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Symmetric informationally complete measurements identify the irreducible difference
between classical and quantum systems
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We describe a general procedure for associating a minimal informationally complete quantum measurement
with a purely probabilistic representation of the Born rule. Such representations provide a way to understand
the Born rule as a consistency condition between probabilities assigned to the outcomes of one experiment in
terms of the probabilities assigned to the outcomes of other experiments. In this setting, the difference between
quantum and classical physics is the way their physical assumptions augment bare probability theory: Classical
physics corresponds to a trivial augmentation—one just applies the law of total probability (LTP) between the
scenarios—while quantum theory makes use of the Born rule expressed in one or another of the forms of our
general procedure. To mark the irreducible difference between quantum and classical, one should seek the
representations that minimize the disparity between the expressions. We prove that the representation of the
Born rule obtained from a symmetric informationally complete measurement minimizes this distinction in at
least two senses, the first to do with unitarily invariant distance measures between the rules and the second to
do with available volume in a reference probability simplex (roughly speaking, a different kind of uncertainty
principle). Both of these arise from a useful result in majorization theory. This work complements recent studies
in quantum computation where the deviation of the Born rule from the LTP is measured in terms of negativity of
Wigner functions.
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Quantum information theory represents a change of per-
spective. Rather than regarding quantum physics as a limi-
tation on our abilities (the typical sentiment of older texts),
we have learned that it can augment them. In frustrating
some ambitions, it enables more subtle ones. Deviation from
classicality is a resource, and the idea that this resource can
be quantified as a modification of the classical probability
calculus dates to the beginning of the field [1]. More recent in-
quiries have developed this notion precisely: The “negativity”
in a Wigner-function representation of quantum states is now
understood to be valuable in its own right [2–11]. However,
what does this line of thinking say about quantum mechanics
itself? Can one, following the lead of Carnot, take what might
seem a statement of “mere” engineering and find a physical
principle? In this paper, we prove some strong results in this
regard in the context of finite-dimensional Hilbert spaces. In
particular, we find the unique form of the quantum mechanical
Born rule that makes it resemble the classical law of total
probability (LTP) as closely as possible in at least two senses.
Both come from a significant majorization result which may
be of general interest for resource theory. This way of tackling
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the distinction between quantum and classical arises naturally
in the quantum interpretive project of QBism [12,13], where
the Born rule is seen as an empirically motivated constraint
that one adds to probability theory when using it in the
context of alternative (complementary) quantum experiments.
We expect the techniques developed here to give an alternative
way to explore the paradigm of negativity and to be of use for
a range of practical problems.

The standard procedure in quantum theory for generating
probabilities starts with an observer, or agent, assigning a
quantum state ρ to a system. When the agent plans to measure
the system, they represent the outcomes of their measurement
with a positive-operator-valued measure (POVM) {Dj}. As-
signing ρ implies that they assign the Born rule probabilities
Q(Dj ) = trρDj for the outcomes of their measurement. In this
way, any quantum state ρ may be regarded as a compilation of
probability distributions for all possible measurements. How-
ever, one does not have to consider all possible measurements
to completely specify ρ. In fact, there exist measurements
which are informationally complete (IC) in the sense that ρ

is uniquely specified by the agent’s expectations for the out-
comes of that single measurement [14]. With respect to an IC
measurement, any quantum state, pure or mixed, is equivalent
to a single probability distribution. In this paper, we consider
minimal informationally complete POVMs (MICs) for finite-
dimensional quantum systems. These sets of operators form
bases for the vector space of Hermitian operators and lead
to probability distributions with the fewest number of en-
tries necessary for reconstructing the quantum state. Minimal
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FIG. 1. Solid and dashed lines represent two hypothetical proce-
dures an agent contemplates for a system assigned state ρ. The solid
line represents making a direct measurement of a POVM {Dj}. The
dotted line represents making the MIC {Hi} first, preparing a post-
measurement state σi, and then finally making the {Dj} measurement.
For the solid path, the agent assigns one set of probabilities Q(Dj ).
For the dotted path, the agent assigns two sets of probabilities P(Hi )
and P(Dj |Hi ). Unadorned by physical assumptions, probability the-
ory does not suggest a relation between these paths. The Born rule in
the form of Eq. (6) is such a relation.

informationally complete POVMs furnish a convenient way
to bypass the language of quantum states, making quantum
theory analogous to classical stochastic process theory, in
which one puts probabilities in and gets probabilities out.

