvalley−orbital, gvalley−orbital = 1

me

⎡
⎣ ∑

l∈D−2

|Pvl |2
(EVBM − El,↑,K )

−
∑
l∈D0

|Pvl |2
(EVBM − El,↑,K )

⎤
⎦. (39)

�(n1
′,n2 )

so , etc., are SOI strength parameters. ζn2v , etc., are matrix elements of “z”. For example, ζn2v = 〈� (n2 )
D−1

,↑, K |z|VBM, K〉.
Pn4n1 , etc., are momentum matrix elements. Above coupling parameter expressions have been summed over states with the same
irreducible representations as ϕ2–ϕ11, to account for all leading-order contributions.

From the reduction of 8-state model,

RVOI,eff = e

2h̄

(
h̄

me

)2
⎡
⎣∑

l∈D0

|Pvl |2
(EVBM − El,↑,K )2 −

∑
n∈D−2

|Pvn|2
(EVBM − En,↑,K )2

⎤
⎦, (40)

g(2)‖
eff = �λvvge

(EVBM − Ev,↓,K )
. (41)

g(3)‖
eff = −i

geh̄�

2mea

∑
n∈D−2

λv,nPnv

[
1

(EVBM − En,↑,K )(EVBM − En,↓,K )
+ 1

[(EVBM − En,↓,K )(EVBM − Ev,↓,K )]

+ 1

(EVBM − Ev,↓,K )(EVBM − En,↑,K )

]
. (42)

Expressions for the secondary parameters
{R(4,corr)⊥

SOI,eff , g(3,corr)‖
eff } are provided in Appendix C.

V. SPIN VALLEY ORBITAL QUANTUM COMPUTING

Spin valley orbital quantum computing is proposed here
with QD-confined holes as qubits. In such a scheme the qubit
state space is expanded by the Kramers pair of QD ground

states, one labeled as |K〉QD or |K, m = 0, n = 0〉 with lz = 2,
sz = 1 and the other |K ′〉QD or ||K ′, m = 0, n = 0〉 with
lz = −2, sz = −1. “m” and “n” refer to the quantum labels
for hole confinement in x and y directions, respectively.

Qubit states and all-electrical manipulation are discussed
in Sec. V A for the vertical configuration where ε = εzẑ and
B = Bzẑ, and in Sec. V B for the in-plane configuration where
ε = εyŷ and B = Bxx̂. In Sec. V C, we compare manipulation
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rates in the two configurations. In Sec. V D, we briefly remark
on issues of qubit initialization, readout, and qugates in the
scheme.

A. The vertical configuration

The physics of qubits in this configuration is controlled
by three Hamiltonian terms, as summarized below: (1) the
potential energy “Uelastic” (= UQD) in H (diag)

eff confines the
carrier and determines qubit states; (2) the Bz-induced vertical
Zeeman term “(E⊥

Z,eff/2)vz” in H (diag)
eff generates a Larmor

precession in the Bloch sphere representation around the “z
axis going through |K〉QD and |K ′〉QD,” providing one type
of qubit manipulation; and (3) the εz-induced vertical Rashba
term H (off−diag)

eff = −α⊥kxvy provides another type of manipu-
lation – a rotation around the “y axis” of Bloch sphere. Terms
(2) and (3) combined together accomplish an arbitrary qubit
manipulation.

1. Qubit states

Let δQW = QW quantization energy (in the y direction),
and δQD = QD quantization energy =min(δQW, h̄ωx ). The
analysis below is performed in the regime where δQD �
E⊥

Z,eff � ||H (off−diag)
eff ||2/δQD(|| …|| = norm), in the framework

of perturbation theory, with H (off−diag)
eff the perturbation. The

eigenstates of H (diag)
eff in the hard-wall approximation for

UQW(y) are approximately given by

|K, m, n〉 = Xm(x)Yn(y)|VBM, K〉,
|K ′, m, n〉 = Xm(x)Yn(y)|VBM, K ′〉,

Xm(x) = harmonic oscillator wave function,

Yn(y) = (2/Wy)1/2

{
cos(ky,ny), n = 2n′

sin(ky,ny), n = 2n′ + 1
,

m, n = 0, 1, 2 . . . , (43a)

with corresponding energy levels

Eτ,m,n = Em,n + τE⊥
Z,eff/2,

Em,n = (h̄ky,n)2/2m∗ + h̄ωx(m + 1/2). (43b)

The ground states |K, 0, 0〉 and |K ′, 0, 0〉 expand the qubit
state space. In writing the above eigenstates, we have ne-
glected the Landau orbital effect and made the replacement
�� → �p in H (diag)

eff due to two considerations. First, we work
within the regime where the QD confinement dominates over
the Landau orbital confinement. Second, the magnetic field
is primarily introduced to provide the Larmor precession for
qubit manipulation. As will be shown below, the manipulation
rate obtained in the present approximation scales with the
Zeeman energy E⊥

Z,eff in the leading order. Inclusion of the
Landau orbital effect here would only produce the next-order
correction in the discussion of manipulation.

Next, we discuss the effect of H (off−diag)
eff for qubit manipu-

lation. In the hard-wall approximation, we obtain

〈K|H (off−diag)
eff |K ′〉QD � iα⊥∣∣

n=0
〈kx〉QD + O(Bz ), (44)

where 〈kx〉QD = −i
∫ ∞
−∞ X ∗

0 (x)∂xX0(x).

Equation (44) shows that the mixing between |K〉QD and
|K ′〉QD scales, in the limit of weak Bz, with 〈kx〉QD. This result
has two implications. First, it vanishes since 〈kx〉QD ∝ d〈x〉

dt =
0 for an energy eigenstate due to the Ehrenfest theorem,
indicating a protection for the state from pseudospin flipping.
Second, when a pseudospin flipping manipulation is intended,
it suggests the application of an ac auxiliary electric field in
the x direction, which can generate a finite d〈x〉

dt as discussed
next.

2. Larmor precession, Rabi oscillation, and qubit manipulation

In the qubit state space, the Hamiltonian in the leading
order is given by (with E0,0 omitted from the diagonal terms)

H⊥
qubit � sgn(E⊥

Z,eff )
h̄ω⊥

L

2
vz − α⊥

∣∣∣∣
n=0

〈kx〉QDvy, (45)

where ω⊥
L is the Larmor frequency given by

ω⊥
L = |E⊥

Z,eff |/h̄. (46)

Next, consider the application of an ac in-plane electric
field εac cos(ωact ) in the adiabatic regime where h̄ωac � δQD.
We provide a relatively intuitive discussion within the adi-
abatic approximation [67] for this regime. In the ac field,
the total QD confinement potential in x direction becomes
time-dependent, with the center x0(t ) being oscillatory:

Uquad(x) + eεacx cos(ωact ) = (1/2)m∗ω2
x [x−x0(t )]2+O(εac)2,

x0(t ) = −eεac cos(ωact )/m∗ω2
x , (47)

correct up to O(εac). Within the adiabatic approximation,
it results in the following dynamical qubit state, namely, a
harmonic oscillator ground state with wave function centering
around x0(t ). This leads to

〈kx〉QD � m∗

h̄
dx0/dt . (48)

Appendix C provides an alternative derivation with the
Schrieffer-Wolff reduction.

