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Field-induced QCD3-Chern-Simons quantum criticalities in Kitaev materials
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Kitaev materials are promising for realizing exotic quantum spin liquid phases, such as a non-Abelian chiral
spin liquid. Motivated by recent experiments in these materials, we theoretically study the novel field-induced
quantum phase transitions from the non-Abelian chiral spin liquid to the symmetry-broken zigzag phase and to
the trivial polarized state. Utilizing the recently developed dualities of gauge theories, we find these transitions
can be described by critical bosons or gapless fermions coupled to emergent non-Abelian gauge fields, and the
critical theories are of the type of a QCD3-Chern-Simons theory. We propose that all these exotic quantum phase
transitions can potentially be direct and continuous in Kitaev materials, and we present sound evidence for this
proposal. Therefore, besides being systems with intriguing quantum magnetism, Kitaev materials may also serve
as table-top experimental platforms to study the interesting dynamics of emergent strongly interacting quarks and
gluons in 2 + 1 dimensions.
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I. INTRODUCTION

Understanding the universal properties of quantum phases
and quantum phase transitions is one of the central goals of
physics. Both quantum phases and phase transitions may be
characterized by interesting universality classes, but perhaps
partly due to the facts that quantum phases are often much
simpler to understand and that they occupy the most regions
of the phase diagram, more efforts have been devoted to ex-
ploring exotic quantum phases, rather than phase transitions.

However, the understanding of a quantum phase transition
between two phases necessarily involves the understanding
of the intricate interplay among all the degrees of freedom
in each phase, so such understanding offers not only the un-
derstanding of the possible universality class of the transition
itself, but also unified understanding of the nearby phases.
Therefore, in a certain sense understanding quantum phase
transitions is of more fundamental importance [1].

The best understood examples of quantum phase transi-
tions are between a symmetric phase and a spontaneously
symmetry-broken (SSB) phase. The critical theory for such
a phase transition is often formulated in terms of some fluctu-
ating local order parameters, and the associated universal crit-
ical physics can be obtained by a renormalization group (RG)
treatment of this critical theory. This is known as the Landau-
Ginzburg-Wilson paradigm [1]. In recent years, exploring
exotic quantum phase transitions beyond this conventional
paradigm has become a frontier of condensed matter physics.
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For an incomplete list of these studies, see Refs. [2–15].
However, many of these studies are mostly theoretical and
relatively far from experiments, so it is important to search for
exotic quantum phase transitions that are relevant to current
experiments.

One occasion where an exotic quantum phase transition
may occur is around a quantum spin liquid (QSL), i.e., a
spin system whose ground state exhibits nontrivial patterns
of quantum entanglement [16,17]. Recently there has been
exciting progress in material realizations of quantum spin
liquids [17], and an interesting class of materials is Kitaev
materials (for recent reviews, see Refs. [18–21]). These Kitaev
materials are believed to be described by Hamiltonians that
are close to the Kitaev honeycomb model [22], which is an
exactly solvable model with three different types of QSL
ground states (depending on parameters of the Hamiltonian):
a gapless QSL, a gapped Abelian QSL, and a gapped non-
Abelian QSL.

The gapped non-Abelian QSL, more precisely speaking,
realizes an Ising topological order (ITO), which has two types
of fractionalized excitations: a non-Abelian anyon σ and a
Majorana fermion. This state can be viewed as a p + ip
superconductor where the Bogoliubov quasiparticles therein
are coupled to a dynamical Z2 gauge field, and σ plays the
role of the π flux in this superconductor. Just as a p + ip
superconductor, the ITO must break time-reversal and mirror
symmetries. In fact, it has a chiral edge mode and is supposed
to have a quantized thermal Hall conductance κxy = 1/2 in
units of (π/6)(k2

BT/h̄). This property offers an experimentally
feasible method to detect the ITO.

Among the various Kitaev materials, α-RuCl3 has received
significant attention recently. It is found that the ground state
of α-RuCl3 is magnetically ordered in the absence of an
external magnetic field [23,24]. Specifically, the spins are
ordered in a zigzag pattern [25–27], as shown in Fig. 1.

2643-1564/2020/2(1)/013072(18) 013072-1 Published by the American Physical Society

https://orcid.org/0000-0002-6666-4163
https://orcid.org/0000-0002-5097-7800
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.013072&domain=pdf&date_stamp=2020-01-23
https://doi.org/10.1103/PhysRevResearch.2.013072
https://creativecommons.org/licenses/by/4.0/


LIUJUN ZOU AND YIN-CHEN HE PHYSICAL REVIEW RESEARCH 2, 013072 (2020)

FIG. 1. Under an external magnetic field, a Kitaev material may
go through different phases: a zigzag-ordered state, a non-Abelian
chiral quantum spin liquid with Ising topological order (ITO), and a
trivial polarized state. A similar phase diagram was observed in ex-
perimental [38] and numerical work [42]. The two phase transitions
are described by two different QCD3-Chern-Simons theories, which
have emergent gapless Dirac fermions (with different fermion flavor
numbers Nf = 1, 2) coupled to a U(2) Chern-Simons gauge field.
These two QCD3-Chern-Simons transitions require a high symmetry
of the system to be stable, and it can be satisfied if the magnetic
field is on the ac∗ plane of Kitaev materials (e.g., α-RuCl3). With
certain details modified, the Nf = 1 QCD3 theory can also describe
the phase transition from the ITO to other magnetic ordered states in
other Kitaev materials, such as the Néel and stripy phases [18–21].

The Heisenberg and � interactions [introduced in Eq. (1)]
are believed to be responsible for the zigzag order [28,29],
although the signs and strengths of these interactions in the
real material are not fully settled down. It is also suggested
that the � term may help to stabilize a QSL [30]. Notice a
similar zigzag order has also been found in another Kitaev ma-
terial, Na2IrO3 [31–33]. Upon applying an external magnetic
field, the zigzag magnetic order in α-RuCl3 melts [34–37]. If
the magnetic field is strong enough, the system will become
a trivial polarized state. Remarkably, the measured thermal
Hall conductance in a certain range of field strengths is
quantized exactly at κxy = 1/2 [38], which strongly suggests
that an ITO is induced by the Zeeman field. Although there
is some subtlety in interpreting this experiment [39–41], and
the results therein need to be confirmed by further studies, this
discovery has triggered great excitement.

These experimental results suggest that α-RuCl3 exhibits
only three phases upon increasing the external magnetic field,
namely, the zigzag order, the ITO, and the trivially polarized
state [38]. A natural question immediately arises: What is
the nature of the two phase transitions (zigzag-ITO and ITO-
polarized state) as the magnetic field is tuned? In this paper,
we manage to tackle this problem theoretically. Intriguingly,
we find that such quantum phase transitions are strikingly
different from the conventional phase transitions, owing to
the emergence of some deconfined non-Abelian gauge fields.
In particular, these quantum critical points mimic the QCD
theories in 2 + 1 dimensions, which have emergent quarks
and gluons that are strongly interacting with each other. More-
over, these critical theories have interesting duality properties;
namely, they can be described either by critical bosons inter-
acting with a U(2) Chern-Simons gauge field, or by gapless
Dirac fermions interacting with a U(2) Chern-Simons gauge
field. In recent years, dualities of interacting gauge theo-
ries have generated huge theoretical enthusiasm in both the

condensed matter and the high-energy communities [43–48],
and the Kitaev materials may be one of the few experimental
platforms [13] to study theories that have interesting duality
properties.

We remark that our discussion on these QCD3-Chern-
Simons quantum criticalities is very general, and it only relies
on the symmetries of the Kitaev materials, but not their
microscopic details (e.g., the precise spin Hamiltonian that
describes the Kitaev material). Interestingly, some numerical
evidence of these quantum phase transitions has been found
recently [42]. So it is relevant and timely to study such
transitions more thoroughly.

Our results are schematically summarized in Fig. 1, and
the rest of the paper is organized as follows. In Sec. II, we
first review the global symmetries of some representative
Kitaev materials, including α-RuCl3, Na2IrO3, etc. Based on
these general symmetry properties, in Sec. III, we discuss
the quantum phase transitions from the ITO state to the
zigzag phase and to the trivial polarized state, and we find
they are described by emergent QCD3-Chern-Simons gauge
theories. In Sec. IV, we discuss the experimental signatures
of the QCD3-Chern-Simons quantum critical points. Finally,
we summarize our results and discuss some future directions
in Sec. V. The appendices contain various technical details,
some of which present powerful methods that can be adopted
to study various related problems.

II. SYMMETRIES OF THE MATERIALS AND MODELS

For concreteness, we start by introducing the Hamiltonian
of a Kitaev material, and we stress again that it is only the
global symmetries rather than the detailed Hamiltonian that
play a role in the following discussion on the novel quantum
phase transitions. A general Hamiltonian for a Kitaev material
under a magnetic field up to nearest-neighbor coupling can be
written as

H =
∑

〈i j〉∈α

KαSα
i Sα

j −
∑

i

h · Si + JH

∑
〈i j〉∈α

Si · S j

+
∑

〈i j〉∈α

�αSβ
i Sγ

j + · · · , (1)

where the second and third terms are the familiar Zeeman
field term (with the g tensor suppressed) and Heisenberg
interaction, respectively. The KαSα

i Sα
j and �αSβ

i Sγ
j terms are

often referred to as the Kitaev term and � term, respectively.
The · · · term includes all other symmetry-allowed terms,
such as the �′ term (defined below), which was argued to
be important [42] for realizing the field-induced experimental
phase diagram [38] (see Fig. 1). On the bond 〈i j〉x, the x bond
connecting site i and site j, the K and � terms read KxSx

i Sx
j

and �x(Sy
i Sz

j + Sz
i Sy

j ), respectively. As for the �′ term, on the
bond 〈i j〉x, it reads �′

x(Sx
i Sy

j + Sy
i Sx

j + Sx
i Sz

j + Sz
i Sx

j ). Similar
notation is used for the y and z bonds. We denote the field
direction h = (hx, hy, hz ) as [hxhyhz], and the field direction
h = (−hx, hy, hz ) as [h̄xhyhz], etc.