One can eliminate the need to use the operators ρ and Dj

in the Born rule by reexpressing it as a relation between an
agent’s expectations for different experiments. Suppose our
agent has a preferred reference process consisting of a mea-
surement to which they ascribe the MIC {Hi} and, upon ob-
taining outcome i, the preparation of a state σi, drawn from a
linearly independent set of postmeasurement states {σi}. (See
Fig. 1.) In their choice of this reference process, they require
linearly independent postmeasurement states so that the inner
products trDjσi will uniquely characterize the operators Dj .
Let P(Hi ) be their probabilities for the measurement {Hi} and
P(Dj |Hi ) be their conditional probabilities for a subsequent
measurement of {Dj}. What consistency requirement among
Q(Dj ), P(Hi ), and P(Dj |Hi ) does quantum physics entail?

Using the fact that {σi} is a basis, we may write

ρ =
∑

j

α jσ j (1)

for some set of real coefficients α j . The probability of out-
come Hi is then

P(Hi ) =
∑

j

α j trHiσ j =
∑

j

[�−1]i jα j, (2)

where we have defined the matrix � via its inverse

[�−1]i j := trHiσ j = hitrρiσ j (3)

for ρi := Hi/hi and hi := trHi. The invertibility of � is en-
sured by the linear independence of the MIC and postmea-
surement sets. This implies that the coefficients of ρ in the σi

basis may be written as an application of the � matrix on the
vector of probabilities,

ρ =
∑

i

[∑
k

[�]ikP(Hk )

]
σi. (4)

The probability of Dj is given by another application of the
Born rule, which becomes

Q(Dj ) =
d2∑

i=1

⎡
⎣ d2∑

k=1

[�]ikP(Hk )

⎤
⎦P(Dj |Hi ), (5)

where P(Dj |Hi ) = trDjσi is the probability for outcome Dj

conditioned on obtaining Hi in the reference measurement. In
more compact matrix notation, we can write

Q(D) = P(D|H )�P(H ), (6)

where P(D|H ) is a matrix of conditional probabilities.
A symmetric IC POVM (SIC) [15–24] is a MIC for which

all the Hi are rank 1 and

trHiHj = 1

d2

dδi j + 1

d + 1
. (7)

Symmetric IC POVMs have yet to be proven to exist in all
finite dimensions d , but they are widely believed to [23]
have even been experimentally demonstrated in some low
dimensions [25–28]. The SIC projectors associated with a SIC
are the pure states ρi = dHi. In dimension 2, a SIC can be
represented as a regular tetrahedron inscribed in the Bloch
sphere. (States defining a qubit SIC can be extracted from
Ref. [29].) In higher dimensions, they are of course harder
to visualize. When there is no chance of confusion, we will
refer to the set of projectors as SICs as well. Prior work has
given special attention to the reference procedure where the
measurement and postmeasurement states are the same SIC
[12,30,31]. In this case we denote � by �SIC and Eq. (5) takes
the particularly simple form

Q(Dj ) =
d2∑

i=1

[
(d + 1)P(Hi ) − 1

d

]
P(Dj |Hi ). (8)

Recall that the LTP expresses the simple consistency re-
lation between the probabilities one assigns to the second of
a sequence of measurements, the probabilities one assigns to
the first, and the conditional probabilities for the second given
the outcome of the first. Written in vector notation, this is

P(D) = P(D|H )P(H ). (9)

We write P(D) as opposed to Q(D) to indicate that it is the
probability vector for the second of two measurements. On the
other hand, Q(D) is the vector of probabilities associated with
a single measurement. Aside from the presence of � matrix,
Eq. (6) is functionally equivalent to the LTP.