The type of Hamiltonian in Eq. (45) along with Eq. (48)
constitutes the well-known problem, namely, a two-state sys-
tem with ac field-driven inter-state coupling [68]. Consider the
case where sgn(E⊥

Z,eff ) > 0 and sgn(α⊥|n=0)〉0. For ωac = ω⊥
L ,

the standard rotating wave approximation (RWA) yields

H⊥
qubit ∼ h̄

(
ω⊥

L /2 −�⊥
R e−iωact

−�⊥
R eiωact −ω⊥

L /2

)∣∣∣∣
ωac=ω⊥

L

, (49)

�⊥
R = |α⊥|n=0|eεacωac/2h̄2ω2

x , (50)

and the corresponding time-dependent wave solution de-
scribes a Rabi oscillation between states |K〉QD and |K ′〉QD

(�⊥
R = Rabi frequency). In the case where the initial state

ψ⊥(0) = |K〉QD, for example, it gives

ψ⊥(t ) = cK (t )|K〉QD + cK ′ (t )|K ′〉QD,

cK (t ) = cos(�⊥
R t ), cK ′ (t ) = i sin(�⊥

R t ), (51)

in the rotating reference frame.
Let Wx = 1.5 Wy = 15a, V0 = 1 eV, electric fields εac =

0.4 mV/a, εz = 10 mV/a, and magnetic field Bz ∼ 0.2 T. Us-
ing g⊥

eff = 9, we have E⊥
Z,eff = 0.11 meV. In the case of WSe2,
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with m∗ = 0.36 me [46], it gives δQW ∼ 98 meV, h̄ωx ∼
8.9 meV, α⊥ ∼ 0.18 meVa, and �⊥

R ∼ 72 MHz. In the case
of MoSe2, with m∗ = 0.6 me [46], we have δQW ∼ 59 meV,
h̄ωx ∼ 5.4 meV, α⊥ ∼ 0.032 meVa, and �⊥

R ∼ 35 MHz, due
to a weaker SOI.

B. The in-plane configuration

A close analogy exists between the qubit physics here
and that in the vertical configuration. In particular, (1) Bx

induces an in-plane Zeeman effect, by which the pseudospin is
quantized into states denoted below as |+〉QD and |−〉QD (sym-
metric and antisymmetric combinations of |K〉QD and |K ′〉QD,
respectively), with the Zeeman energy splitting E‖

Z,eff between
them. Such splitting generates a precession around the “x-axis
going through |+〉QD and |−〉QD” in the Bloch sphere; and
(2) εy induces an in-plane Rashba effect producing a coupling
“α‖〈kx〉QD” between |+〉QD and |−〉QD, which enables, in the
presence of an ac electric field in the x direction, a rotation
around the “z axis.”

1. Qubit states

We perform a perturbation-theoretical analysis in
the regime where δQW � ||eεyy|| and δQD � E‖

Z,eff �
||H (val)

VOI ||2/δQD. Consider H (diag)
eff |εy=0 first. Eigenstates of

H (diag)
eff |εy=0 are given by {|τ, m, n〉′s, τ = K, K ′}, the same as

those in the vertical case, but with energy levels given by

Em,n = (h̄ky,n)2/2m∗ + h̄ωx(m + 1/2), (52)

without the Zeeman term. The ground states |K〉QD and |K ′〉QD

again expand the qubit state space. Next, consider effects of
the terms ignored, in the qubit state space. Specifically, with

〈K|eεyy|K〉QD = 〈K ′|eεyy|K ′〉QD = 0,

〈K|H (val)
VOI |K〉QD = −〈K ′|H (val)

VOI |K ′〉QD = α‖〈kx〉QD,

〈K|H (off−diag)
eff |K ′〉QD � −E‖

Z,eff/2, (53)

it gives the following qubit Hamiltonian (with E0,0 omitted
from the energy terms)

H‖
qubit � −sgn(E‖

Z,eff )
h̄ω

‖
L

2
vx + α‖〈kx〉QDvz, (54)

up to the first order of εy and Bx. Here, the Larmor frequency
ω

‖
L = |E‖

Z,eff |/h̄. Since 〈kx〉QD = 0, eigenstates of H‖
qubit are

given by |+〉QD and |−〉QD, with

|±〉QD = (|K〉QD ± |K ′〉QD)/
√

2, (55)

which are split by the Zeeman energy E‖
Z,eff .

2. Larmor precession, Rabi oscillation, and qubit manipulation

For qubit manipulation, an ac-electric field in the x di-
rection, εac cos(ωact ), is introduced. In the adiabatic approx-
imation, we make the substitution 〈kx〉QD → m∗

h̄ dx0/dt , and
Eq. (44) becomes

H‖
qubit � −sgn(E‖

Z,eff )
h̄ω

‖
L

2
vz + 2sgn(α‖)h̄�

‖
R sin(ωact )vx,

(56)

in the basis of {|+〉QD, |−〉QD}, where �
‖
R is the Rabi fre-

quency given by

�
‖
R = |α‖|eεacωac/h̄2ω2

x . (57)

Equation (56) can also be derived with the Schrieffer-Wolff
reduction in Appendix C.

Consider the case where sgn(E‖
Z ) > 0 and sgn(α‖) > 0.

For ωac = ω
‖
L, the RWA yields

H‖
qubit ∼ h̄

( −ω
‖
L/2 −i�‖

Reiωact

i�‖
Re−iωact ω

‖
L/2

)
, (58)

and the corresponding wave solution is, in the case where the
initial state ψ‖(t = 0) = |+〉QD, for example, given by

ψ‖(t ) = c+(t )|+〉QD + c−(t )|−〉QD,

c+(t ) = cos(�‖
Rt ), c−(t ) = sin(�‖

Rt ), (59)

in the rotating reference frame.
Let Wx = 1.5 Wy = 15a, V0 = 1 eV, electric fields εac =

0.4 mV/a, εy = 5 mV/a and magnetic field Bx = 1 T . It gives
α‖ ∼ 2.5 meVa. In the case of MoSe2, we obtain E‖

Z ∼
30 μeV and �

‖
R ∼ 1.5 GHz. For WSe2, due to a stronger SOI,

it gives E‖
Z ∼ 20 μeV and �

‖
R ∼ 370 MHz.

Results in Secs. V A and V B are summarized in Fig. 8,
which shows the time evolution of qubit states in the Bloch
sphere, in both the lab and rotating reference frames.

FIG. 8. Qubit state evolution on the Bloch sphere, in both ver-
tical and in-plane field configurations. It shows |K〉QD → |K ′〉QD

(|+〉QD → |−〉QD) in the vertical (in-plane) configuration, viewed
in the lab reference frame (blue cure) and in the rotating reference
frame (red curve). For the plot, we use ω⊥

L = 40�⊥
R and ω

‖
L = 40�

‖
R.

Upper graphs depict corresponding transitions between qubit states,
which are affected by ac electric field-induced Rabi oscillations,
based on the SOI and VOI mechanisms in the vertical and in-plane
configurations, respectively.
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C. Comparison between configurations

We compare manipulation rates in the two configurations.
In the resonance condition where ωac = ω⊥

L in Eq. (50) and
ωac = ω

‖
L in Eq. (57), it shows that �⊥

R (�‖
R) is dependent

on the |K〉QD-|K ′〉QD (|+〉QD-|−〉QD) coupling strength, the ac
electric field strength, and the |K〉QD-|K ′〉QD (|+〉QD-|−〉QD)
energy splitting. Therefore, under the same ac electric field,
we obtain the following ratio:

�⊥
R /�

‖
R ∼

∣∣∣∣α⊥

α‖

∣∣∣∣E⊥
Z,eff

E‖
Z,eff

∼ h̄

a
√

m∗V0

(
g⊥

eff

g‖
eff

)(
Bz

Bx

)(
εzR

(4)⊥
SOI,eff

εyRVOI,eff

)
. (60)