This Hamiltonian is exactly solvable if only the Kitaev
term is present. In this case, it hosts two spin liquid ground
states. In particular, if |Kx| < |Ky| + |Kz|, etc., the ground state
is a gapless Z2 QSL with two Majorana cones. Under a small
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FIG. 2. The honeycomb lattice. The x bond, y bond, and z bond
are along the direction of a1, a2, and a3, respectively. The a and b
axes are shown in the figure, and the c∗ axis is perpendicular to the
paper and pointing outward.

magnetic field, as shown by Kitaev, the Hamiltonian gives rise
to an ITO, a non-Abelian chiral QSL ground state. Under a
very large magnetic field, the spins are trivially polarized [22].

Once perturbed away from the pure Kitaev model, the
Hamiltonian is no longer exactly solvable. It is still an open is-
sue about the precise values of the coupling constants of each
interaction term in Kitaev materials. In this paper, we will be
primarily concerned with the symmetries of the system, and
will not worry about the microscopic interaction strengths.

Some representative Kitaev materials, including α-RuCl3,
Na2IrO3, etc., are layered quasi-two-dimensional materials
with point group symmetry C2/m [26,27,49].1 The C2/m
symmetry constrains that Kx = Ky, �x = �y, �′

x = �′
y. It is

expected that Kz ∼ Kx,y and �z ∼ �x,y, �′
z ∼ �′

x,y, but it is
not crucial for our discussion. Without the Zeeman field, the
Hamiltonian enjoys the translation symmetry T1,2 along n1,2,
inversion symmetry C2, pseudo-mirror-symmetry σ ∗ (with the
mirror axis perpendicular to the z bond, or equivalently, along
the dashed line in Fig. 2), and time-reversal symmetry T
(S → −S). The pseudo-mirror-symmetry σ ∗ is the conven-
tional mirror symmetry followed by a spin rotation symmetry
eiπSy

eiπ/2Sz
,

σ ∗ : Sx
r → −Sy

σ r,

Sy
r → −Sx

σ r,

Sz
r → −Sz

σ r. (2)

We remark that the spin flip symmetries eiπSα

are broken due
to the � (or �′) terms.

Under a finite Zeeman field, the time-reversal symmetry
will be broken. The pseudo-mirror-symmetry is also bro-
ken by a field along a generic direction. There are special
directions along which the pseudo-mirror-symmetry or its
combination with the time-reversal symmetry is preserved.
The details are summarized in Table I.

1We note that there is debate on the precise low-temperature
symmetry of α-RuCl3, and some recent papers claim the symmetry
should be R3̄ [50,51]. Here we assume the symmetry is C2/m, and
the general method presented in this paper can also be straightfor-
wardly adopted to the case with R3̄ symmetry.

TABLE I. Symmetries of some representative Kitaev materials
(including α-RuCl3, Na2IrO3, etc.) under the Zeeman field along
different field directions h = (hx, hy, hz ).

T1,2 C2 T σ ∗ T σ ∗

h = 0 Yes Yes Yes Yes Yes
h ‖ [11x], in ac∗ plane Yes Yes No No Yes
h ‖ [1̄10], parallel to b Yes Yes No Yes No
h ∦ [1̄10], [11x] Yes Yes No No No

The time-reversal symmetry T or the pseudo-mirror-
symmetry σ ∗ forbids a finite thermal Hall conductance.
Therefore, if the Zeeman field is parallel to the b axis ([1̄10]
direction), one cannot have an ITO unless σ ∗ is spontaneously
breaking. On the other hand, if the Zeeman field is on the ac∗
plane, as is done in the thermal Hall experiments [38], there
is no symmetry that forbids the ITO. However, this does not
mean that we should expect an ITO for a field in a generic
direction on the ac∗ plane. After all, if one rotates the field on
the ac∗ plane, there should be a phase transition between the
ITO and its time-reversal partner. This transition can be direct
and continuous, or there can be an intermediate phase, e.g., a
Z2 toric code phase, as one rotates the Zeeman field on the ac∗
plane. In this paper, we will not pursue this direction.

Interestingly, the combination of time-reversal symmetry
and pseudo-mirror-symmetry, T σ ∗, is preserved for the field
on the ac∗ plane (h ‖ [11x]). This symmetry is crucial for the
stability of the QCD3-Chern-Simons quantum critical points,
as we will discuss in Sec. III. We also note that Refs. [27,52]
reported that the zigzag order is on the ac∗ plane, which means
this order preserves σ ∗ but spontaneously breaks T σ ∗.

III. QCD3-CHERN-SIMONS QUANTUM CRITICALITIES

Utilizing the symmetry properties of the Kitaev materials
discussed above, in this section, we study the possible exotic
quantum phase transitions from the ITO state to the zigzag
phase and to the polarized phase. These two latter states have
no topological order, so these transitions can be viewed as
confinement transitions of the ITO.

At first glance, such confinement transitions are rather
nontrivial if they can be continuous. To appreciate this, first
notice the anyonic excitations in the ITO only include the
non-Abelian Ising anyon σ and the Majorana fermion. One
common way to confine a topological order is to condense
some of its anyonic excitations that have bosonic self-statistics
and proper mutual statistics with other anyons. In an ITO,
however, there is no obvious such (bosonic) anyon that can
condense. One may also try to describe the transition in terms
of gapless fermions coupled to gauge fields. As mentioned in
the introduction, the ITO can be understood as a Z2 gauge
field coupled to Majorana fermions in a topological band with
Chern number C = 1. To confine the ITO, one needs to first
change the Chern number of the Majorana fermions from
C = 1 to C = 0. This process yields a pure deconfined Z2

gauge theory, which is the more familiar Z2 toric code state
[22]. To get a topologically trivial state, one needs to further
confine the pure Z2 gauge theory. In other words, one needs
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two separate transitions to confine the ITO. The first transition
is described by a single Majorana cone coupled to a Z2 gauge
field, and the second transition is the confinement transition of
the pure Z2 gauge theory, which can be described by an Ising
order parameter coupled to a Z2 gauge field [53].2

The way to make progress, as we will discuss in the
following, is to consider dual topological quantum field theory
(TQFT) descriptions of the ITO. More precisely, we will
find other gauge theories that are capable of describing the
ITO, such that the confinement transitions of these gauge
theories can be understood either by critical bosons or gapless
fermions coupled to the gauge fields.

A. Topological aspects and bosonic critical theories

To apply this strategy to our case, first recall that the
ITO can be viewed as a p + ip superconductor coupled to
a dynamical Z2 gauge field that corresponds to the fermion
parity symmetry; i.e., the ITO is a gauged p + ip super-
conductor. Furthermore, there is a 16-fold-way classification
of (2 + 1)D gapped superconductors coupled to such a Z2

gauge field, where the ITO corresponds to the state with an
index ν = 1 [22]. Suppose we take the superconductor with
ν = 3 together with another superconductor with ν = −2, and
weakly hybridize the fermions in these two superconductors;
the resulting state is the one with ν = 1.

This observation is useful because it is known that the
state with ν = 3 can be described by an SU(2)2 Chern-Simons
theory coupled to a boson. This theory also has two nontrivial
anyons: a non-Abelian anyon σ ′ and a Majorana fermion. In
addition, the state with ν = −2 can be described by a U(1)−4

Chern-Simons theory coupled to a boson, and this theory has
three nontrivial Abelian anyons, with one of them a Majorana
fermion. Therefore, we can arrive at the ITO state by taking
an SU(2)2 theory and a U(1)−4 theory, and hybridizing the
Majorana fermions in these two theories. More formally, this
hybridization of the Majorana fermions can be viewed as a
process of anyon condensation, where the bound state of the
Majorana fermions from the SU(2)2 and U(1)−4 theories are
condensed. In the language of TQFT, the resulting coupled
theory is denoted as U(2)2,−2,3 and we have derived a known
duality [54]4

Ising TQFT ←→ U(2)2,−2 = SU(2)2 × U(1)−4

Z2
. (3)

2We note that due to the coupling to a dynamical Z2 gauge field, the
first transition is in a distinct universality class compared to a single
free gapless Majorana fermion, and the second transition is also in a
distinct universality class compared to the 3D Ising transition.

3In Ref. [48], this theory is denoted as U(2)2,−2. In Ref. [54], it is
denoted as U(2)2,−4.

4One can also obtain the ITO by hybridizing the Majorana fermions
in a state with ν = n and those in a state with ν = 1 − n, for other
values of integral n. However, other choices of n result in more
complicated theories, and as far as we know, the combination of
ν = 3 and ν = −2 is the only theory that agrees with the phase
diagram in Fig. 1.

The Lagrangian of the U(2)2,−2 theory can be written as

LCS = − 2

4π
Tr

(
bdb − 2i

3
b3

)
+ 2

4π
(Tr b)d (Tr b), (4)

where b = b + b̃1 is a 2 × 2 U(2) gauge field, with b an SU(2)
gauge field and b̃ a U(1) gauge field.5

This U(2) gauge field is coupled to dynamical bosonic
matter fields 
, so that the total Lagrangian is

L = L[
,b] + LCS + LMaxwell − 1

2π
Bd (Tr b) + · · · . (5)

Here 
 may have different flavors, and each flavor can be
thought of as a two-component (corresponding to the color
index) complex boson, 
 = (φa, φb)T , which are in the funda-
mental representation of the U(2) gauge group. The third term
LMaxwell is the standard Maxwell Lagrangian of the gauge
field, and at long distances it is less relevant compared to the
topological part, Eq. (4).

Before proceeding, we pause to comment on the global
symmetries of the theory Eq. (5) in the absence of the last · · ·
term. As a quantum field theory in the continuum, besides the
Poincaré symmetry, CPT symmetry, etc., this theory also en-
joys a U(1) symmetry corresponding to the conservation of the
gauge flux of b̃, as well as an SU(Nf ) flavor symmetry. These
symmetries may not be present in the physical system, but it
is nevertheless helpful to keep track of them. The microscopic
symmetries of the physical system must be embedded into
these symmetries, but, a priori, the precise embedding pattern
can only be determined after we have a concrete microscopic
construction where this field theory emerges at long distances.
When specifying the physical system, we will add appropriate
· · · terms to Eq. (5) to break its full symmetries to the physical
symmetries. For example, we can add monopole operators of b̃
to break the U(1) flux conservation symmetry, and add certain
quartic interactions to break this SU(Nf ) flavor symmetry. To
keep track of the U(1) symmetry, we have added the fourth
term, where B is the probe gauge field of this U(1) symmetry.