Although P(H ), P(D|H ), and Q(D) are probabilities,
�P(H ) often is not. One may see by summing both sides
of Eq. (5) over j that the vector is normalized, but in
general it may contain negative numbers and values greater
than 1. Such a vector is known as a quasiprobability, and
matrices like � (real-valued matrices with columns sum-
ming to 1), which take probabilities to quasiprobabilities,
are called column-quasistochastic matrices [32]. The subset
of column-quasistochastic matrices with non-negative entries
are the column-stochastic matrices. The inverse of a column-
stochastic matrix is generally a column-quasistochastic ma-
trix; in our case, inspection of Eq. (3) reveals that �−1 is
column stochastic.
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What would it mean if � could equal I? In this case we
would have Q(D) = P(D). Then, conceptually, it would not
matter if the intermediate measurement were performed or
not. Put another way, we could behave as though measure-
ments simply revealed a preexisting property of the system, as
in classical physics where measurements provide information
about a system’s coordinates in phase space.

Some amount of what makes quantum theory nonclassical
resides in the fact that � cannot equal I . How close, then, can
we make � to I by wisely choosing our MIC and postmea-
surement states? It turns out that �SIC is closest to the identity
with respect to the distance measure induced by any member
of a large family of operator norms called unitarily invariant
norms (see Sec. 3.5 in Ref. [33]). A unitarily invariant norm
is one such that ‖A‖ = ‖UAV ‖ for all unitary matrices U and
V . These norms include the Schatten p-norms (among which
are the trace norm, the Frobenius norm, and the operator norm
when p = 1, 2, and ∞, respectively) and the Ky Fan k-norms.
This result codifies the intuition that Eq. (8) represents the
“simplest modification one can imagine to the LTP” (see [34],
p. 1971).

To prove this, we will make use of the theory of majoriza-
tion [33,35]. Suppose x and y are vectors of N real numbers
and that x↓ and y↓ are x and y sorted in nonincreasing order.
Then we say that x weakly majorizes y from below, denoted
by x �w y, if

k∑
i=1

x↓
i �

k∑
i=1

y↓
i for k = 1, . . . , N. (10)

If the last inequality is an equality, we say x majorizes y,
denoted by x � y.

Another variant of majorization, called log-majorization or
multiplicative majorization, is also studied [35]. We say that x
weakly log-majorizes y from below, denoted by x �w log y, if

k∏
i=1

x↓
i �

k∏
i=1

y↓
i for k = 1, . . . , N. (11)

If the last inequality is an equality, we say x log-majorizes
y, denoted by x �log y. Taking the logarithm of both sides of
Eq. (11) demonstrates that log-majorization is majorization
between the vectors after an elementwise application of the
log-map. Log-majorization is strictly stronger than regular
majorization; x �w log y ⇒ x �w y, but the reverse implica-
tion is not true. Majorization is a partial order on vectors of
real numbers sorted in nonincreasing order.

Throughout this paper we will make use of the standard
inequalities between the arithmetic, geometric, and harmonic
means for vectors of n positive numbers xi,

1

n

n∑
i=1

xi �
(

n∏
i=1

xi

)1/n

�
(

1

n

n∑
i=1

1

xi

)−1

, (12)

with equality in all cases if and only if xi = c for all i. We now
turn to two lemmas.

Lemma 1. Let �p denote the column-quasistochastic matrix
associated with a MIC and a proportional postmeasurement
set. Then det �p � det �SIC with equality if and only if the
MIC is a SIC.

Proof. We may write �−1
p = GA−1, where Gi j := trHiHj

is the Gram matrix of the MIC elements and Ai j := hiδi j . Note
that �−1

p has real positive eigenvalues because it has the same
spectrum as the positive definite matrix A−1/2GA−1/2. Also
note that∑

i

1

λi(�p)
= tr�−1

p =
∑

i

hitrρiσi �
∑

i

hi = d. (13)

One of the eigenvalues of �p, which we denote by λd2 (�p),
must equal 1 because an equal-entry row vector is always a
left eigenvector with eigenvalue 1 of a matrix with columns
summing to unity. Therefore, we may write∑

i<d2

1

λi(�p)
� d − 1. (14)

The reciprocal of this expression is proportional to the har-
monic mean of the first d2 − 1 eigenvalues of �p. Thus,
because the geometric mean is always greater than or equal
to the harmonic mean,⎛
⎝d2−1∏

i=1

λi(�p)

⎞
⎠

1/(d2−1)

�

⎛
⎝ 1

d2 − 1

d2−1∑
i=1

1

λi(�p)

⎞
⎠

−1

� d + 1,

(15)

which, noting that λd2 (�p) = 1, implies

det �p � (d + 1)d2−1 = det �SIC. (16)

Equality is achieved in this if and only if all the λi(�p) are
equal, so Eq. (16) is saturated if and only if λ(�p) = λ(�SIC).
We next show this implies that in fact the MIC is a SIC.