Above, g‖
eff denotes O(g(2)‖

eff ) [= O(g(3)‖
eff )], and the contribu-

tions in �⊥
R and �

‖
R involving secondary coupling parameters

have been ignored. Two points are noted below based on
Eq. (60). First, since the vertical configuration depends on the
SOI for the manipulation,�⊥

R ∝ R(4)⊥
SOI,eff ∝ �so, which favors

W -based TMDCs over Mo-based ones. Second, the in-plane
configuration attempts to quantize the pseudospin “in the
plane” for the manipulation. Therefore, it has to overcome the
SOI that quantizes the spin in the out-of-plane direction. This
results in �

‖
R ∝ g‖

eff ∝ �so
−1, in favor of Mo-based TMDCs

over W -based ones.
We also note a few points in the numerical estimation

of Rabi frequencies given earlier. First, the dc electric field
strengths there were chosen to be as large as possible to obtain
favorable Rabi frequencies while at the same time it does not
invalidate in a qualitative way the theoretical analysis pre-
sented. For example, while trying to optimize εzR

(4)⊥
SOI,eff in the

vertical configuration, a conservative εz = 10 mV/a was used
which makes “eεza” two orders of magnitude below atomic
energy level spacing [∼O(eV)], to avoid a strong εz-induced
atomic orbital mixing. However, εy = 5 mV/a was taken to
maximize εyRVOI,eff in the in-plane configuration. In fact, at
εy = 5 mV/a, the corresponding potential energy across the
QD, “eεyWy,” is comparable to the quantization energy in the
y direction, and the quantum state wave function Yn(y) may be
modified quantitatively if not qualitatively. However, we do
not expect such modification to affect the order of magnitude
of Rabi frequencies estimated. In passing, we note that both
the vertical and in-plane electric field strengths envisioned
here are experimentally accessible. In particular, stronger
vertical and in-plane field strengths at 200 mV/aBLG (aBLG

= interlayer spacing in AB-stacked bilayer graphene) [69]
and 10 mV/Å [70], respectively, have been experimentally
demonstrated. Second, at the above field strengths, we have
εzR

(4)⊥
SOI,eff/εyRVOI = O(1), implying comparable SOI and VOI

effects. Third, Bz ∼ 0.2 T and Bx ∼ 1 T were used in the
estimation based on the following experimental consideration.
For Bz ∼ 0.2 T , the corresponding Larmor frequency ω⊥

L =
O(102 GHz) already approaches the somewhat challenging ra-
dio frequency range for electrical signal processing. However,
facilities to generate a magnetic field ∼1 T are available in a
number of labs. Overall, our estimation yields an optimized
manipulation time ∼(�‖

R)−1 ∼ O(ns), which is comparable to
that in the spin qubit case [71] and much shorter than the

decoherence time ∼O(10 μs) mentioned earlier in TMDCs
at 5–10 K [57–59] by a factor of 10−4–10−5, allowing for
successful error correction [72].

D. Initialization, readout, and qugates

The SVO pseudospin qubit naturally shares properties of
spin or valley qubits. As such, for initialization, readout, and
qugate implementation one may adapt the methods previously
developed for spin or valley qubits. For example, one may ini-
tialize the qubit by placing a “pseudospin valve”—the analogy
to a spin valve in close proximity [14]. For readout, the spin-
to-charge conversion scheme [73,74] could be adapted here as
well. Last, to implement a two-qubit gate (qugate), one could
place two qubits side by side, and make use of the electrically
tunable exchange coupling J between localized pseudospins
to perform a

√
SWAP operation [14,15]. Overall, all-electric,

universal SVO-based quantum computing is therefore feasible
according to Divincenzo’s criteria [72].

Last, we note that SVO qubits and qugates envisioned
here can be realized with gated structures. This makes the
corresponding quantum computing scalable. Combined with
the optimized electrical manipulation time ∼O(ns) in the case
of in-plane configuration and the experimentally observed,
much longer SVO decoherence time, favorable characteristics
are implied for SVO-based quantum computing.

VI. SUMMARY

In summary, for an insightful understanding and applica-
tions in spin valley orbital pseudospin physics, this work has
formulated an effective theory, with important field effects
included. Based on the theory, the linear response of a SVO
pseudospin such as Zeeman and Rashba-type effects has been
discussed, with a clear connection established among the
underlying band structure, external fields, and pseudospin
physics.

Specifically, the work has investigated the pseudospin-flip
coupling for pseudospin control, based on bare models that
elucidate quantum paths leading to the coupling. Reduction of
bare models yields the effective theory as well as expressions
of effective coupling parameters in terms of band structure
and bare coupling parameters. Two configurations, one with
vertical and the other in-plane fields, are identified as of partic-
ular interest for pseudospin manipulation. The manipulation
is shown, in the context of SVO-based quantum computing,
to be achievable via electrical interaction mechanisms—SOI
or VOI, and magnetic Zeeman effects. Overall, an optimized
electrical manipulation time ∼O(ns) is given.

In conclusion, field-modulatable spin valley orbital physics
carries numerous promises. Together with the distinct
electron-based spin valley physics in the same material, it
brings the rather appealing prospect—versatile spintronic-
type applications in a single material with flexible principles
as well as carrier species.
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APPENDIX A: MATRIX ELEMENTS

The information of state symmetry as given in Fig. 4 and
Table I helps the evaluation of matrix elements. Below we
provide examples of matrix elements used in our work and
evaluated with this information:

(1) Matrix elements involving the spin operator, such as〈
�

(n)
D2(D−2 ),↓, τ

∣∣∣sx

∣∣∣� (m)
D2(D−2 ),↑, τ

〉
= δnm(sx )↓↑, (A1)

(2) Matrix elements involving the momentum operator,
such as 〈

�
(n)
D−2

, sz, K
∣∣p+

∣∣� (m)
D2

, sz, K
〉 = 0,〈

�
(n)
D−2

, sz, K
∣∣p−

∣∣� (m)
D2

, sz, K
〉 = 2Pnm, (A2)〈

�
(i)
D0

, sz, K
∣∣p+

∣∣� ( j)
D2

, sz, K
〉 = 2Pi j,〈

�
(i)
D0

, sz, K
∣∣p−

∣∣� ( j)
D2

, sz, K
〉 = 0, (A3)

where the momentum matrix elements Pnm and Pi j are both
imaginary numbers. In addition, we have〈

�
(n)
D−2

, sz, K
∣∣p±

∣∣� (m)
D2

, sz, K
〉

= −〈
�

(m)
D−2

,−sz,−K
∣∣p±

∣∣� (n)
D2

,−sz,−K
〉
, (A4)〈

�
(n)
D0

, sz, K
∣∣p±

∣∣� (m)
D2

, sz, K
〉

= −〈
�

(m)
D−2

,−sz,−K
∣∣p±

∣∣� (n)
D0

,−sz,−K
〉
. (A5)

(3) Matrix elements involving z, such as〈
�

(n)
D±2(D0 ), sz, K

∣∣z∣∣� (m)
D∓1(P0 ), sz, K

〉 = ζnm, (A6a)〈
�

(n)
D−2

, sz, K
∣∣z∣∣� (m)

D2
, sz, K

〉 = 0, (A6b)

where ζnm is a real number of O(a). For time-reversal conju-
gated states, we have〈

�
(n)
D±2

, sz, K
∣∣z∣∣� (m)

D∓1
, sz, K

〉
= −〈

�
(m)
D∓1

,−sz,−K
∣∣z∣∣� (n)

E±2
,−sz,−K

〉
. (A7a)〈

�
(n)
D0

, sz, K
∣∣z∣∣� (m)

P0
, sz, K

〉
= 〈

�
(m)
P0

,−sz,−K
∣∣z∣∣� (n)

D0
,−sz,−K

〉
. (A7b)

(4) Matrix elements involving the SOI, such as

〈
�

(n)
D−1(D1 ),↑ (↓), τ

∣∣�(n,m)
so

4
�L · �s

∣∣� (m)
D0(D0 ),↓ (↑), τ

〉 =
√

3

8
�(n,m)

so ,

(A8)

where the SOI parameter �(n,m)
so is a real number. Moreover,〈

�
(n)
D−1(D1 ),↑ (↓), τ

∣∣�L · �s
∣∣� (m)

D0(D0 ),↓ (↑), τ
〉

= 〈
�

(m)
D0(D0 ),↑ (↓),−τ

∣∣�L · �s
∣∣� (n)

D1(D−1 ),↓ (↑),−τ
〉
. (A9)

APPENDIX B: TWELVE-STATE, EIGHT- STATE,
AND EXTENDED BARE MODELS

We present first the minimal models that generate primary
Hamiltonian terms in the effective theory. Following it, exten-
sion of the models for generating secondary terms is briefly
discussed.