The dynamics of the bosonic field 
 is described by the
standard φ4 theory, with Nf = 1, 2 flavors,

L[
,b] =
Nf∑

I=1

|(∂μ − ibμ)
I |2 − m2
∑

|
I |2 − V (
), (6)

where V (
) is the symmetry-consistent quartic potential
term.

If the 
 fields are gapped, they are dynamically trivial and
hence can be simply neglected. The theory is then described
by the U(2)2,−2 theory, which is nothing but the ITO. On the
other hand, if the 
 fields are condensed, the U(2) gauge field
will be Higgsed, which destroys the ITO. The mass of 
 is the
tuning parameter for this phase transition. In the continuum
field theory, it is straightforward to understand the phases
when 
 is condensed.

5This theory can also be written as

LCS = − 2

4π
Tr

(
bdb − 2i

3
b3

)
+ 4

4π
b̃db̃.
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When Nf = 1, the U(2) gauge field is Higgsed down to
U(1). Without loss of generality, let us suppose the first color
component of 
 gets a nonzero vacuum expectation value;
then only b22 is an active gauge field. In the absence of
the · · · term in Eq. (5), the Lagrangian describing this remain-
ing gauge field is

L = − 2

4π
b22db22 + 2

4π
b22db22 + LMaxwell − 1

2π
Bdb22

= LMaxwell − 1

2π
Bdb22. (7)

So we end up with a (2 + 1)DU(1) Maxwell theory, which is
nothing but a Goldstone phase with the U(1) flux conservation
symmetry spontaneously broken [55]. In the Kitaev materials,
this U(1) symmetry should be explicitly broken, and the
monopole operators responsible for this symmetry breaking
will gap out the Goldstone mode. Physically, it may be tempt-
ing to identify this phase as the zigzag phase. However, the
precise nature of this confined state depends on the quantum
numbers of the monopoles, which we will discuss in the next
subsection.

When Nf = 2, the U(2) gauge field will generically be
completely Higgsed. The gauge sector is trivial, and the
precise nature of the resulting confined state is determined
by whether the condensate of 
 spontaneously breaks any
symmetry. Before the condensation, the system has an flavor
rotation symmetry between 
1 and 
2, which can maximally
be SU(2). The condensation pattern of 
1,2 is dependent on
the form of the quartic potential V (
) in Eq. (7). Specif-
ically, if V (
) is SU(2) invariant, it should have the form
ρTrM2 + λ(TrM )2, with MIJ = ∑

a φIaφ
†
Ja. Here I, J are the

flavor indices, and a is the color index. If ρ, λ > 0, 
 will
condense in the SU(2)-invariant channel. In practice, the
SU(2) flavor symmetry is absent, but it is still possible that
the condensation pattern of 
 does not break any physical
symmetry, depending on the microscopic details. So we can
end up with a completely trivial state with no topological order
or spontaneous symmetry breaking.

Therefore, we have reached two continuum field theories
for the confinement transitions of the ITO, with Nf = 1, 2,
respectively. In both theories, in order to determine the sym-
metries of the confining states, we need to understand how
the physical symmetries are embedded into the emergent
symmetries of Eq. (5). Also, we need to know whether the
physical symmetries are sufficient to forbid all other possibly
relevant operators with respect to these critical theories. In
order to do this, a concrete microscopic construction of the
critical theory is needed. It turns out to be easier to achieve
this goal with a dual-fermionic description to Eq. (5), as we
will discuss below.

Before leaving this subsection, we point out an interesting
relation between the theory Eq. (5) and the bosonic integer
quantum Hall (BIQH) states [56,57], although this relation
is not of vital relevance for the discussions in this paper.
The BIQH states are often viewed as bosonic SPTs protected
by a U(1) symmetry, but they are in fact compatible with
a U(2) symmetry. These states can be labeled by their Hall
conductance under the U(1) gauge field corresponding to the
protecting U(1) symmetry, σxy = 2n with n an integer (in units

such that the state described in Ref. [56] has n = 1). The
response of the state with n = −2 to the U(2) gauge field
corresponding to the U(2) symmetry is precisely given by
Eq. (4), with the gauge fields in Eq. (4) viewed as a probe
gauge field [56,57]. In other words, the ITO can be obtained
by gauging two copies of the BIQH states in Ref. [56], which
is indeed similar to that the Abelian chiral spin liquid is a
gauged (one-copy) BIQH state [58,59]. In a BIQH state, the
boson condensation transition is described by Eq. (5) with all
gauge fields taken as probe gauge fields. Therefore, the theory
Eq. (5) can be understood as condensing the bosons in the
gauged BIQH states, where the gauge fields are dynamical.

B. Symmetry properties and dual-fermionic theories

The bosonic critical theory turns out to be dual to a
fermionic critical theory,

L =
Nf∑

I=1

�̄I i(/∂ − i/a)�I + m
∑

�̄I�I + Ltop, (8)

Ltop = 2 − Nf /2

4π
Tr

[
ada − 2i

3
a3

]
+ (4 − Nf )CSg

+ 2

4π
βdβ − 1

2π
βd[B − (Tr a)]. (9)

Here a is a U(2) gauge field, CSg denotes the gravitational
Chern-Simons term, β is a dynamical U(1) gauge field, and B
is a probe gauge field of the global U(1) symmetry as in the
bosonic critical theory. In our convention, when the coefficient
of CSg is 1, the theory has thermal Hall conductance κxy = 1
in units of (π/6)(k2

BT/h̄), or in other words, it has an edge
with chiral central charge c− = 1. The fermion field � is in
the fundamental representation of the U(2) gauge group, and
its flavor number can be Nf = 1, 2. This duality can be derived
using the level-rank duality [48] (see Appendix A), and it was
also presented in Ref. [60].6

Here the singlet mass of Dirac fermions m
∑

�̄I�I is
the tuning parameter of the confinement transition. When
m � −1 (in proper units), integrating out the Dirac fermions
gives a non-Abelian Chern-Simons theory,

L = 2

4π
Tr

[
ada − 2i

3
a3

]
+ 4CSg + 2

4π
βdβ + 1

2π
βd (Tr a).

(10)

This theory indeed describes the ITO. One might be confused
about this statement, since the Chern-Simons levels here look
rather distinct from those in Eq. (5). However, it is inappro-
priate to directly compare the Chern-Simons levels between
these two theories, because here a is coupled to fermions
(hence it is a spin gauge field), while b in Eq. (5) is coupled to
bosons. After taking into account the difference in the matter
fields, we can show that the topological order of Eq. (10) is

6The duality only holds for Nf = 1, 2 [48]. Also, the more pre-
cise form of the half-quantized Chern-Simons terms in the above
Lagrangian is proper η invariants [61]. But writing the half-quantized
Chern-Simons terms is more intuitive and does not alter our
discussion.
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exactly the same as U(2)2,−2 Chern-Simons theory, i.e., the
Ising TQFT (see Appendix A). We can also do a quick self-
consistency check by examining the gravitational response,
whose coefficient corresponds to the physical thermal Hall
conductance. The non-Abelian Chern-Simons term in Eq. (10)
can be roughly considered as U(2)−2 × U(1)−2, and integrat-
ing them out yields a gravitational Chern-Simons term − 7

2 CSg

[U(2)−2 contributes − 5
2 CSg and U(1)−2 contributes −CSg].

Combined with the 4CSg term in (10), the total gravitational
response is 1

2 CSg, which is the identical to that of the ITO.
On the other hand, when m � 1, the ITO will be destroyed.

As in the bosonic theories, the phases that ITO is confined
to depend on the fermion flavor number Nf and the actions
of the physical symmetries in these critical theories. More
precisely, when Nf = 1, the theory will be confined to a pure
U(1) Maxwell theory, in which the monopole will proliferate
and the nature of the resulting phase depends on the quantum
numbers of the monopole. When Nf = 2, all the gauge fields
will be confined without breaking any symmetry. This gives
a trivially polarized state as long as there is no other relevant
perturbation that can destroy the critical point. To understand
the final fates of the confined states, we need to have concrete
microscopic constructions of these critical theories.

The above fermionic critical theories motivate a parton
construction for the ITO and its confinement transitions. With
such an explicit construction, we are able to directly work out
the symmetry properties of the field theories. In particular,
using our parton constructions, we will show the following:

(i) The confined phase in the theory with Nf = 1 can
indeed be the zigzag magnetic order.

(ii) The confined phase in the theory with Nf = 2 can
indeed be a trivial state with all symmetries preserved.

(iii) The symmetries of the representative Kitaev materials
(listed in Table I) are sufficient to forbid the most obvious
relevant operators in both critical theories (with Nf = 1 and
Nf = 2, respectively).

To make the symmetries of Kitaev materials manifest, we
consider a rotated spin basis,

S̃x = Sx + Sy + Sz

√
3

,

S̃y = Sx + Sy − 2Sz

√
6

,

S̃z = Sx − Sy

√
2

. (11)

Here S̃x,y,z are chosen to be parallel to the c∗, a, and b axes,
so that they have simple symmetry transformation rules. For
example, under σ ∗, instead of transforming as in Eq. (2), they
transform as

S̃x
r → −S̃x

σ r,

S̃y
r → −S̃y

σ r,

S̃z
r → S̃z

σ r. (12)

The parton construction is [62]

S̃+ = φ† f †
a f †

b , S̃z = nφ + n fa + n fb

3
− 1

2
, (13)

TABLE II. Symmetries of operators in the Nf = 1 critical theory.
d (Tr a) happens to have the same quantum number as �̄γ μ�.

T1 T2 C2 T σ ∗

M −1 −1 −1 −M†

�̄γ 0� 1 1 1 −1
�̄γ 1� 1 1 −1 1
�̄γ 2� 1 1 −1 −1

with a constraint nφ = n fa = n fb . This parton construction
has a U(2) gauge invariance: � = ( fa, fb)T is in the U(2)
fundamental representation, and it is interacting with a U(2)
gauge field a; φ carries charge under the diagonal part of the
U(2) gauge field and a global U(1) charge (of the S̃z rotation).

To get the ITO, we can put the bosonic parton φ into a
Laughlin state at ν = −1/2, and put the fermionic partons fi

into a topological band with Chern number C = 2. This gives
exactly the Chern-Simons theory in Eq. (10): the fermionic
parton contributes a U(2)−2 Chern-Simons term for a, while
the bosonic parton is described by a U(1)−2 Chern-Simons
term of the U(1) gauge field β.