For any �−1
p , we may write �−1

p = P−1DP, where the rows
of P are the left eigenvectors of �−1

p and D is the diagonal
matrix of eigenvalues of �−1

p . Since �−1
p is column stochastic,

the row vector (1/d, . . . , 1/d ) is the (scaled) left eigenvector
of �−1

p with eigenvalue 1 and so it is the first row of P when
the eigenvalues are in descending order. Left eigenvectors of
a matrix are right eigenvectors of the transpose of the matrix,
so we have(

�−1
p

)T |v〉 = A−1G|v〉 = A−1GA−1A|v〉
= A−1�−1

p A|v〉 = λ|v〉,
⇒ �−1

p A|v〉 = λA|v〉, (17)

where 〈v| is an arbitrary left eigenvector of �−1
p . Combined

with our choice of scale for the first row of P, we conclude
that the first column of P−1 is (h1, h2, . . . , hd2 )T .

Now suppose �p is such that λ(�p) = λ(�SIC). Then G =
P−1DPA, where [D]i j = 1

d+1 (δi j + dδi1δ j1) and

[G]i j =
∑
klm

[P−1]ik[D]kl [P]lm[A]m j

=
∑
klm

[P−1]ik

[
1

d + 1
(δkl + dδk1δl1)

]
[P]lmδm jhm

= 1

d + 1

∑
kl

[P−1]ik (δkl + dδk1δl1)[P]l jh j
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= 1

d + 1
(h jδi j + dh j[P

−1]i1[P]1 j )

= 1

d + 1
(h jδi j + hih j ). (18)

In the last step we used that [P]1 j = 1/d and [P−1]i1 = hi. If
this Gram matrix comes from a MIC, one may use

[G]ii = h2
i trρ2

i = 1

d + 1

(
hi + h2

i

)
(19)

and the fact that trρi � 1 to show that hi � 1/d . As the
average hi value must be 1/d , this implies that hi = 1/d for
all i and furthermore that each ρi is rank 1. Substituting this
into Eq. (18) gives

[G]i j = dδi j + 1

d2(d + 1)
, (20)

that is, the MIC is a SIC and �p = �SIC. �
Let s(A) denote the vector of singular values of the matrix

A in nonincreasing order. The proof of the following lemma
may be found in Appendix A.

Lemma 2. Let � be the column-quasistochastic matrix
associated with an arbitrary reference process. Then

s(�) �w log s(�SIC) (21)

with equality if and only if the MIC and postmeasurement
states are SICs.

We are now poised to prove the following.
Theorem 1. Let � be the column-quasistochastic matrix

associated with an arbitrary reference process. Then for any
unitarily invariant norm ‖ · ‖,

‖I − �‖ � ‖I − �SIC‖, (22)

with equality if and only if the MIC and postmeasurement
states are SICs.

Proof. By Corollary 3.5.9 in Ref. [33], every unitarily
invariant norm is monotone with respect to the partial order
on matrices induced by weak majorization of the vector of
singular values. Further, I − � is singular with exactly one
eigenvalue equal to zero, so one of its singular values is zero
as well. Then

s(I − �) �
{∑

i si(I − �)

d2 − 1
, . . . ,

∑
i si(I − �)

d2 − 1

}

�w {d, . . . , d} = s(I − �SIC) (23)

if ∑
i

si(I − �) � d (d2 − 1). (24)

We have∑
i

si(I − �) �
∑

i

|λi(I − �)| =
∑

i

|λi(�) − 1|

�
∑

i

[|λi(�)| − 1] �
∑

i

λi(�SIC) − d2

= d (d2 − 1), (25)

where the first inequality follows Eq. (3.3.13a) in Ref. [33],
the second follows from the triangle inequality, and the last
follows from Lemma 2. �

FIG. 2. Here N is the normalized hyperplane of d2-element
quasiprobability vectors and the black outer triangle represents the
(d2 − 1)-simplex � of probabilities. For a given MIC, the green
inner triangle is the simplex �−1(�), the blue circle is the image
of Qd under the Born rule, denoted by P , and the red circle is �(P ).
Here P and �(P ) are portrayed with circles to capture convexity and
inclusion relationships only; they need not bear any resemblance to
spheres.