1. Twelve-state model for the vertical configuration

The Hamiltonian has been given by Eq. (29) and is repeated
below

H⊥ = Hband + H�k· �p + HSOI,off−diag + H⊥
ε

+ H⊥
Z + Udiag + UK↔K ′ . (B1)

H⊥ is the Hamiltonian. Hband describes the “bare” energy
bands of an electron and consists of only diagonal matrix
elements given by

(Hband )i j = (Ei + p2/2m⊥
i )δi j, (B2)

where m⊥
i is the “bare” mass and Ei is the band edge en-

ergy for basis state |ϕi〉, including SOI-induced energy shift
�(ni,ni )

so (ni = band index of |ϕi〉). For the valence band, we
write �(v,v)

so = �so, which is the spin-orbit gap, with �so ∼
0.18 eV in MoSe2 and �so ∼ 0.46 eV in WSe2 [75]. H⊥

ε

describes parity-mixing between states due to εz, with

(H⊥
ε )i j = eεzζi j, ζi, j = 〈ϕi|z|ϕ j〉. (B3)

H⊥
Z describes the Zeeman interaction due to Bz, with

(H⊥
Z )i j = (1/2)g⊥

i μBBzδi j . (B4)

μB is the Bohr magneton and g⊥
i is the “bare” g-factor. For reference, below we provide the explicit matrix form of

(H�k· �p + HSOI,off−diag + H⊥
ε + H⊥

Z )i�6, j�6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 g⊥

1 μBBz
h̄

me
k+Pvn1 0 eεzζvn2 0 0

h̄
me

k−P∗
vn1

1
2 g⊥

2 μBBz 0 0
√

3
8�(n1,n3 )

so 0

0 0 1
2 g⊥

3 μBBz

√
3
8�(n1

′,n2 )
so 0 h̄

me
k+Pn1

′n4

eεzζvn2 0
√

3
8�(n1

′,n2 )
so

1
2 g⊥

4 μBBz 0 0

0
√

3
8�(n1,n3 )

so 0 0 1
2 g⊥

5 μBBz eεzζn3n4

0 0 h̄
me

k−P∗
n1

′n4
0 eεzζn3n4

1
2 g⊥

6 μBBz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B5)

Here, Pvn1 , etc., are the momentum matrix element parameters. In the presence of Bz, we make the minimal substitution
h̄�k → �� = �p + e �A in the above matrix, where �A is the corresponding vector potential .�(n1,n3 )

so , etc., are SOI strength parameters.
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Note that

(H�k· �p)i�7, j�7 = −[
(H�k· �p)

j−6,i−6

]∗
,

(HSOI,off−diag + H⊥
Z )i�7, j�7 = (HSOI,off−diag − H⊥

Z ) j−6,i−6,

(H⊥
ε )i�7, j�7 = −[

(H⊥
ε ) j−6,i−6

]∗
, (B6)

due to the time reversal symmetry.
For parameters in H⊥, the “bare” mass m⊥

1 and g-factor g⊥
1

are chosen in such a way to ensure that they are restored to
“renormalized” valence band parameters {m∗, g⊥

eff}, when the
bare model is reduced to the effective theory for valence band;
see Appendix C.

2. Eight-state model for the in-plane configuration

The Hamiltonian has been given by Eq. (37) and is repeated
below:

H‖ = Hband + H�k· �p + HSOI,off−diag + Udiag

+ UK↔K ′ + H‖
VOI + H‖

ε + H‖
Z . (B7)

The first five terms on the right-hand side have the same
interpretations as their corresponding parts in H⊥. H‖

VOI
is the

VOI due to �ε‖[= (εx, εy)], with

(H‖
VOI

)i j = δi jR
(i)
VOI(εy px − εx py),

R(i)
VOI = −R(i+4)

VOI , (B8)

where R(i)
VOI is the “bare” coupling parameter. H‖

ε is the electric
potential energy due to �ε‖, with

(H‖
ε )i j = e�ε‖ · �r‖δi j . (B9)

H‖
Z describes the Zeeman interaction due to �B‖ (=

(Bx, By)), with

(H‖
Z )i j = (1/2)geμB[(sx )i jBx + (sy)i jBy]. (B10)

We provide (H�k· �p + HSOI,off−diag + H‖
Z + H‖

VOI)i�4, j�4

explicitly below:

⎛
⎜⎜⎜⎜⎝

R(1)
VOI|�ε‖|

(
n(ε)

y px − n(ε)
x py

)
1
2 geμB| �B‖|n(B)

−
h̄

me
k−Pvn 0

1
2 geμB| �B‖|n(B)

+ R(2)
VOI|�ε‖|

(
n(ε)

y px − n(ε)
x py

)
0 h̄

me
k−Pvn

h̄
me

k+P∗
vn 0 R(3)

VOI|�ε‖|
(
n(ε)

y px − n(ε)
x py

)
1
2 geμB| �B‖|n(B)

−
0 h̄

me
k+P∗

vn
1
2 geμB| �B‖|n(B)

+ R(4)
VOI|�ε‖|

(
n(ε)

y px − n(ε)
x py

)

⎞
⎟⎟⎟⎟⎠. (B11)

Here,(n(ε)
x , n(ε)

x ) = (εx/|�ε‖|, εy/|�ε‖|), n(B)
± = n(B)

x ± in(B)
y ,

and (n(B)
x , n(B)

x ) = (Bx/| �B‖|, By/| �B‖|). Note that

(H�k· �p)i�5, j�5 = −[
(H�k· �p)

j−4,i−4

]∗
,

(H‖
Z )i�5, j�5 = [

(H‖
Z ) j−4,i−4

]∗
, (B12)

(HSOI,off−diag + H‖
VOI)i�5, j�5 = (HSOI,off−diag−H‖

VOI) j−4,i−4,

due to the time reversal symmetry. In the choice of various
parameters in H‖, the “bare” {m‖

1, ge, R(1)
VOI} are chosen to

give “renormalized” {m∗, g(3)‖
eff , RVOI,eff } when the model

is reduced to the effective theory for valence band; see
Appendix C.

3. Extended models

Primary Hamiltonian terms in H (off−diag)
eff are

{g(2)‖
eff , g(3)‖

eff , R(4)⊥
SOI,eff}-dependent. At the second order of

perturbation theory, it can be verified that only Class B paths
contribute to the g(2)‖

eff -dependent term, which are the Type-IV
paths shown in Fig. 7. In contrast, at the third and fourth
orders, Class A paths shown in Figs. 6 and 7 contribute to
{g(3)‖

eff , R(4)⊥
SOI,eff}-dependent terms.