The confinement transition of ITO can be triggered by
changing the Chern number of fermionic partons. Specifically,
for a transition from C = 2 to C = 1, we get a critical theory
with Nf = 1, while for a transition from C = 2 to C = 0, we
get a critical theory with Nf = 2. In Appendix B, we provide
the concrete mean-field Ansätze for these two Chern-number-
changing transitions. We only consider a Zeeman field on the
ac∗ plane, which is the direction of Zeeman field reported in
Ref. [38]. In this case, the symmetries of the system include
translation T1,2, inversion C2, as well as the combination
of time-reversal and pseudo-mirror T σ ∗ (see Table I). We
also work out how those symmetries are implemented in the
critical theories using the mean-field Ansätze.

In the theory with Nf = 1, besides the singlet mass (tuning
parameter of the transition), the most relevant operators are
the monopole operator M, conserved current, d (Tra), and
�̄γ μ�.7 Their quantum numbers are shown in Table II, and
all of them are disallowed by symmetries. The minimally
allowed monopole operator is a twofold monopole, which
may or may not be relevant in the infrared. If it is irrelevant,
we may have a stable critical point with an emergent U(2)
gauge field. Furthermore, the monopole has exactly the same
quantum number as the zigzag magnetic order, assuming
the magnetic moments are ordered on the ac∗ plane in the
zigzag phase, as suggested by Refs. [27,52]. Therefore, the
proliferation of monopoles in the theory with Nf = 1 results
in precisely the zigzag magnetic order.

We now turn to the critical theory with Nf = 2. Besides
the U(1) flux conservation, the critical theory also has an
SU(2) flavor rotation symmetry. The most relevant operators

7The scaling dimension of �̄γ μ� in the presence of a Chern-
Simons term, as is the case here (for both Nf = 1 and Nf = 2), is 2,
since it has symmetry quantum numbers identical to those of d (Tr a),
which has scaling dimension 2. In the absence of a Chern-Simons
term, its scaling dimension is 3 [63].
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FIG. 3. Brillouin zone of the honeycomb lattice. The red dashed
line represents the high-symmetry line which connects the K and
K ′ = −K points. The blue dashed line connects the M3 and M3

points.

are the monopole operator M1,2,3, SU(2) adjoint mass �̄τα�

(τ acts on the flavor index), and conserved currents, d (Tr a),
�̄γ μτα� and �̄γ μ�. Here the monopoles are in the adjoint
representation of the SU(2) flavor symmetry, and it has three
components. Again, we want to work out the quantum num-
bers of these operators to see if they are forbidden by symme-
tries. There turn out to be three different cases, depending on
the locations of Dirac cones. Constrained by symmetries, the
two Dirac points have to stay at the high-symmetry points or
lines (see Fig. 3):

(1) The two Dirac cones are at the M1,2 points, (k1, k2) =
(π, 0), (0, π ).

(2) The two Dirac cones are at (k1, k2) = (k, k), (−k,−k)
points (k is an arbitrary number), which are on the high-
symmetry line K − K ′.

(3) The two Dirac cones are at (k1, k2) = (k,−k), (−k, k)
points (k is an arbitrary number), which are on the high-
symmetry line M3-M3.

In Appendix B, we provide the mean-field Ansätze for all
the three possibilities, and the quantum numbers of operators
are summarized in Tables III–V.

In case 1 (the nodes are located at M1,2 points), there is
one symmetry-allowed operator, �̄γ 0τ z� = �

†
1�1 − �

†
2�2.

This operator will destabilize the quantum critical point: it will
dope the Dirac cones at the M1, M2 points and generate parti-
cle and hole pockets. These two Fermi pockets are interacting
with a U(2) gauge field, which may or may not be stable. In
cases 2 and 3, again there is one symmetry-allowed relevant
operator in each case: �̄γ 1τ z� and �̄γ 2τ z�, respectively.
However, differently from the first situation, these operators
will not destroy the quantum critical points. Instead, they will
just move the Dirac points along the high-symmetry lines
(along either the K-K ′ or the M3-M3 line). Therefore, the
quantum critical point between the ITO and polarized state
may be stable if the two Dirac nodes are staying at the high-
symmetry lines.

IV. EXPERIMENTAL SIGNATURES

So far we have theoretically explored novel QCD3 quantum
phase transitions in the Kitaev materials. In this section we
discuss their experimental signatures.

It is most important to first establish experimentally that
such phase transitions are indeed continuous. We remark

FIG. 4. At the transition between the zigzag phase and the ITO
phase, strong signals of neutron scattering are expected to appear at
the M3 point (the red point) in the BZ. There can also be a strong
signal at the � point (the black point). The signal at the M3 point is
due to the monopole operator M, and the one at the � point is due to
the fermion bilinear operator �̄� (see Appendix C for more details).

that even if such phase transitions are continuous, naively
one would not expect them to be described by (2 + 1)-
dimensional conformal field theories (CFTs),8 as we propose.
This is because for a transition to be described by a CFT, there
often need to be many symmetries to prohibit relevant pertur-
bations that would destabilize the CFT. However, the field-
induced transitions considered here enjoy very few symme-
tries. Therefore, verifying that these transitions are described
by CFTs already provide a nontrivial check of our theory.

If the transitions can be confirmed to be continuous and
they are described by (2 + 1)-dimensional CFTs as we pro-
pose, the qualitative behaviors of many physical quantities
are readily determined and can thus be used to verify the
transitions are indeed described by CFTs. For example, for a
(2 + 1)-dimensional CFT, both the specific heat and the ther-
mal conductivity tensor behave as T 2 in the low-temperature
limit. More generally, define

καβ = 1

T 2
〈sα (k = 0)sβ (−k = 0)〉 (14)

with α, β = 0, 1, 2. Here s0 is the energy density and si with
i = 1, 2 is the energy current. k = (ω, k) collectively denotes
the frequency and wave vector. κ00 is the specific heat, and
κi j is the thermal conductivity tensor [64–66]. For a (2 + 1)-
dimensional CFT, καβ obeys the scaling form

καβ (T, B) = T 2κ̃αβ (T/|B − Bc|ν ), (15)

where κ̃αβ is a universal function, Bc is the critical field
strength of these field-induced phase transitions, and ν is the
critical exponent governing the divergence of the correlation
length upon approaching the critical point, i.e., ξ ∼ |B −
Bc|−ν with ξ the correlation length. Using the above scaling
relation, by experimentally measuring the specific heat and
thermal conductivity tensor in the vicinity of the quantum crit-
ical points, one can verify that these transitions are described
by CFTs and obtain the correlation length exponent, ν.

Using the symmetry properties of various operators in
Tables II, III, and IV, we can predict at which momenta

8A classic example of a continuous quantum phase transition which
is not described by a CFT is the superfluid-insulator transition in a
Bose-Hubbard model without fixing the boson density [1].
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FIG. 5. At the transition between the ITO phase and the trivial
phase, strong signals of neutron scattering are expected to appear
at the colored points in the BZ. The points with the same color
have the same critical exponent of the neutron scattering signal
〈S̃i(ω = 0, k )̃Si(ω = 0, −k)〉. Left: For the critical theory described
by case 2 in Sec. III B, the three blue points are located at �,
(2k, 2k), and (−2k, −2k), respectively. The three red points are
at M3, (2k + π, 2k + π ), and (−2k + π,−2k + π ), respectively.
Right: For the critical theory described by case 3 in Sec. III B,
the three blue points are located at �, (2k,−2k), and (−2k, 2k),
respectively. The three red points are at M3, (2k + π,−2k + π ), and
(−2k + π, 2k + π ), respectively. There can also be another strong
signal at the � point (not shown in the figure above) due to the
operator �̄� (see Appendix C for more details).

of the Brillouin zone (BZ) strong signals of critical modes
will appear in neutron scattering experiments at these critical
points. Specifically, we will consider operators (in these ta-
bles) that will potentially show a divergent peak in the neutron
scattering signals as a function of momentum, and we will
determine the locations of these peaks in the BZ. Below we
summarize the relevant results, and the details can be found in
Appendix C.

For the transition between the zigzag phase and the ITO
phase, a peak in the spin structure factor 〈S̃i(ω = 0, k )̃Si(ω =
0,−k)〉 may appear at the M3 point of the BZ,9 where i =
x, y (see Fig. 4). The critical exponent characterizing the
divergence of this spin structure factor when k approaches
M3 is independent of i = x, y, due to an emergent U(1) spin
rotational symmetry around S̃z in our critical theory.10

For the transition between the ITO phase and the trivial
phase, there may also be peaks in the spin structure factor
〈S̃i(ω = 0, k )̃Si(ω = 0,−k)〉, and their locations are shown
as colored points in Fig. 5. At each point, the dependence
on the spin polarizations of the critical exponent character-
izing how fast the corresponding peak diverges is detailed in
Appendix C. Furthermore, due to an emergent SO(3) flavor
symmetry, points with the same color have the same critical
exponent.

9Notice, in order to have a peak in the spin structure factor, we
have assumed certain operators at the critical points have a scaling
dimension smaller than 3/2. If their scaling dimension is larger than
3/2, at these momenta the spin structure factor should show a dip
rather than a peak. See Appendix C for more details.

10There can in principle also be strong signals at the � point, as
noted in Fig. 4. In real experiments such signals may be hard to
extract due to the background signals from neutrons that are not
scattered, but they can in principle be detected in numerical studies.

These spin structure factors can be measured by
neutron scattering experiments, and they provide highly non-
trivial checks of our critical theories. Note that to examine the
emergent U(1) symmetries at these transitions, spin-polarized
neutron scattering experiments are needed. Otherwise, spin-
unpolarized ones are sufficient to check the above predictions,
including the emergent SO(3) symmetry at the transition
between ITO and the polarized state.

Another prediction of our theory is that if the Zeeman
field is tilted away from the ac∗ plane (corresponding to
breaking T σ ∗ symmetry), our QCD3 quantum critical points
will be unstable to either a first-order phase transition or a new
intermediate phase.