It is known that no quasiprobability representation of quan-
tum theory can be entirely non-negative [36]. What does this
mean in our formalism?

Let N be the normalized hyperplane of d2-element
quasiprobability vectors. Within this is the (d2 − 1)-simplex
of probability vectors �. For any MIC, d-dimensional quan-
tum state space Qd is mapped by the Born rule to a convex
subset of �, denoted by P . Note that �−1(�) is equal to
the convex hull of the d2 probability vectors trHjσi, that
is, the probabilities for the MIC for each postmeasurement
state. Consequently, �−1(�) ⊂ P , which implies � ⊂ �(P ).
These inclusions must be strict, i.e., � 
= I: When the MIC
and postmeasurement states are rank 1, the vertices of the
simplex will be among the pure-state probability vectors, but
P contains more pure states than there are vertices of �−1(�).
Since the image of some probability vectors consistent with
quantum theory must leave the probability simplex under the
application of �, we have demonstrated that the appearance
of negativity is unavoidable in our framework and is in fact
characterized by the fact that � cannot equal the identity.
Figure 2 illustrates the situation.

The weak-log-majorization result of Lemma 2 has at least
one more important implication for quantifying the quantum
deviation from classicality. Instead of looking at the functional
form of Eq. (6) and considering how much of a deviation from
the LTP it represents, one may approach the problem from a
geometric perspective.

Classically, one can always imagine assigning probability
1 to an outcome of a putative maximally informative mea-
surement, for instance, when one knows the system’s exact
phase-space point. However, in an interpretation of quantum
theory without hidden variables, whatever one might mean by
“maximally informative,” one cannot mean that the reference
measurement’s full probability simplex is available. Indeed,
quantum mechanics does not allow probability 1 for the
outcome of any MIC [37]. Thus deviation from classicality
can also be captured by the fact that the region of probabilities
compatible with quantum states is strictly smaller than the
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full (d2 − 1)-simplex. In this setting, the irreducible deviation
from classicality is defined by the largest possible region for a
reference measurement’s probability simplex. The following
theorem establishes that a SIC uniquely maximizes the Eu-
clidean volume of this region, thereby answering a question
raised in Ref. [34] (see pp. 475 and 571 therein).

Theorem 2. For any MIC in dimension d , let P denote the
image of Qd under the Born rule and let volE(P ) denote its
Euclidean volume. Then

volE(P ) � volE(PSIC) (26)

with equality if and only if the MIC is a SIC. Furthermore,

volE(PSIC) =
√

(2π )d (d−1)

dd2−2(d + 1)d2−1


(1) · · · 
(d )


(d2)
. (27)

The proof of Theorem 2 involves methods of differential
geometry which would be distracting here. We direct the
interested reader to Appendix B for details.

The (d2 − 1)-simplex � has Euclidean volume [38]

volE(�) = d


(d2)
, (28)

so we can calculate the ratio of the Euclidean volumes of PSIC

and the simplex it lies within,

volE (PSIC)

volE(�)
=

√
(2π )d (d−1)

dd2 (d + 1)d2−1

(1) · · · 
(d ). (29)

When d = 2, quantum state space is the Bloch ball and
PSIC is the largest ball which can be inscribed in the regular
tetrahedron �3,

volE(PSIC)

volE(�3)
= π

6
√

3
≈ 0.3023. (30)

When d = 3,

volE(PSIC)

volE(�8)
= π3

1296
√

3
≈ 0.0138. (31)

In general, the ratio is very rapidly decreasing, signifying
a greater and greater deviation from classicality with each
Hilbert space dimension.