Apart from the Class A paths in Figs. 6 and 7, it can
be verified that Class B paths exist at the third and fourth
orders. These additional paths lead to {g(3,corr)‖

eff , R(4,corr)⊥
SOI,eff }-

dependent terms. Such paths use intermediate states outside
those already included in the minimal models. Therefore, the
extension of models for deriving secondary terms consists of
identifying these additional paths and states and adding the
states to basis state sets of the models.

In some cases, a conjugated relation exists based on
which Class B paths can be built from Class A ones
in a systematic way. Consider the following Class A

path: (VBM, K )
sx−→ (� (v)

D2
,↓, K )

�k· �p= 1
2 (k+ p−+k− p+ )−−−−−−−−−−−→ (� (n)

D−2
,↓,

K )
Uelastic−−−→ (VBM, K ′), which is shown in Fig. 7 as a Type-

II path for the g(3)‖
eff -dependent term. In this path, the �k · �p

coupling beween the states of (D2,↓, K ) and (D−2,↓, K )
comes from the “k− p+” term, as can be verified using
Appendix A. However, through the alternative “k+ p−” term, it
can instead connect the (D2,↓, K ) state to an (D0,↓, K ) state,
and then arrive at (VBM, K ′) via the Uelastic-induced valley-flip
scattering. With (VBM, K ′) a state of D−2, this generates an
alternative path—a Class B one where the irreducible repre-
sentation index is varied from D0 to D−2 during the valley
flip, and thus contributes to the g(3,corr)‖

eff -dependent term. To
account for this alternative path, the new intermediate state of
(D0,↓, K ) would have to be added to the bare model. With an
analysis such as the above and beyond, we identify all Class B
paths that contribute to secondary terms and expand the basis
state sets to those of 24 and 12 states, for the vertical and
in-plane configurations, respectively. The additional states are
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given by{∣∣� (n2
′ )

D1
,↑, K

〉
,
∣∣� (n3

′ )
D−1

,↓, K
〉
,
∣∣� (n4

′ )
D−2

,↑, K
〉
,
∣∣� (n5 )

D2
,↓, K

〉
,∣∣� (n6 )

P0
,↑, K

〉
,
∣∣� (n6

′ )
P0

,↓, K
〉∣∣� (n2

′ )
D−1

,↓, K ′〉, ∣∣� (n3
′ )

D1
,↑, K ′〉,∣∣� (n4

′ )
D2

,↓, K ′〉, ∣∣� (n5 )
D−2

,↑, K ′〉, ∣∣� (n6 )
P0

,↓, K ′〉, ∣∣� (n6
′ )

P0
,↑, K ′〉},

(B13)

in the vertical case; and{∣∣� (n1 )
D0

,↑, K
〉
,
∣∣� (n1 )

D0
,↓, K

〉
,
∣∣� (n1 )

D0
,↓, K ′〉, ∣∣� (n1 )

D0
,↑, K ′〉},

(B14)

in the in-plane case.
Last, we note that the bare Hamiltonian operators in the

extension remain the same forms as those in minimal models
and so will not be redundantly presented.

APPENDIX C: THE SCHRIEFFER-WOLFF REDUCTION

The Schrieffer-Wolff (SW) reduction provides a way to
obtain from a bare model the effective Hamiltonian in a
reduced subspace [76]. In Appendix C 1, we summarize the
SW reduction in general. In Appendix C 2, we apply the
method to the case of ac field-driven qubits, which was dis-
cussed in Secs. V A and V B of the main text in the adiabatic
approach, for a verification of the approach. In Appendix C 3,
the method is applied to the derivation of effective coupling
parameters.

1. General result
We consider a general Hamiltonian in the perturbation

theory,

H = H0 + H1 + X1, (C1)

where H0 describes the unperturbed system, with eigenstates
{|m〉′s} and eigenvalues {Em

′s}. {|m〉′s} are used below as basis
functions. H1 is a time-independent perturbation, and X1 is
some additional perturbation of interest which could be time-
dependent or independent. We take the diagonal (H1)nn = 0
for simplicity.

Denote the subspace of interest with A, which is spanned
by {|n〉′s, n = 1, . . . , α}, and the subspace complementary to
A with B. The SW reduction consists of performing a similar-
ity transformation on H , yielding the effective Hamiltonian

H (A)
eff = eS[H0 + H1 + X1]e−S

= H0 + H1 + X1 + (1/2)[S, H1]+[S, X1] (C2a)

+ 1
2 {S2, X1}+ 1

6 [S3, X1] − SX1S − 1
2 [S, SX1S]

+ · · · (C2b)

in the subspace of A, where

S = S1 + S2 + S3 + · · · ,

(S1)nm = (H1)nm

En − Em
= O(H1),

(S2)nm = O(H1
2),

(S3)nm = O(H1
3), (C3)

with |n〉 and |m〉 above belonging to A and B, respectively.
S1, S2, and S3 are, respectively, of O(H1), O(H2

1 ), and O(H3
1 ),

and used to remove the H1-induced coupling between A and
B up to O(H1), O(H2

1 ), and O(H3
1 ), respectively. For complete

expressions of S2 and S3, see Ref. [77]. Below, we provide
only partial expressions

(S2)nm = (H1)nm′ (H1)m′m

(En − Em)(En − Em′ )
+ · · · ,

(S3)nm = (H1)nm′ (H1)m′m′′ (H1)m′′m

(En − Em)(En − Em′ )(En − Em′′ )
+ · · · , (C4)

which actually enter our study. The discussions in Appen-
dices C 2 and C 3 are based on Eqs. (C1)–(C4).

Equations (C2a) and (C2b) have important implications for
this work. For example, due to the presence of [S, X1]([S, H1])
in H (A)

eff , it shows that when X1 = 0 (H1 = 0) in the sub-
space of A, [S, X1] ([S, H1]) could still provide an “effec-
tive coupling” of O(H1)O(X1) [O(H1)2] between states in
A. Generalization to effective couplings of O(H2

1 )O(X1) and
O(H3

1 )O(X1) can be obtained from Eq. (C2b) and will be used
in Appendix C 3 for discussions there.

2. AC-field driven qubits

Consider now the QD envisioned in our work, which
is subject to the potential energy Uquad(x) + UQW(y) +
eεacx cos(ωact ). For reference, we reproduce Eq. (37) below:

Uquad(x)+eεacx cos(ωact ) = (1/2)m∗ω2
x [x−x0(t )]2+O(εac)2,

x0(t ) = −eεac cos(ωact )/m∗ω2
x . (37)

Correct up to O(εac), the equation describes a QD that
oscillates at the frequency ωac. It suggests us to work with
the transformed coordinates, namely, x′ = x–x0(t ), y′ = y, and
t ′ = t , in a reference frame moving synchronically with the
QD. Denote Hx,y,t as the QD Hamiltonian in the lab ref-
erence frame, with the corresponding Hamiltonian equation
Hx,y,tψ = ih̄∂tψ . Then, in the moving reference frame, it
transforms to

Hx′,y′,t ′ψ = ih̄∂t ′ψ,

Hx′,y′,t ′ = Hx,y,t |x−〉x′+x0(t ),y−>y′,t−>t ′ − px′∂t x0|t→t ′ . (C5)

For simplicity, we switch the notation (x′, y′, t ′) back to
(x, y, t ). Then, overall, correct up to O(εac), the transfor-
mation replaces the ac potential energy “eεacx cos(ωact )” by
“–px∂t x0” in the Hamiltonian. Below, we apply the result of
Eq. (C5).