V. SUMMARY AND DISCUSSION

Motivated by the recent theoretical and experimental
progress in the research on Kitaev materials, we study novel
field-induced quantum phase transitions in these materials.
In particular, based on general symmetry grounds, we have
discussed the transitions from the Ising topologically ordered
(ITO) state to the zigzag order and to the trivial polar-
ized state. We find that these transitions are rather exotic,
and they can be described by QCD3-Chern-Simons theories.
More precisely, the transition between the ITO state and the
zigzag order (the trivial polarized state) can be described
by a dynamical U(2) gauge field coupled to Nf = 1 (Nf =
2) critical fermions. We have checked that the symmetries
of some representative Kitaev materials (listed in Table I)
are sufficient to forbid the most obvious relevant operators
(other than the transition tuning operator) of these putative
critical theories. Therefore, these transitions can potentially be
generic direct continuous quantum phase transitions. We note
that our method can also be adopted to study the transitions
between the ITO and magnetic orders other than the zigzag
type.

We also notice that these critical theories are dual to
Nf = 1 (Nf = 2) species of critical bosons coupled to a
dynamical U(2) gauge field. There is an interesting relation
between these critical theories with bosonic integer quantum
Hall (BIQH) states. The quantum phase transitions from the
BIQH states to a superfluid and to a trivial insulator have been
widely studied in recent years [6,7,10], and it may be worth
relating these transitions to the transitions from the ITO state
to other states.

We emphasize that our discussion on the QCD3-Chern-
Simons quantum criticalities is very general, and is inde-
pendent of the microscopic details (e.g., form of the spin-
spin interactions) of the Kitaev materials. Whether these
critical points are realized in a particular Kitaev material
again should be determined experimentally. Some experi-
mental signatures of these phase transitions are discussed in
Sec. IV.

As for future directions, it is worth studying these quantum
phase transitions in more depth. On the experimental front,
it is helpful to examine the phase diagrams of the Kitaev
materials more closely, and identify different phases and
study the phase transitions. Numerically, it is important to
study the phase diagram of more realistic lattice models.
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In the purely theoretical direction, it will be of interest to
study the low-energy dynamics of these critical theories to
determine whether these transitions can indeed be contin-
uous, and what the critical exponents are. These studies
will provide further insights on the experimental studies of
the Kitaev materials. Also, given the similarities among the
critical theories between different pairs of phases, it may be
interesting to look for a theory of a multicritical point that
becomes these phases and critical theories upon adding per-
turbations. This will potentially lead to unified understanding
of the rich structures of the quantum magnetism in these
systems.

Finally, we remark that dualities and emergent non-Abelian
gauge theories similar to ours may be useful tools to un-
derstand other types of exotic quantum phases and phase
transitions in condensed matter systems, and we expect more
applications of related ideas will arrive in the future and prove
helpful.

Note added. In a previous version of this paper on arXiv,
we discussed both the exotic QCD3-Chern-Simons quantum
phase transitions and a gapless phase in the Kitaev model
supplemented with a magnetic field. Only the former is in
the current paper, and the latter will be discussed in another
separate paper.
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APPENDIX A: DERIVATION OF DUALITY
OF CRITICAL THEORIES

We can use the level-rank duality in Ref. [48] to show that
the bosonic critical theory Eq. (5) is dual to the fermionic
critical theory Eq. (8). We begin with a level-rank duality,
namely, that the U(2)2 theory with Nf fundamental bosons
is dual to the SU(2)−2+Nf /2 theory with Nf fundamental
fermions. The duality only holds for Nf = 1, 2. The bosonic
theory is

L =
Nf∑

I=1

|(∂μ − ibμ)
I |2 − m2
∑

|
I |2 − V (|
|) − 2

4π
Tr

(
bdb − 2i

3
b3

)
− 1

2π
B′d (Tr b), (A1)

and the fermionic dual is

L =
Nf∑

I=1

�̄I

(
i/∂ + /a + /B′

2
12 + m

)
�I + 2 − Nf /2

4π
Tr

[(
a + B′

2
12

)
d

(
a + B′

2
12

)
− 2i

3

(
a + B′

2
12

)3
]

+ (4 − Nf )CSg. (A2)

Here b is a U(2) gauge field, a is an SU(2) gauge field, and B′ is a U(1) probe field. V (
) is the SU(Nf )-invariant quartic term.
Next we add a TQFT U(1)−2 to both theories, yielding two new theories that are dual to each other. The bosonic theory

changes to

L =
Nf∑

I=1

|(∂μ − ibμ)
I |2 − m
∑

|
I |2 − V (|
|) − 2

4π
Tr

(
bdb − 2i

3
b3

)
− 1

2π
B′d (Tr b) + 2

4π
βdβ − 1

2π
βd (B − B′),

(A3)

and the fermionic theory changes to

L =
Nf∑

I=1

�̄I

(
i/∂ + /a + /B′

2
12 + m

)
�I + 2 − Nf /2

4π
Tr

[(
a + B′

2
12

)
d

(
a + B′

2
12

)
− 2i

3

(
a + B′

2
12

)3
]

+ (4 − Nf )CSg

+ 2

4π
βdβ − 1

2π
βd (B − B′). (A4)

At last, we gauge the U(1) probe field B′ → α. In the bosonic theory, we can simply integrate out α, yielding β = Tr b, and
the theory exactly reduces to the bosonic critical theory Eq. (5) we introduced in the main text:

L =
Nf∑

I=1

|(∂μ − ibμ)
I |2 − m
∑

|
I |2 − V (|
|) − 2

4π
Tr

(
bdb − 2i

3
b3

)
+ 2

4π
(Tr b)d (Tr b) − 1

2π
Bd (Tr b). (A5)

In the fermionic theory, gauging B′ will promote a + B′
2 12 to a U(2) gauge field a,

L =
Nf∑

I=1

�̄I (i/∂ + /a + m)�I + 2 − Nf /2

4π
Tr

[
ada − 2i

3
a3

]
+ (4 − Nf )CSg + 2

4π
βdβ − 1

2π
βd[B − (Tr a)]. (A6)
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This theory is exactly the fermionic critical theory Eq. (8) we
introduced in the main text.

In the rest of this Appendix we will derive the topological
nature of the resulting phases for different signs of m and
for Nf = 1, 2. For this purpose, it is sufficient to switch
off the probe gauge field B; i.e., we will set B = 0. The
method presented below can be straightforwardly adopted to
determine the topological nature of similar theories.

1. m � −1 with Nf = 1, 2: ITO

Let us start with m � −1. In this case, integrating out the
fermions results in the following effective Lagrangian (for
both Nf = 1 and Nf = 2):

L = 2

4π
Tr

[
ada − 2i

3
a3

]
+ 4CSg + 2

4π
βdβ + 1

2π
βd (Tr a)

= 2

4π
Tr

[
ada − 2i

3
a3

]
+ 4

4π
ãdã + 2

4π
βdβ

+ 2

2π
βdã + 4CSg, (A7)

where a = a + ã1, with a an SU(2) gauge field and ã a U(1)
gauge field.

Now we would like to understand why this Chern-Simons-
matter theory describes the ITO state, i.e., a topological order
with anyon contents {1, σ, ε}, where σ is a non-Abelian anyon
with topological spin θσ = ei π

8 and ε is a Majorana fermion.
To this end, let us first understand different sectors of this
theory. Denote the Lagrangian of the first sector by L1,

L1 = 2

4π
Tr

[
ada − 2i

3
a3

]
, (A8)

and the Lagrangian of the second sector by L2,

L2 = 4

4π
ãdã + 2

4π
βdβ + 2

2π
βdã. (A9)

If L1 described a Chern-Simons field coupled to bosonic
matter fields, it was precisely SU(2)−2; i.e., it described a
topological order with anyon content {1, σ−3, ε}, where σ−3 is
a non-Abelian anyon with topological spin θσ−3 = e−i 3π

8 , and
ε is a Majorana fermion. This is also Kitaev’s ν = −3 state
in the 16-fold way [22]. In terms of the Chern-Simons matter
field theory, the σ−3 excitation is obtained by exciting a matter
field in the spinor representation of the SU(2) gauge group;
then the Chern-Simons term will associate some SU(2) flux to
this excitation and convert it into the non-Abelian anyon σ−3.
Importantly, here our Chern-Simons gauge field a is coupled
to a fermionic matter in the fundamental representation, and
the fermionic nature of the matter field will change the topo-
logical spin of this excitation from e−i 3π

8 to e−i 3π
8 × (−1) =

ei 5π
8 . Let us suggestively denote this excitation as σ5. The ε

excitation is obtained by exciting a matter field in the integer-
spin representation of the SU(2) gauge field. Since matter
fields in such representations are bosonic, the topological
spin of this excitation will not be modified. One can further
check the fusion and braiding, and verify that L1 coupled to
fermionic matter in the fundamental representation is actually
the topological order with ν = 5 in Kitaev’s 16-fold way (up
to the chiral central charge on the edge), with anyon content
{1, σ5, ε} [22].

Next we examine the property of L2. Using the standard
K-matrix formalism [16], the topological nature of this theory
can be determined by first rewriting L2 as

L2 = KIJ

4π
aI daJ , (A10)

where aI = (ã, β )T and

KIJ =
(

4 2
2 2

)
. (A11)

To read off the topological properties of this state, we need to
invert the matrix K and get

K−1 =
(

1
2 − 1

2

− 1
2 1

)
. (A12)

The excitations of this theory can be labeled by an ex-
citation vector l , and the elementary ones are l1 = (1, 0)T

and l2 = (0, 1)T . If the Chern-Simons gauge fields in L2 are
coupled to bosonic matter fields, the excitation labeled by l1
has topological spin θ1 = e−i π

2 , and the excitation labeled by
l2 has topological spin θ2 = −1. These two excitations, l1 and
l2, have mutual braiding θl1l2 = −1.

Notice that l1 carries charge-1 under both ã and a, so the
excitation associated with l1 is actually bound with σ5 in the
sector of L1. This composite excitation has topological spin
ei 5π

8 × e−i π
2 = ei π

8 , and it will be identified as the σ excitation
in the ITO. At this point, there seem to be three nontrivial
topological excitations: σ , ε, and excitation l2 in the sector
L2. As argued before, l2 is a fermion. In fact, l2 should be
identified with ε. To see this, consider the bosonic bound state
ε × l2. It is straightforward to check that this bound state has
no nontrivial braiding with all other excitations. Therefore,
this excitation must be local. In other words, ε and l2 are in
fact in the same topological sector.

In summary, the final anyon content is {1, σ, ε}, which is
precisely the same anyon content as the ITO state. Also, the
fusion and braiding properties of these excitations also match
with ITO. Furthermore, in Sec. III we have verified that the
chiral central charge of the edge states of this theory matches
with that of the ITO. Therefore, we conclude that the theory
described by m � −1 is precisely the ITO state, for both
Nf = 1 and Nf = 2.