Theorems 1 and 2 show that the SICs provide a way of
casting the Born rule in wholly probabilistic terms, which by
two different standards make the difference between classical
and quantum as small as possible. Of all the representations
deriving from our general procedure, the representation given
by Eq. (8) is the essential one for specifying how quantum is
quantum.
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expressed in this publication are those of the authors and
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APPENDIX A: PROOF OF LEMMA 2

For a MIC {Ei} and a postmeasurement set {σ j},
[�−1]i j = trEiσ j . (A1)

The elements of the MIC may be expanded in the SIC basis

Ei =
∑

k

[α]ikHk, (A2)

so we may write

[�−1]i j =
∑

k

[α]iktrHkσ j =
∑

k

[α]ik p(k| j), (A3)

where p(k| j) is the probabilistic representation of the state σ j

with respect to the SIC {Hk}. The α matrix must be invertible
because it is a transformation between two bases, so the
probability vectors can be written

p(i| j) =
∑

k

[α−1]ik[�−1]k j . (A4)

We know that SIC probability vectors satisfy [12]∑
i

p(i| j)2 � 2

d (d + 1)
∀ j, (A5)

so we have∑
i

(∑
k

[α−1]ik[�−1]k j

)2

� 2

d (d + 1)
∀ j. (A6)

Summing over j, we then have

∑
i j

(∑
k

[α−1]ik[�−1]k j

)2

� 2d

d + 1
. (A7)

This expression is the sum of the absolute square entries of
a matrix, which is equivalent to the square of the Frobenius
norm of the matrix

‖α−1�−1‖2
2 =

∑
i

s2(α−1�−1) � 2d

d + 1
. (A8)

From Eq. (3.1.11) in Ref. [33], for any square matrix A,∑
i

|λi(A)|2 �
∑

i

ς2(A), (A9)

so we have a general bound on the absolute squared spectrum∑
i

|λi(α
−1�−1)|2 � 2d

d + 1
. (A10)

Equation (A4) shows that α−1�−1 is column stochastic and
thus that one of its eigenvalues is 1, so we may write∑

i>1

|λi(α
−1�−1)|2 � 2d

d + 1
− 1 = d − 1

d + 1
. (A11)

Now, using the arithmetic-geometric mean inequality,

d − 1

d + 1
�

∑
i>1

|λi(α
−1�−1)|2

� (d2 − 1)

(∏
i>1

|λi(α
−1�−1)|2

)1/(d2−1)

= (d2 − 1)| det α−1�−1|2/(d2−1), (A12)
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which implies

| det α−1�−1| �
(

d − 1

(d + 1)(d2 − 1)

)(d2−1)/2

=
(

1

d + 1

)d2−1

= det �−1
SIC. (A13)

From Eq. (A2) we can write

trEiEj =
∑

kl

αikα jl trHkHl ⇐⇒ G = αGSICαT ⇐⇒ det G = (det α)2 det GSIC, (A14)

where G is the MIC Gram matrix and GSIC is the SIC Gram matrix. Recall the definition of the A matrix from the proof of
Lemma 1. The arithmetic-geometric mean inequality shows det A � (1/d )d2

with equality if and only if hi = 1/d . Then, since
G = �−1

p A, Lemma 1 shows

det G = (
det �−1

p

)
(det A) �

(
det �−1

SIC

)
(1/d )d2 = det GSIC (A15)

with equality if and only if the MIC is a SIC. This implies (det α)2 � 1, and so | det α| � 1. Since | det α−1�−1| =
| det α−1|| det �−1|, we conclude that

| det �−1| � det �−1
SIC. (A16)

Equivalently, det �SIC � | det �|. Theorem 3.3.2 in Ref. [33] shows s(A) �log |λ(A)| for an arbitrary matrix A. To show the
desired weak-log-majorization result, we wish to prove |λ(�)| �w log λ(�SIC). For this we show weak majorization of the
logarithm of the entries:

log |λ(�)| �
(∑d2

i=1 log |λi(�)|
d2 − 1

, . . . ,

∑d2

i=1 log |λi(�)|
d2 − 1

, 0

)
=

(
log | det �|

d2 − 1
, . . . ,

log | det �|
d2 − 1

, 0

)

�w

(
log det �SIC

d2 − 1
, . . . ,

log det �SIC

d2 − 1
, 0

)
= (log(d + 1), . . . , log(d + 1), 0) = λ(log �SIC). (A17)

Thus,

s(�) �log |λ(�)| �w log λ(�SIC) = s(�SIC). (A18)

If {Hi} and {σ j} are SICs, �−1
i j = 1

d tr�i�
′
j , where {�i} and {�′

j} are SIC projectors in dimension d . Then

[�−1�−1†]i j = 1

d2

∑
k

(tr�i�
′
k )(tr� j�

′
k ) = 1

d2
tr

[
(�i ⊗ � j )