In the vertical-field case, the QD ground states
{|K, m = 0, n = 0〉, |K ′, m = 0, n = 0〉}(= {|K〉QD, |K ′〉QD})
are used as qubit basis states. To obtain the effective
Hamiltonian in the qubit state subspace, we take H0 = H (diag)

eff ,

H1 = H (off−diag)
eff , and X1 = –px∂t x0, and perform the SW

reduction with S = S1. It leads to the following effective
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coupling:

〈K, 0, 0|[S1, X1]|K ′, 0, 0〉 = 〈K, 0, 0|H (off−diag)
eff |K ′, 1, 0〉〈K ′, 1, 0| − px∂t x0|K ′, 0, 0〉

E⊥
Z,eff − h̄ωx

− 〈K, 0, 0|−px∂t x0|K, 1, 0〉〈K, 1, 0|H (off−diag)
eff |K ′, 0, 0〉

E⊥
Z,eff + h̄ωx

= i
m∗

h̄
α⊥

∣∣∣∣
n=0

dx0

dt
. (C6)

Above, we have used the identities in Appendix A to simplify the expression.
In the in-plane-field case, {|+, m = 0, n = 0〉, |−, m = 0, n = 0〉}(= {|+〉QD, |−〉QD}) are used as qubit basis states. To

obtain the qubit Hamiltonian, we take H0 = Heff (εy = 0), H1 = H (val)
VOI + eεyy, and X1 = –px∂t x0, and perform the SW reduction

with S = S1. It leads to the following effective coupling:

〈+, 0, 0|[S1, X1]|−, 0, 0〉 = 〈+, 0, 0|H (val)
VOI |−, 1, 0〉〈−, 1, 0| − px∂t x0|−, 0, 0〉

−E‖
Z − h̄ωx

−〈+, 0, 0| − px∂t x0|+, 1, 0〉〈+, 1, 0|H (val)
VOI |−, 0, 0〉

−E‖
Z + h̄ωx

= m∗

h̄
α‖ dx0

dt
. (C7)

Equations (C6) and (C7) confirm Eqs. (48) and (56) obtained in the adiabatic approximation, respectively.

3. Coupling parameters

We take A (the subspace of interest) = {|VBM, K〉, |VBM, K ′〉} below.

4. Effective mass m∗

In the �k · �p theory, an effective (or “renormalized”) mass consists of the “bare” mass and second-order corrections due to the
perturbation “h̄�k · �p/me.” Below, we provide for the valence band the relation between bare mass parameters “{m⊥

1 , m‖
1}” and

effective mass m∗.

We apply the 12-state model first. We take εz = 0, Bz = 0, H0 = Hband, and the perturbation H1 = H�k· �p. We perform the SW
reduction with S = S1, and obtain the valence band dispersion near K :

Ev (k; τ = K ) = (H0)11 + 1

2
([S1, H1])11

= (h̄k)2

2m⊥
1

+
(

h̄

me

)2 ∑
l

〈VBM, K|�k · �p
∣∣� (l )

D0
,↑, K

〉〈
�

(l )
D0

,↑, K
∣∣�k · �p|VBM, K〉

(EVBM − El,↑,K )
, (C8)

yielding

1

m∗ = 1

m⊥
1

+ 2

(
1

me

)2 ∑
n∈D0

|Pvn|2
(EVBM − En,↑,K )

. (C9)

Above, we have summed over all intermediate states of D0 representation for leading-order contributions. For reference, we
provide m⊥

1 below:

1

m⊥
1

= 1

me
+ 2

(
1

me

)2 ∑
l∈D−2

|Pvl |2
(EVBM − El,↑,K )

, (C10)

without deriving it. The above discussion could also be performed using valley-K′ states, which would yield identical results due
to the time-reversal symmetry.

Similarly, one can work in the 8-state model and derive the relation between m‖
1 and m∗, namely,

1

m∗ = 1

m‖
1

+ 2

(
1

me

)2 ∑
n∈D−2

|Pvn|2
(EVBM − El,↑,K )

,
1

m‖
1

= 1

me
+ 2

(
1

me

)2 ∑
l∈D0

|Pvl |2
(EVBM − El,↑,K )

. (C11)
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5. g-factor in the vertical Zeeman effect

We work in the 12-state mode with the presence of Bz. We make the minimal substitution h̄�k → �� = �p + e �A. Following the
same procedure in deriving effective mass above, we obtain

Ev (h̄�k → ��, τ ) = ��2

2m∗ + 1

2
τg⊥

effμBBz,

g⊥
eff = ge + gvalley−orbital = g⊥

1 − 4

me

∑
l∈D0

|Pvl |2
(EVBM − El,↑,K )

,

g⊥
1 = ge + 4

me

∑
l∈D−2

|Pvl |2
(EVBM − El,↑,K )

,

gvalley−orbital = 4

me

⎡
⎣ ∑

l∈D−2

|Pvl |2
(EVBM − El,↑,K )

−
∑
l∈D0

|Pvl |2
(EVBM − El,↑,K )

⎤
⎦, (C12)

6. R(4)⊥
SOI,eff in the vertical Rashba effect

We work in the 12-state model, and take Bz = 0, H0 = Hband, H1 = H�k· �p + HSOI,off−diag + H⊥
ε , and X1 = UK↔K ′ . As the effect

involves fourth-order quantum paths, we collect the terms of O(H1)3O(X1) in Eqs. (C2a) and (C2b) and obtain

H (off−diag)
eff = [S3, X1] + 1

2 {S1S2 + S2S1, X1} + 1
6

[
S3

1, X1
] − S2X1S1 − S1X1S2 − 1

2 [S1, S1X1S1]. (C13)

We find

(
H (off−diag)

eff

)
21 =

∑
n1

′,n2,n4
for Path Type−I

[
〈VBM, K ′|UK↔K ′

∣∣� (n4 )
D−2

,↓, K
〉〈
�

(n4 )
D−2

,↓, K
∣∣ h̄

me

�k · �p
∣∣� (n1

′ )
D0

,↓, K
〉

〈
�

(n1
′ )

D0
,↓, K

∣∣�(n1
′,n2 )

so

4
�L · �s

∣∣� (n2 )
D−1

,↑, K
〉〈
�

(n2 )
D−1

,↑, K
∣∣eεzz|VBM, K〉/

(EVBM − En2,↑,K )(EVBM − En1
′,↓,K )(EVBM − En4,↓,K )

+ 〈VBM, K ′|eεzz
∣∣� (n2 )

D1
,↓, K ′〉〈� (n2 )

D1
,↓, K ′∣∣�(n2,n1

′ )
so

4
�L · �s

∣∣� (n1
′ )

D0
,↑, K ′〉

〈
�

(n1
′ )

D0
,↑, K ′∣∣ h̄

me

�k · �p
∣∣� (n4 )

D2
,↑, K ′〉〈� (n4 )

D2
,↑, K ′∣∣UK↔K ′ |VBM, K〉/

(EVBM − En1
′,↑,K ′ )(EVBM − En2,↓,K ′ )(EVBM − En4,↑,K ′ )

]

+ [similar contributions from other path types]. (C14)

After simplification, we make the substitution h̄k− → �− for a finite Bz, and obtain in the linear regime

(
H (off−diag)

eff

)
21 = iεzR

(4)⊥
SOI,eff

�

{
U (IR−diag)

elastic e2iKy,�−
}
, (C15)

where

R(4)⊥
SOI,eff =

√
3

8
�

(−i

me

)
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

∑
n1

′∈D0,
n2∈D−1,
n4∈D−2

λv,n4�
(n1

′,n2 )
so

(
eζn2v

)
Pn4n1

′

(EVBM − En2,↑,K )(EVBM − En1
′,↓,K )(EVBM − En4,↓,K )

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

∑
n1∈D0,
n3∈D1,
n4∈D−2

λv,n4�
(n3,n1 )
so

(
eζn4n3

)
Pn1v

(EVBM − En1,↑,K )(EVBM − En3,↓,K )(EVBM − En4,↓,K )

⎤
⎥⎥⎥⎥⎦
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+

⎡
⎢⎢⎣ ∑

n1,n1
′∈D0,

n2∈D−1

λn1
′,n1�

(n1
′,n2 )

so

(−eζn2v

)
Pn1v

(EVBM − En1,↑,K )(EVBM − En2,↑,K )(EVBM − En1
′,↓,K )

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

∑
n1∈D0,
n2∈D−1,
n3∈D1

λn2,n3�
(n3,n1 )
so

(−eζn2v

)
Pn1v

(EVBM − En2,↑,K )(EVBM − En3,↓,K )(EVBM − En1,↑,K )

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (C16)

It can be verified that R(4)⊥
SOI,eff is real, with

R(4)⊥
SOI,eff = O

(
�soea2

h̄�

)
. (C17)

Here, �= a typical gap.