2. m � 1 with Nf = 1: A short-range entangled state

Next, let us move to the case with m � 1 and Nf = 1. In
this case, integrating out the fermions leads to the following
effective Lagrangian:

L = 1

4π
Tr

[
ada − 2i

3
a3

]
+ 2

4π
ãdã + 2

4π
βdβ

+ 2

2π
βdã + 2CSg. (A13)

Again, let us look at the two sectors separately:

L1 = 1

4π
Tr

[
ada − 2i

3
a3

]
,

L2 = 2

4π
ãdã + 2

4π
βdβ + 2

2π
βdã. (A14)
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In the sector described by L1, if the Chern-Simons gauge
field is coupled to a bosonic matter, it is precisely the SU(2)−1

theory, which has a topological order with only one nontrivial
excitation, an antisemion s̄ with topological spin θs̄ = e−i π

2 .
Again, this excitation comes from exciting a matter field in the
spinor representation of the SU(2) gauge field. Because here
the spinor representations are all fermionic, this antisemion
will be converted into a semion s with topological spin θs =
ei π

2 .
In the sector described by L2, let us first define a± = 1

2 (ã ±
β ). In terms of a±, L2 can be written as

L2 = 8

4π
a+da+. (A15)

Notice the absence of a Chern-Simons term for a− here, which
means this gauge field should be confined due to monopole
proliferation. That is to say, the deconfined excitation in the
sector described by L2 should have zero charge under a−. It
is straightforward to verify that these excitations all have even
charges under a+. So the elementary nontrivial excitation in
this sector is given by having charge-2 under a+, and this
excitation has topological spin θ = e−i π×2×2

8 = e−i π
2 . It is also

easy to see that any excitation with charge-2 under a+ also
carries a spinor representation of the SU(2) gauge field a in
the sector of L1, so this excitation is always bound with the s
excitation from L1, and the resulting composite excitation is
a boson. One can verify there is no other nontrivial excitation
in this theory, which means the topological order is actually
trivial. Furthermore, integrating out the gauge field in L1 of
Eq. (A14) generates −CSg, and integrating out the gauge
field in L2 of Eq. (A14) also generates −CSg. Adding them
together cancels the background term 2CSg, so the resulting
state has vanishing chiral central charge on the edge.

In summary, the case with m � 1 and Nf = 1 is a short-
range entangled state; i.e., it has no nontrivial topological
excitation or nontrivial edge mode.

3. m � 1 and Nf = 2: A short-range entangled state

Finally, let us turn to the case with m � 1 and Nf = 2.
In this case, integrating out the fermions gives rise to the
following effective Lagrangian:

L = 2

4π
βdβ + 2

2π
βdã. (A16)

There is no Chern-Simons term for a, which means the
fermionic matter field that carries a fundamental represen-
tation of the SU(2) gauge field a is confined. The possible
elementary deconfined topological excitations should carry
charge-1 under β or charge-2 under ã. Using the K-matrix for-
malism it is easy to verify that these excitation are all bosons
and they have no mutual braiding. Therefore, the resulting
state actually contains no nontrivial anyon. Furthermore, one
can check that integrating out the gauge fields in Eq. (A16)
generates no gravitational Chern-Simons term, which means
that this theory has a zero chiral central charge on its edge.

Therefore, the case with m � 1 and Nf = 2 is also a short-
range entangled state; i.e., it has no nontrivial topological
excitation or nontrivial edge mode.

FIG. 6. The hopping terms of the parton mean-field ansatz.

APPENDIX B: PARTON MEAN FIELD OF THE
FERMIONIC U(2) CRITICAL THEORY

In this Appendix, we discuss the parton mean-field Ansatz
for the ITO and its confinement transitions. As discussed in
the main text, the U(2) parton construction is S̃+ = φ† f †

a f †
b .

There is a U(2) gauge redundancy, and the ( fa, fb) is the
U(2) fundamental. We further rewrite φ† = c†

1c†
2. The mean-

field Hamiltonian of the fermionic partons (c, f ) generally
has the first-, second-, and third-nearest-neighbor hoppings,
which should be consistent with the symmetries: translation
symmetry, inversion C2, and T σ ∗. We note that the symmetry
actions of translation and inversion are simple on (c, f ), while
the T σ ∗ symmetry transformation is implemented as

T σ ∗ : i → −i, (B1)

S̃x,y
r → S̃x,y

σ r , (B2)

S̃z
r → −S̃z

σ r, (B3)

c†
r → cσ r, (B4)

f †
r → fσ r. (B5)

The mean-field Hamiltonian for the partons (both c and f )
takes a generic form with the first-, second-, and third-nearest-
neighbor hoppings, H = −∑

i j ti jd
†
i d j , where d can represent

either f or c. Specifically, we consider a symmetry-preserving
hopping pattern, which has parameters t1x = t1y, t1z, t2z, t3x =
t3y, and t3z, as shown in Fig. 6.

The parton c1,2 is always in a C = −1 band; it corresponds
to φ realizing a ν = −1/2 bosonic Laughlin state. Specifically
we take the hopping amplitude as t c1

1x = t c1
1x = 1, t c1

1z = 1, t c1
2z =

0.5eiπ/2, and t c2
1x = t c2

1x = 1, t c2
1z = −1, t c2

2z = 0.5eiπ/2.
The ITO is realized by putting U(2) f partons into a C = 2

band, which for example can be realized with hopping am-
plitude t f

1x = t f
1y = 1, t f

1z = 1, t f
2z = 0.5eiπ/2, t f

3x = t f
3y = 0.3,

t f
3z = 1. To realize the zigzag magnetic order, we need to tune

the Chern number of f partons to C = 1. It can be triggered by
tuning t f

1x = t f
1y, and the transition happens at t f

1x = t f
1y = 1.3.

Using this mean-field Ansatz, we work out the symmetry
quantum numbers of the relevant operators as summarized in
Table I. We note that the quantum numbers of d (Tr a) turn
out to be identical to those of �̄γ μ� in all our fermionic dual
theories, so they are not displayed in the tables.
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TABLE III. Symmetries of operators in the Nf = 2 critical the-
ory with Dirac nodes at the M1 and M2 points. s = 0, 1 cannot
be determined using our current method. There is one symmetry-
allowed relevant operator, �̄γ 0τ z�, which will destroy the quantum
critical point.

T1 T2 C2 T σ ∗

�̄τ x� −1 −1 −1 1
�̄τ y� −1 −1 −1 −1
�̄τ z� 1 1 1 −1
�̄γ 0� 1 1 1 −1
�̄γ 1� 1 1 −1 1
�̄γ 2� 1 1 −1 −1
�̄γ 0τ x� −1 −1 −1 −1
�̄γ 1τ x� −1 −1 1 1
�̄γ 2τ x� −1 −1 1 −1
�̄γ 0τ y� −1 −1 −1 1
�̄γ 1τ y� −1 −1 1 −1
�̄γ 2τ y� −1 −1 1 1
�̄γ 0τ z� 1 1 1 1
�̄γ 1τ z� 1 1 −1 −1
�̄γ 2τ z� 1 1 −1 1
M1 −1 −1 −1 (−1)sM†

2

M2 −1 −1 −1 (−1)sM†
1

M3 1 1 1 −(−1)sM†
3

To realize the transition from the ITO to the trivially
polarized state, we need to tune the Chern number directly
from C = 2 to C = 0. There are three different types of ways
to realize this transition:

(1) Tuning t f
1z, and the transition happens at t f

1z = 1.6. The
two Dirac cones are at the M1 and M2 points. In this case, the
symmetry actions on � are given by

T1 : � → −τ z�,

T2 : � → τ z�,

C2 : �(r) → γ 0τ z�(−r),

T σ ∗ : �(x, y) → iγ 1τ x�†(x,−y). (B6)

The quantum numbers of the gauge-invariant relevant op-
erators are summarized in Table III.

(2) Tuning t f
3x = t f

3y, and the transition happens at

t f
3x = t f

3y = 1. The two Dirac cones are at (k1, k2) =
(k, k), (−k,−k), which are on the high-symmetry line K −
K ′. In this case, the symmetry actions on � are given by

T1 : � → eikτ z
�,

T2 : � → eikτ z
�,

C2 : �(r) → γ 0τ y�(−r),

T σ ∗ : �(x, y) → iγ 1τ z�†(x,−y). (B7)

The quantum numbers of the gauge-invariant relevant opera-
tors are summarized in Table IV.

(3) Tuning t f
3z, and the transition happens at t f

3z = 1.6. The
two Dirac cones are at (k1, k2) = (k,−k), (−k, k), which are
on the high-symmetry line M3-M3. In this case, the symmetry

TABLE IV. Symmetries of operators in the Nf = 2 critical the-
ory with two Dirac cones on the high-symmetry line K − K ′. s =
0, 1 cannot be determined using our current method. There is one
symmetry-allowed relevant operator, �̄γ 1τ z�, which however only
moves the location of Dirac points without destroying the quantum
critical point.

T1 T2 C2 T σ ∗

�̄1�2 e−2ik e−2ik −�̄2�1 −�̄2�1

�̄2�1 e2ik e2ik −�̄1�2 −�̄1�2

�̄τ z� 1 1 −1 1
�̄γ 0� 1 1 1 −1
�̄γ 1� 1 1 −1 1
�̄γ 2� 1 1 −1 −1
�̄1γ

0�2 e−2ik e−2ik −�̄2γ
0�1 �̄2γ

0�1

�̄1γ
1�2 e−2ik e−2ik �̄2γ

1�1 −�̄2γ
1�1

�̄1γ
2�2 e−2ik e−2ik �̄2γ

2�1 �̄2γ
2�1

�̄2γ
0�1 e2ik e2ik −�̄1γ

0�2 �̄1γ
0�2

�̄2γ
1�1 e2ik e2ik �̄1γ

1�2 −�̄1γ
1�2

�̄2γ
2�1 e2ik e2ik �̄1γ

2�2 �̄1γ
2�2

�̄γ 0τ z� 1 1 −1 −1
�̄γ 1τ z� 1 1 1 1
�̄γ 2τ z� 1 1 1 −1
M1 −e2ik −e2ik −M2 (−1)sM†

1

M2 −e−2ik −e−2ik −M1 (−1)sM†
2

M3 −1 −1 −1 −(−1)sM†
3

actions on � are given by

T1 : � → eikτ z
�,

T2 : � → e−ikτ z
�,

C2 : �(r) → γ 0τ y�(−r),

T σ ∗ : �(x, y) → iγ 1τ x�†(x,−y). (B8)

The quantum numbers of the gauge-invariant relevant op-
erators are summarized in Table V.