(∑
k

�′
k ⊗ �′

k

)]

= 1

d2
tr

[
(�i ⊗ � j )

(
2d

d + 1
Psym

)]
= 1

d (d + 1)
tr

[
(�i ⊗ � j )

(
I ⊗ I +

d∑
kl

|k〉〈l| ⊗ |l〉〈k|
)]

= 1 + tr�i� j

d (d + 1)
= dδi j + d + 2

d (d + 1)2
= [

�−2
SIC

]
i j, (A19)

where Psym is the projector onto the symmetric subspace of
H⊗2

d and in the third step we employed the fact that the SICs
form a minimal 2-design [16]. This shows that the modulus of
� is equal to �SIC and thus the singular values of � and �SIC

coincide.
On the other hand, suppose s(�) = s(�SIC). The prod-

uct of all the singular values is the absolute value of the
determinant [33], so | det �−1| = det �−1

SIC ⇒ | det α| = 1 ⇒
det G = det GSIC ⇐⇒ {Ei} is a SIC. Carrying through the
consequences of the MIC being a SIC allows us to see from
Eq. (A6) that σ j is rank 1 because the upper bound is saturated
for SIC probability vectors. We may expand the {σ j} in the
SIC projector basis,

σ j =
∑

k

[β] jk�k . (A20)

Acting on both sides by a SIC element and computing the
trace of both sides, we see

[�−1]i j = trEiσ j =
∑

k

[β] jk trEi�k = [
�−1

SICβT
]

i j
, (A21)

so | det �−1| = | det �−1
SIC|| det βT | = det �−1

SIC implies
| det β| = 1. Denoting the Gram matrix of states by g,
we have, in the same way as before,

det g = (det β )2 det gSIC = det gSIC. (A22)

We now prove that det g = det gSIC implies that the basis of
projectors forms a SIC. The following lemma is due to Zhu
[39]. We only use part of Zhu’s conclusion, but the lemma is
of enough interest to present in full.

Lemma 3. Let λ be the spectrum of the Gram matrix g of a
normalized basis of positive-semidefinite operators � j sorted
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in nonincreasing order. Then λ � λSIC with equality if and
only if � j forms a SIC.

Proof. By assumption tr�2
j = 1 for all j. Since the eigen-

values of � j are non-negative,

1 = tr�2
j =

∑
i

λ2
i (� j ) �

∑
i

λi(� j ) = tr� j . (A23)

Define the frame superoperator

F =
∑

j

‖� j〉〉〈〈� j‖, (A24)

where ‖A〉〉 := ∑
i j[A]i j |i〉| j〉. In addition, F has the same

spectrum as the Gram matrix [g]i j = 〈〈�i‖� j〉〉 = tr�i� j . To
see this, form a projector out of the state

∑
i ‖�i〉〉|i〉, where

|i〉 is an orthonormal basis in Hd2 , and perform partial traces
over each subsystem. The results are gT and F , and so, by the
Schmidt theorem, the spectra of F and g are equal: λ(g) =
λ(F ) = λ.

The expectation value of any operator with respect to an
arbitrary normalized state is less than or equal to its maximal
eigenvalue. Thus, a lower bound on the maximal eigenvalue
λ1 of F is given by

λ1 � 1

d
〈〈I‖F‖I〉〉 = 1

d

∑
j

(tr� j )
2 � d. (A25)

As our basis is normalized, trg = d2, so
∑

i λi = d2. With this
constraint and our bound on the maximal eigenvalue, we have

λ �
(

λ1,
d2 − λ1

d2 − 1
, . . . ,

d2 − λ1

d2 − 1

)

�
(

d,
d

d + 1
, . . . ,

d

d + 1

)
= λSIC. (A26)

The second majorization becomes an equality when λ1 = d .
From Eq. (A25) we can see that all � j must be rank 1 for this
condition to be satisfied. Furthermore, we see that in this case

1√
d
‖I〉〉 is an eigenvector of F which achieves the maximal

eigenvalue d . When both majorizations are equalities the
spectrum λSIC tells us that F takes the form of a weighted sum
of a projector and the identity superoperator I, specifically