7. g(2)‖
eff in the in-plane Zeeman effect

We apply the 8-state model, and take �ε‖ = 0, H0 = Hband, H1 = H‖
Z , and X1 = UK↔K ′ . As the effect involves second-order

quantum paths, we collect the terms of O(H1)O(X1) in Eq. (C2a), and obtain

H (off−diag)
eff = [S1, X1]. (C18)

We find

(
H (off−diag)

eff

)
21 = 〈VBM, K ′|UK↔K ′

∣∣� (v)
D2

,↓, K
〉〈
�

(v)
D2

,↓, K
∣∣ 1

2 geμB �B‖ · �s‖|VBM, K〉
(EVBM − Ev,↓,K )

+ 〈VBM, K ′| 1
2 geμB �B‖ · �s‖

∣∣� (v)
D−2

,↑, K ′〉〈� (v)
D−2

,↑, K ′∣∣UK↔K ′ |VBM, K〉
(EVBM − Ev,↑,K ′ )

. (C19)

After simplification, we finally obtain(
H (off−diag)

eff

)
21 = a

�
g(2)‖

eff μBB+
(
U (IR−flip)

elastic

)
+e2iKy, (C20)

where

g(2)‖
eff = �λvvge

(EVBM − Ev,↓,K )
. (C21)

It can be verified that g(2)‖
eff is real, with

g(2)‖
eff = O

[
�

�so
λ

(IR−flip)
]

ge, (C22)

where λ
(IR−flip)

is the typical value of λn,l , the coupling strength for valley-flip scattering between bands of indices n and l , in
the case where the irreducible representation index of electron state varies in the scattering; see Appendix D.

8. g(3)‖
eff in the in-plane Zeeman effect

We apply the 8-state model, and take �ε‖ = 0, H0 = Hband, H1 = H�k· �p + H‖
Z , and X1 = UK↔K ′ . As the effect involves third-order

quantum paths, we collect the terms of O(H1)2O(X1) in Eqs. (C2a) and (C2b) and obtain

H (off−diag)
eff = [S2, X1] + 1

2

{
S2

1, X1
} − S1X1S1. (C23)

We find (
H (off−diag)

eff

)
21 =

∑
n for Path Type−I

[〈VBM, K ′|UK↔K ′
∣∣� (n)

D−2
,↓, K

〉〈
�

(n)
D−2

,↓, K
∣∣ 1

2 geμB �B‖ · �s‖
∣∣� (n)

D−2
,↑, K

〉

× 〈
�

(n)
D−2

,↑, K
∣∣ h̄

me

�k · �p|VBM, K〉/(EVBM − En,↑,K )(EVBM − En,↓,K )
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+ 〈VBM, K ′| h̄

me

�k · �p
∣∣� (n)

D2
,↓, K ′〉〈� (n)

D2
,↓, K ′∣∣ 1

2 geμB �B‖ · �s‖
∣∣� (n)

D2
,↑, K ′〉

× 〈
�

(n)
D2

,↑, K ′∣∣UK↔K ′ |VBM, K〉/(EVBM − En,↓,K ′ )(EVBM − En,↑,K ′ )
]

+ [similar contributions from other path types]. (C24)

After simplification, we finally obtain(
H (off−diag)

eff

)
21 = i

a

h̄�
g(3)‖

eff μBB+
[
U (IR−diag)

elastic e2iKy, p+
]
, (C25)

where

g(3)‖
eff = −i

geh̄�

2mea

∑
n∈D−2

λv,nPnv

[
1

(EVBM − En,↑,K )(EVBM − En,↓,K )
+ 1

(EVBM − En,↓,K )(EVBM − Ev,↓,K )

+ 1

(EVBM − Ev,↓,K )(EVBM − En,↑,K )

]
. (C26)

It can be verified that g(3)‖
eff is real, with

g(3)‖
eff = O

[
�

�so

]
ge. (C27)

9. RVOI,eff in the in-plane Rashba effect

We apply the 8-state model, and take �B‖ = 0, H0 = Hband, H1 = H�k· �p, and X1 = e�ε‖ · �r. This effect basically involves third-

order quantum paths. We collect the terms of O(H1)2O(X1) in Eqs. (C2a) and (C2b) and obtain(
H (val)

VOI

)
11 − R(1)

VOI( �p × �ε‖)z = [S2, X1] + 1

2

{
S2

1, X1
} − S1X1S1

=
∑

n∈D−2

{(−1

2

)[
〈VBM, K|e�ε‖ · �r|VBM, K〉〈VBM, K| h̄

me

�k · �p
∣∣� (n)

D−2
,↑, K

〉

× 〈
�

(n)
D−2

,↑, K
∣∣ h̄

me

�k · �p|VBM, K〉 + 〈VBM, K | h̄

me

�k · �p
∣∣� (n)

D−2
,↑, K

〉〈
�

(n)
D−2

,↑, K
∣∣ h̄

me

�k · �p|VBM, K〉

× 〈VBM, K|e�ε‖ · �r|VBM, K〉
]

+ 〈VBM, K| h̄

me

�k · �p
∣∣� (n)

D−2
,↑, K

〉〈
�

(n)
D−2

,↑, K
∣∣e�ε‖ · �r

∣∣� (n)
D−2

,↑, K
〉

× 〈
�

(n)
D−2

,↑, K
∣∣ h̄

me

�k · �p|VBM, K〉
}
/(EVBM − En,↑,K )2. (C28)

After simplification, we finally obtain (
H (val)

VOI

)
11 = RVOI,eff ( �p × �ε‖)z, (C29)

where

RVOI,eff = R(1)
VOI − eh̄

2m2
e

∑
n∈D−2

|Pvn|2
(EVBM − En,↑,K )2 . (C30)

For reference, we provide

R(1)
VOI = eh̄

2m2
e

∑
l∈D0

|Pvl |2
(EVBM − El,↑,K )2 (C31)

without deriving it. It can be verified that RVOI,eff is real and estimated to be

RVOI,eff = O

[
eh̄

me
2

|Pvc|2
�̄2

]
. (C32)

To obtain secondary parameters, one performs the SW reduction on extended bare models. We provide results below without
giving details.
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10. R(4,corr)⊥
SOI,eff in the vertical Rashba effect

Complete expressions are quite lengthy and so we only provide typical leading-order terms:

R(4,corr)⊥
SOI,eff = R(4)⊥−1

SOI,eff

(−i�

me

)
⎡
⎢⎢⎢⎢⎣

∑
n1

′∈D0,
n2∈D−1,
n5∈D2

√
3
8λv,n5�

(n1
′,n2 )

so

(
eζn2v

)
Pn5n1

′

(EVBM − En2,↑,K )(EVBM − En1
′,↓,K )(EVBM − En5,↓,K )