Finally, we make a few comments on the monopole op-
erators. Technically, we follow the method in Refs. [67–70]
to calculate the quantum numbers of the monopoles. Namely,
we explicitly construct the monopole states on a torus, and
then extract the quantum number of the monopole states.
Specifically, we put the system on a 2 × L × L lattice, and
spread a uniform 2π flux for each parton c, f . Each Dirac
fermion will form Landau levels with one exact zero mode.
When Nf = 1, the gauge-invariant monopole corresponds to
a state with all negative-energy Fermi sea filled. In contrast,
in the Nf = 2 critical theory, the gauge-invariant monopoles
should have two zero modes filled [each from one U(2) color]
together with the filled negative-energy Fermi sea. There are
three gauge-invariant ways to fill the zero modes,

M1 = M̃ψ1aψ1b, M2 = M̃ψ2bψ2a,

M3 = 1√
2
M̃(ψ1aψ2b − ψ1bψ2a). (B9)

Here M̃ is the bare monopole with 2π flux and filled negative-
energy Fermi sea. ψ represents the zero mode, and 1,2 are
the flavor indices and a, b are the color indices. The three
monopoles are in the adjoint representation of the SU(2) flavor
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TABLE V. Symmetries of operators in the Nf = 2 critical theory
with two Dirac cones on the high-symmetry line M3 − M3. s =
0, 1 cannot be determined using our current method. There is one
symmetry-allowed relevant operator, �̄γ 2τ z�, which however only
moves the location of Dirac points without destroying the quantum
critical point.

T1 T2 C2 T σ ∗

�̄1�2 e−2ik e2ik −�̄2�1 1
�̄2�1 e2ik e−2ik −�̄1�2 1
�̄τ z� 1 1 −1 −1
�̄γ 0� 1 1 1 −1
�̄γ 1� 1 1 −1 1
�̄γ 2� 1 1 −1 −1
�̄1γ

0�2 e−2ik e2ik −�̄2γ
0�1 −1

�̄1γ
1�2 e−2ik e2ik �̄2γ

1�1 1
�̄1γ

2�2 e−2ik e2ik �̄2γ
2�1 −1

�̄2γ
0�1 e2ik e−2ik −�̄1γ

0�2 −1
�̄2γ

1�1 e2ik e−2ik �̄1γ
1�2 1

�̄2γ
2�1 e2ik e−2ik �̄1γ

2�2 −1
�̄γ 0τ z� 1 1 −1 1
�̄γ 1τ z� 1 1 1 −1
�̄γ 2τ z� 1 1 1 1
M1 −e2ik −e−2ik −M2 −(−1)sM†

2

M2 −e−2ik −e2ik −M1 −(−1)sM†
1

M3 −1 −1 −1 (−1)sM†
3

symmetry. Using our current method, we are not able to
determine the quantum number of the monopoles under T σ ∗,
for which there is an undetermined sign M → ±M†. In the
Nf = 1 theory, we speculate the sign is −1; hence it matches

the quantum number of the zigzag order. In the Nf = 2 theory,
we leave this sign undetermined, and it has no influence on our
discussion on the nature of the confined state.

More details on the quantum numbers of monopoles

Before finishing this Appendix, we discuss in more detail
the symmetry actions on the monopoles of the fermionic crit-
ical theory with Nf = 2, using state-operator correspondence.
Including both colors and spins, there will be four zero modes
in the presence of ±2π background flux. In this case there
is no Chern-Simons term for Tr(a), so two of the zero modes
need to be occupied to form a gauge-invariant state (operator).
In terms of states, there are three different ways to occupy
these zero modes and make a color singlet:

f †
1a f †

1b|0〉, f †
2b f †

2a|0〉, 1√
2

( f †
1a f †

2b − f †
1b f †

2a)|0〉, (B10)

where the f ’s are the operators of the zero modes, and |0〉
is the ground state under a 2π background flux with no zero
mode occupied. We use 1 and 2 to label the two different fla-
vors, and a and b to label the two different colors. These states
correspond to the operators M1,2,3 in Eq. (B9), respectively.

The actions of T1,2 and C2 are simpler because they do not
take the monopole operators to their Hermitian conjugates.
To determine the action of T σ ∗, which takes the monopoles
to their Hermitian conjugates, it will be important to first
identify the corresponding states of the Hermitian conjugates
of these operators. This can be worked out using the methods
in Refs. [71,72]. More precisely, let us write the three states in
Eq. (B10) in a more suggestive form:

M1 ∼ f †
1a f †

1b|0〉 =
(

f T (1 + τ z )ε

4
f

)∗
|0〉 =

(
f T τ y (τ y + iτ x )ε

4
f

)∗
|0〉,

M2 ∼ f †
2b f †

2a|0〉 =
(

− f T (1 − τ z )ε

4
f

)∗
|0〉 =

(
− f T τ y (τ y − iτ x )ε

4
f

)∗
|0〉,

M3 ∼ 1√
2

( f †
1a f †

2b − f †
1b f †

2a)|0〉 = 1√
2

(
f T τ xε

2
f

)∗
|0〉 = 1√

2

(
f T τ y −iτ zε

2
f

)∗
|0〉,

(B11)

where τ acts on the flavor space and ε acts on the color space. From these we get

i(M1 + M2) ∼
(

f T τ yτ x ε

2
f
)∗

|0〉, M1 − M2 ∼
(

f T τ yτ y ε

2
f
)∗

|0〉, −iM3 ∼ 1√
2

(
f T τ yτ z ε

2
f
)∗

|0〉. (B12)

Therefore, (i(M1 + M2),M1 − M2,−iM3) transforms as a vector under the SU(2) flavor symmetry. Because this repre-
sentation of the SU(2) transformation is real, ( − i(M†

1 + M†
2),M†

1 − M†
2, iM†

3) also transforms in the same representation
under the SU(2) flavor symmetry. This observation tells us what the corresponding states of these Hermitian conjugates are (up
to an undetermined phase factor)

−i(M†
1 + M†

2) ∼
(

f̃ T τ yτ x ε

2
f̃
)∗

|0̃〉, M†
1 − M†

2 ∼
(

f̃ T τ yτ y ε

2
f̃
)∗

|0̃〉, iM†
3 ∼ 1√

2

(
f̃ T τ y τ zε

2
f̃

)∗
|0̃〉, (B13)

where |0̃〉 is the ground state under a −2π background flux with no zero modes occupied, and f̃ ’s are the corresponding zero
modes under a −2π flux background. From the above we get

M†
1 ∼ − f̃ †

2b f̃ †
2a|0̃〉, M†

2 ∼ − f̃ †
1a f̃ †

1b|0̃〉, M†
3 ∼ − 1√

2

(
f̃ †
1a f̃ †

2b − f̃ †
1b f̃ †

2a

)|0̃〉. (B14)

Now we can check the action of T σ ∗ on M1,2,3. We have two types of actions of T σ ∗ on the fermions. For the first type,

T σ ∗ : �(x, y) → iγ 1τ x�(x,−y)†, (B15)
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we have
M1 ∼ f †

1a f †
1b|0〉 → f̃2a f̃2b f̃ †

1a f̃ †
1b f̃ †

2a f̃ †
2b|0̃〉 = − f̃ †

1a f̃ †
1b|0̃〉 ∼ M†

2,

M2 ∼ f †
2b f †

2a|0〉 → f̃1b f̃1a f̃ †
1a f̃ †

1b f̃ †
2a f̃ †

2b|0̃〉 = f̃ †
2a f̃ †

2b|0̃〉 ∼ M†
1,

M3 ∼ 1√
2

( f †
1a f †

2b − f †
1b f †

2a)|0〉 → 1√
2

( f̃2a f̃1b − f̃2b f̃1a) f̃ †
1a f̃ †

1b f̃ †
2a f̃ †

2b|0̃〉 = 1√
2

( f̃ †
1a f̃ †

2b − f̃ †
1b f̃ †

2a)|0̃〉 ∼ −M†
3. (B16)

In the above we have taken the convention that, under T σ ∗, |0〉 → f̃ †
1a f̃ †

1b f̃ †
2a f̃ †

2b|0̃〉. Notice these transformation rules have a
common undetermined phase factor for M1,2,3.

For the second type of T σ ∗,
T σ ∗ : �(x, y) → iγ 1τ z�(x,−y)†, (B17)

we have
M1 ∼ f †

1a f †
1b|0〉 → f̃1a f̃1b f̃ †

1a f̃ †
1b f̃ †

2a f̃ †
2b|0̃〉 = − f̃ †

2a f̃ †
2b|0̃〉 ∼ −M†

1,

M2 ∼ f †
2b f †

2a|0〉 → f̃2b f̃2a f̃ †
1a f̃ †

1b f̃ †
2a f̃ †

2b|0̃〉 = f̃ †
1a f̃ †

1b|0̃〉 ∼ −M†
2,

M3 ∼ 1√
2

( f †
1a f †

2b − f †
1b f †

2a)|0〉 → 1√
2

(− f̃1a f̃2b + f̃1b f̃2a) f̃ †
1a f̃ †

1b f̃ †
2a f̃ †

2b|0̃〉 = 1√
2

( f̃ †
1b f̃ †

2a − f̃ †
1a f̃ †

2b)|0̃〉 ∼ M†
3. (B18)

Again, there is a common undetermined phase factor for the
transformation rules of M1,2,3.

To summarize, this discussion tells us about the action
of T σ ∗ on the monopole operators in the fermionic critical
theory with Nf = 2. Similar arguments can establish the
actions of other symmetries on these monopoles. However,
this method leaves an undetermined common phase factor in
each transformation of M1,2,3. For unitary symmetries T1,2

and C2, we determine this phase factor numerically. For the
antiunitary symmetry T σ ∗, the current numerical method is
insufficient to pin down this phase factor, and we leave it open.
The results are listed in Tables III, IV, and V. Notice for the
fermionic critical theory with Nf = 2, the quantum numbers
of monopoles will not affect the nature of the confined phase
at all. Furthermore, in the cases with the Dirac points located
at two generic momenta on the K-K ′ line or the M3-M3 line,
where no symmetry-allowed fermion bilinear perturbation
can destroy the critical point, the unitary symmetries already
forbid single monopole operators, while twofold monopole
operators are always symmetry allowed, regardless of what
the undetermined phase factors in the actions of T σ ∗ are.