F = d

d + 1
(I + ‖I〉〉〈〈I‖). (A27)

By Corollary 1 in Ref. [40], this implies the � j form a SIC.�
As in Lemma 3, denote by λ the spectrum of g sorted in

nonincreasing order. Here trg = d2, so∑
i>1

λi = d2 − λ1. (A28)

Then because the arithmetic mean is greater than or equal to
the geometric mean with equality if and only if the elements
are all equal, we have

1

d2 − 1

∑
i>1

λi = d2 − λ1

d2 − 1
�

(∏
i>1

λi

)1/(d2−1)

, (A29)

which implies

det g � λ1

(
d2 − λ1

d2 − 1

)d2−1

, (A30)

with equality if and only if λ2 = · · · = λ2
d = d2−λ1

d2−1 . When
λ1 = d , we then have

det g = dd2

(d + 1)d2−1
= det gSIC, (A31)

with equality if and only if λ = λSIC. By Lemma 3 we have
equality if and only if the postmeasurement states form a SIC.

APPENDIX B: PROOF OF THEOREM 2

Equation (4) expanded instead in the ρi basis allows us to
relate the differential elements of operator space and proba-
bility space for any MIC basis:

dσ =
∑
i, j

[�]i jρid pj . (B1)

The Hilbert-Schmidt line element is then

ds2
HS = tr(dσ )2 =

∑
i jkl

[�]i j[�]kl (trρiρk )d pjd pl . (B2)

As in the proof of Lemma 1, we write � = AG−1, where
[G]i j = trHiHj is the Gram matrix for the MIC and [A]i j =
hiδi j . Note further that trρiρ j = [A−1GA−1]i j . Then Eq. (B2)
simplifies to

ds2
HS =

∑
i j

[G−1]i jd pid pj . (B3)

The Hilbert-Schmidt volume element on the space of Hermi-
tian operators in L(Hd ) may now be related to the Euclidean
volume element in Rd2

,

d�HS =
√

| det G−1|dVE, (B4)

or, equivalently,

dVE =
√

| det G|d�HS. (B5)

The larger the det G, the larger the corresponding Euclidean
volume. Recall Eq. (A15), which says

det G � det GSIC, (B6)

with equality if and only if the MIC is a SIC. Thus, for any
region in operator space, the Euclidean volume is maximal
with respect to the SIC basis. In particular, the SIC basis gives
the largest volume among positive-semidefinite operators A
satisfying 1 − ε � trA � 1 + ε for any ε > 0. As ε → 0,
we obtain quantum state space Qd and the corresponding
region in Rd2

will have the largest hyperarea within � when
computed with the SIC basis.

To calculate this hyperarea, we need to find the metric on
� induced by the Hilbert-Schmidt metric in the SIC basis. We
may parametrize � by

X =
⎛
⎝p1, . . . , pd2−1, 1 −

d2−1∑
i=1

pi

⎞
⎠, (B7)

which has partial derivatives ∂iX μ = δ
μ
i − δ

μ

d2 where the latin
index runs from 1 to d2 − 1 and the greek index runs from 1
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to d2. For any MIC, the induced metric g is given by

[g]i j =
d2∑

μ,ν=1

∂iX
μ∂ jX

ν[G−1]μν. (B8)

It is easily seen that G−1
SIC = d (d + 1)I − J , where J is the

Hadamard identity. One may then calculate gSIC = d (d +
1)(I + J ) and det gSIC = d2(d2 + d )d2−1. The induced vol-
ume element on � is then

dωHS = d
√

(d2 + d )d2−1d p1 · · · d pd2−1. (B9)

In a similar way, it may be checked that the Euclidean metric
in Rd2

induces a volume element dAE on � satisfying

1

d
dAE = d p1 · · · d pd2−1, (B10)

and so

dωHS =
√

(d2 + d )d2−1dAE. (B11)

We may now integrate over quantum state space to obtain

volHS(Qd ) =
√

(d2 + d )d2−1volE(PSIC). (B12)

Życzkowski and Sommers [41] calculate the Hilbert-Schmidt
volume of finite-dimensional quantum state space to be

volHS(Qd ) =
√

d (2π )d (d−1)/2 
(1) · · · 
(d )


(d2)
, (B13)

from which Eq. (27) follows.
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