+ · · ·

⎤
⎥⎥⎥⎥⎦. (C33)

It can be verified that R(4,corr)⊥
SOI,eff are real, with the following orders of magnitude:

R(4,corr)⊥
SOI,eff = O

[
�

�so
λ

(IR−flip)
]
. (C34)

11. g(3,corr)‖
eff in the in-plane Zeeman effect

g(3,corr)‖
eff = −i

geh̄�

2meag‖
eff

∑
n∈D0

λv,nPnv

[
1

(EVBM − En,↓,K )(EVBM − Ev,↓,K )
+ 1

(EVBM − En,↑,K )(EVBM − Ev,↓,K )

]
. (C35)

It can be verified that g(3,corr)‖
eff is real, with

g(3,corr)‖
eff = O[λ

(IR−flip)
]. (C36)

APPENDIX D: ELASTIC SCATTERING

We write the bare Hamiltonian equation

H�(�r) = E�(�r),

H = Hetc + Uelastic,

�(r) =
∑
n,s,τ

F (n)
G,s,τ (�r)

〈
�r
∣∣� (n)

G , s, τ
〉
, (D1)

where the presence of elastic scattering potential energy
Uelastic is explicitly shown in the Hamiltonian H , Hetc =
Hamiltonian excluding Uelastic, �(�r)= total wave function,
F (n)

G,s,τ (�r) = envelop function, |� (n)
G , s, τ 〉 = band edge state,

n = band index, G = irreducible representation (IR) index,
s = spin index, and τ = valley index. Following the standard
effective-mass theory [65],

EF (n)
G,s,τ (�R) ≈ Ncell

∫
unit cell

at �R
d�r

〈
�r
∣∣� (n)

G , s, τ
〉∗

× (Hetc + Uelastic(�r))�(�r), (D2)

where Ncell = total unit cell number, and �R = lattice vector.
�R appears as the argument in envelop function to indicate
that the envelop function is defined with a “unit-cell scale”
resolution.

The main task here is to evaluate in Eq. (D2) the potential
energy part and derive the valley-mixing term UK↔K ′ entering
bare models. This is done as follows. We express 〈�r|� (n)

G , s, τ 〉
as a linear combination of atomic orbitals (or Wannier or-
bitals):

〈
�r
∣∣� (n)

G , s, τ
〉 = 1√

Ncell

∑
�R

eiτ �K ·�R〈
�r−�R∣∣�(n)

G , s, τ
〉
, (D3)

where 〈�r−�R|�(n)
G , s, τ 〉 is the corresponding atomic orbital at

�R. Substitution of Eq. (D3) into Eq. (D2) yields the potential
energy part

Ncell

∫
unit cell

at �R
d�r

〈
�r
∣∣� (n)

G , s, τ
〉∗

Uelastic(�r)�(�r)

≈ Uelastic(�R)F (n)
G,s,τ (�R)

+
∑

l

e−2iτ �K ·�Rλτ,−τ
n,l U (derived)

elastic (�R; G, G′)F (l )
G′,s,−τ (�R).

(D4)

The first term comes from the integral involving states
in the same valley and gives the ordinary, valley-conserving
potential energy Udiag in the bare model. The second term
comes from the integral involving states of opposite valleys
and gives the intervalley coupling UK↔K ′ in the bare model,
with

λτ,−τ
n,l U (derived)

elastic (�R;G, G′) =
∫

unit cell
at �R

d�r
〈
�r − �R∣∣�(n)

G , s, τ
〉∗

× Uelastic(�r)
〈
�r − �R∣∣�(l )

G′ , s,−τ
〉
.

(D5)

λτ,−τ
n,l is a dimensionless strength parameter for the cou-

pling between states with band indices n and l , and U (derived)
elastic

is a potential energy function derived from Uelastic, which
will be specified below. In deriving Eq. (D4), we have made
a few approximations typically entering the effective-mass
theory, for example, the slowly varying approximation for
both Uelastic(�r) and F (l )

G′,s′,τ ′ (�r) on the unit-cell scale; and the
“same-site” approximation—the integral vanishes except for
orbitals on the same site.

As examples, λτ,−τ
n,l and U (derived)

elastic are given below in a few
cases of interest.
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(i) In the case of a bulk with dilute, random distribution of
identical, short-range impurities on the M-sublattice,

λτ,−τ
n,l ≈

∫
unit cell

d�r
〈
�r
∣∣�(n)

G , s, τ
〉∗ vimpurity(�r)

vimpurity(0)

〈
�r
∣∣�(l )

G′ , s,−τ
〉
,

U (derived)
elastic (�R; G, G′) = Uelastic(�R). (D6)

(ii) In the case of quantum structures, we write

Uelastic(�r) = Uelastic(�R) + �∇�rUelastic(�r)|�R · (�r − �R)

+ 1

2

∑
j,h

∂2Uelastic(�r)

∂Rj∂Rh

∣∣∣∣�R
(�r − �R) j (�r − �R)h

+ · · · (D7)

Then, for G = G′, we have

λτ,−τ
n,l ≈

∫
unit cell

d�r
〈
�r
∣∣�(n)

G , s, τ
〉∗〈�r∣∣�(l )

G , s,−τ
〉
,

U (derived)
elastic (�R; G, G) ≈ Uelastic(�R), (D8)

in the leading order. For G �= G′, we have

λτ,−τ
n,l ≈ 1

2a

∫
unit cell

d�r
〈
�r
∣∣�(n)

G , s, τ
〉∗

rsgn(G,G′ )
〈
�r
∣∣�(l )

G′ , s,−τ
〉
,

U (derived)
elastic (�R; G, G′) ≈ a[ �∇�rUelastic(�r)|�R]sgn(G′,G), (D9)

in the leading order. Above, sgn(G, G′) = −sgn(G′, G) =
+, for (G, G′) = (D0, D2), (D2, D−2), and (D−1, D1),

and sgn(G, G′) = 0 otherwise. r0 = 0, r± = x ± iy, and
[ �∇�rUelastic(�r)|�R]± = (∂x ± i∂y)Uelastic(�r)|�R.

It can be shown that λτ,−τ
n,l = λτ,−τ

l,n due to the T -symmetry,
and that λτ,−τ

n,l is real due to My and T . In the main context, we
denote λτ,−τ

n,l as λn,l . Equations (D8) and (D9) describe “IR-
diagonal” and “IR-flip” scattering, respectively. In the deep
tight-binding regime with extremely narrow atomic orbitals,
we have

λn,l � O(1), for G = G′,

λn,l � O(aTB/a), for G �= G′, (D10)

where aTB is the orbital size. This indicates that the “IR-
diagonal” scattering dominates over the “IR-flip” one in the
limit where aTB � a. In view of such limiting behavior, we
divide the quantum paths in our work into IR-diagonal ones
(Class A) and IR-flip ones (Class B), and take, in Heff , Class A
derived Hamiltonian terms to be primary and Class B derived
terms to be corrections, in the case where both types of paths
make contributions to Heff at the same order of perturbation
theory.

In a general scenario, the intervalley scattering may oc-
cur at a heterostructure boundary, where band offset-induced
potential discontinuities generally differ in strength for dif-
ferent bands. In such a case, for an interband valley-flipping
scattering, the corresponding Uelastic should then be dependent
on involved band indices. The present formalism can easily
accommodate such dependence by taking the strength λn,l as
an empirical parameter. The same generalization applies to
the valley-conserving term, namely, Udiag, in the bare model,
where a relative potential strength “ηn” is assigned to each
band, as done in the main text.
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