APPENDIX C: NEUTRON SCATTERING SIGNALS AT THE
QCD3-CHERN-SIMONS QUANTUM CRITICAL POINTS

In this Appendix we present the details of the analysis
of the neutron scattering signals at the QCD3-Chern-Simons
critical points, where the main results are summarized in
Sec. IV.

Because neutron scattering probes the structure factors
of the single-spin operators, e.g., 〈S̃i(k )̃S j (−k)〉 with i, j =
x, y, z, to understand the behavior of these structure factors at
those critical points, we need to know which operators in the
critical field theories (IR operators) have finite overlap with S̃i.
Operators with the same quantum numbers under the global
symmetries generically have finite overlap,11 so we just need

11More precisely, microscopic operators should allow a repre-
sentation in terms of a summation of IR operators that have the
same properties, such as symmetry quantum numbers. So these IR
operators and the original microscopic operators generically have
finite overlap.

to compare the symmetry quantum numbers of S̃i with those
listed in Tables II, IV, and V to determine which of them have
overlap. On the other hand, some operators may have a scaling
dimension larger than 3/2. Even if these operators have finite
overlap with S̃i, they will show as dips rather than peaks in
the neutron scattering spectrum, and we do not consider them
because their signals are practically weak. Notice all operators
corresponding to conserved currents [i.e., fermion bilinears
involving γμ and d (Tr a) in Tables II, IV, and V] are of this
type. We will also assume all other operators in these tables
have scaling dimension smaller than 3/2, so they will show as
peaks in the neutron scattering signals.

The transformation rules of S̃i under global symmetries are
listed in Table VI. First, we note that at all these three critical
points, the singlet mass operator �̄� has trivial quantum
numbers under all symmetries, just as S̃iA(�) + S̃iB(�) for
i = x, y. This will potentially give rise to a strong signal at
the � point in the BZ. Below we specify to other potential
strong neutron scattering signals at these critical points.

Let us first analyze the neutron scattering signals at the
transition between the zigzag phase and the ITO phase by
checking the quantum numbers of operators in Table II. In
this case we only need to consider the monopole operator,
M, which turns out to have identical quantum numbers as

TABLE VI. Symmetry transformations of operator S̃ia(r), where
i = x, y, z labels the orientation of the spin, a = A, B labels the
sublattice, r labels the position of the unit cell, r′ is the C2 partner
of r, and r′′ is the σ partner of r.

T1,2 C2 T σ ∗

S̃xA(r) S̃xA(r + n1,2) S̃xB(r′) S̃xB(r′′)
S̃yA(r) S̃yA(r + n1,2) S̃yB(r′) S̃yB(r′′)
S̃zA(r) S̃zA(r + n1,2) S̃zB(r′) −S̃zB(r′′)
S̃xB(r) S̃xB(r + n1,2) S̃xA(r′) S̃xA(r′′)
S̃yB(r) S̃yB(r + n1,2) S̃yA(r′) S̃yB(r′′)
S̃zB(r) S̃zB(r + n1,2) S̃zA(r′) −S̃zB(r′′)
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operators,

S̃xA(M3) − S̃xB(M3), S̃yA(M3) − S̃yB(M3).

These are just the order parameter of the zigzag phase
and can be detected by neutron scattering at M3 of the BZ.
Furthermore, in polarized neutron scattering experiments, the
critical exponent characterizing how fast the signals diverge
upon approaching M3 is the same if the spin polarization
is along any direction spanned by S̃x and S̃y, reflecting an
emergent U(1) spin rotational symmetry with respect to S̃z

in our theory. For notational simplicity, the above relation of
operators with identical quantum numbers will be written in
the form

M ∼ S̃iA(M3) − S̃iB(M3) (C1)

with i = x, y.
Next, let us turn to the transition between the ITO phase

and the trivial phase, which has two possible symmetry im-
plementations at the critical point, corresponding to Tables IV
and V.12 In Table IV, the operators to be considered include
�̄1�2, �̄2�1, �̄τ z�, and M1,2,3. By comparing their symme-
try properties with those in Table VI, we get

�̄τ z� ∼ S̃zA(�) − S̃zB(�)(
�̄1�2

−�̄2�1

)
∼

(
S̃iA(−2k,−2k) − S̃iB(−2k,−2k)

S̃iB(2k, 2k) − S̃iA(2k, 2k)

)
∼

(
i(S̃zA(−2k,−2k) + S̃zB(−2k,−2k))

i(S̃zB(2k, 2k) + S̃zA(2k, 2k))

)
(C2)

with i = x, y. The identification of M1,2,3 depends on the value of s in Table IV. If s = 0,

M3 ∼ S̃iA(M3) − S̃iB(M3),(
M1 − M†

2

−M2 + M†
1

)
∼

(
S̃iA(2k + π, 2k + π ) + S̃iB(2k + π, 2k + π )

S̃iB(−2k + π,−2k + π ) + S̃iA(−2k + π,−2k + π )

)

∼
(

i(S̃zA(2k + π, 2k + π ) − S̃zB(2k + π, 2k + π ))

i(S̃zB(−2k + π,−2k + π ) − S̃zA(−2k + π,−2k + π ))

)
, (C3)

(
M1 + M†

2

−M2 − M†
1

)
∼

(
i(S̃iA(2k + π, 2k + π ) + S̃iB(2k + π, 2k + π ))

i(S̃iB(−2k + π,−2k + π ) + S̃iA(−2k + π,−2k + π ))

)

∼
(

S̃zA(2k + π, 2k + π ) − S̃zB(2k + π, 2k + π )

S̃zB(−2k + π,−2k + π ) − S̃zA(−2k + π,−2k + π )

)
,

with i = x, y. If s = 1,

M3 ∼ S̃zA(M3) − S̃zB(M3),(
M1 − M†

2

−M2 + M†
1

)
∼

(
i(S̃iA(2k + π, 2k + π ) − S̃iB(2k + π, 2k + π ))

i(S̃iB(−2k + π,−2k + π ) − S̃iA(−2k + π,−2k + π ))

)

∼
(

S̃zA(2k + π, 2k + π ) + S̃zB(2k + π, 2k + π )

S̃zB(−2k + π,−2k + π ) + S̃zA(−2k + π,−2k + π )

)
,

(
M1 + M†

2

−M2 − M†
1

)
∼

(
S̃iA(2k + π, 2k + π ) − S̃iB(2k + π, 2k + π )

S̃iB(−2k + π,−2k + π ) − S̃iA(−2k + π,−2k + π )

)

∼
(

i(S̃zA(2k + π, 2k + π ) + S̃zB(2k + π, 2k + π ))

i(S̃zB(−2k + π,−2k + π ) + S̃zA(−2k + π,−2k + π ))

)
. (C4)

From this comparison, we see that in this case the neutron scattering may see strong signals at the �, M3, (±2k,±2k), and
(±2k + π,±2k + π ) points in the BZ. Also, we can read off which spin polarizations give rise to power-law divergence in the
neutron spectrum in each case. In addition, due to an emergent SO(3) flavor symmetry under which �̄τ� and M1,2,3 form two
vectors, the critical exponent characterizing the divergence at � is the same as the critical exponent characterizing the divergence
at (±2k,±2k), and the critical exponent at M3 is the same as that at (±2k + π,±2k + π ).

12In these tables we will always consider the case where k is a generic value of momentum.
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Similarly, in Table V, the operators to be considered are again �̄1�2, �̄2�1, �̄τ z�, and M1,2,3. By comparing their symmetry
properties with the operators in Table VI, we get

�̄τ z� ∼ S̃iA(�) − S̃iB(�),
(C5)(

�̄1�2

−�̄2�1

)
∼

(
eiα S̃zA(−2k, 2k) − e−iα S̃zB(−2k, 2k)

−e−iα S̃zA(2k,−2k) + eiα S̃zB(2k,−2k)

)
,

for α ∈ R. Again, the identification of M1,2,3 depends on the value of s in Table V. If s = 0,

M3 ∼ S̃zA(M3) − S̃zB(M3),(
M1 − M†

2

−M2 + M†
1

)
∼

(
eiα S̃iA(2k + π,−2k + π ) + e−iα S̃iB(2k + π,−2k + π )

e−iα S̃iA(−2k + π, 2k + π ) + eiα S̃iB(−2k + π, 2k + π )

)
, (C6)

(
M1 + M†

2

−M2 − M†
1

)
∼

(
eiα S̃iA(2k + π,−2k + π ) − e−iα S̃iB(2k + π,−2k + π )

−e−iα S̃iA(−2k + π, 2k + π ) + eiα S̃iB(−2k + π, 2k + π )

)
,

with i = x, y, for α ∈ R. If s = 1,

M3 ∼ S̃iA(M3) − S̃iB(M3),(
M1 − M†

2

−M2 + M†
1

)
∼

(
eiα S̃zA(2k + π,−2k + π ) + e−iα S̃zB(2k + π,−2k + π )

e−iα S̃zA(−2k + π, 2k + π ) + eiα S̃zB(−2k + π, 2k + π )

)
, (C7)

(
M1 + M†

2

−M2 − M†
1

)
∼

(
eiα S̃zA(2k + π,−2k + π ) − e−iα S̃zB(2k + π,−2k + π )

−e−iα S̃zA(−2k + π, 2k + π ) + eiα S̃zB(−2k + π, 2k + π )

)
,

with i = x, y, for α ∈ R.
From this comparison, we see that in this case the neutron scattering may see strong signals at the �, M3, (±2k,∓2k), and

(±2k + π,∓2k + π ) points in the BZ. Also, we can read off which spin polarizations give rise to power-law divergence in the
neutron spectrum in each case. In addition, due to an emergent SO(3) flavor symmetry under which �̄τ� and M1,2,3 form two
vectors, the critical exponent characterizing the divergence at � is the same as the critical exponent characterizing the divergence
at (±2k,∓2k), and the critical exponent at M3 is the same as that at (±2k + π,∓2k + π ).
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