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Probing quantum criticality using nonlinear Hall effect in a metallic Dirac system
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Interaction-driven symmetry breaking in a metallic (doped) Dirac system can manifest in the spontaneous gap
generation at the nodal point buried below the Fermi level. Across this transition linear conductivity remains
finite, making its direct observation difficult in linear transport. We propose the nonlinear Hall effect as a direct
probe of this transition when inversion symmetry is broken. Specifically, for a two-dimensional Dirac material
with a tilted low-energy dispersion, we predict a transformation of the characteristic interband resonance peak
into a non-Lorentzian form in the collisionless regime. Furthermore, we show that inversion-symmetry-breaking
quantum phase transition is controlled by an exotic tilt-dependent line of critical points. As this line is approached
from the ordered side, the nonlinear Hall conductivity is suppressed owing to the scattering between the strongly
coupled incoherent fermionic and bosonic excitations. Our results should motivate further studies of nonlinear
responses in strongly interacting Dirac materials.
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I. INTRODUCTION

Nonlinear response functions are extremely sensitive to
the structural symmetry of crystalline systems. In particular,
the second-order spectroscopy, such as second harmonic gen-
eration (SHG), probing the second-order conductivity, is a
powerful technique to characterize the crystalline orientation
of a sample [1]. The SHG is forbidden in the presence of
spatial inversion symmetry and can therefore play the role
of an order parameter distinguishing the phases across the
transition at which the spatial inversion symmetry is broken.
Furthermore, there has recently been growing interest in the
nonlinear (second-order) Hall effect [2–5] which, unlike the
usual one, occurs in the presence of time-reversal symmetry
in noncentrosymmetric (semi)metals featuring tilted Dirac
fermions (TDFs) at low energies, such as single- and few-
layer WTe2 [6–8]. The nonlinear Hall effect amounts to the
generation of a transverse current as a second-order response
to a linearly polarized external electric field and, as has
been recently shown, it is controlled by the Fermi surface
average of the Berry curvature derivative, the so-called Berry
curvature dipole [5,9–12]. Other phenomena, e.g., injection
and anomalous photocurrent in Weyl semimetals, are also in-
teresting nonlinear phenomena related to the Berry curvature
dipole [9,13–17].

In this work we show that the nonlinear Hall effect can
be used as a powerful tool to probe the electron-interaction-
driven inversion-symmetry breaking in a metallic phase that
emerges from a generic nodal band structure. In this case, the
chemical potential is outside the gap region (see Fig. 1) and
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the usual linear conductivity is finite in both symmetric and
symmetry-broken phases. In contrast, the nonlinear conduc-
tivity is finite only when the gap is opened, i.e., the inversion
symmetry is broken, and therefore may be used to directly
detect the phase transition.

The inversion-symmetry breaking at a finite chemical po-
tential μ > 0 strongly relies on the presence of a Dirac point
buried below the Fermi level. Namely, at a finite chemical
potential (but low enough so that the Dirac approximation is
still valid) and at a strong short-range (Hubbard-like) electron
interaction, the band-gap opening may occur at the Dirac point
because the system would optimally deplete the free energy as
it would for μ = 0. The latter is expected since quite gener-
ically there is no phase space for an interaction-driven Mott
insulating instability to take place at a finite but low enough
μ [18]. Irrespective of whether the system is electron doped

FIG. 1. Schematic plot for an inversion symmetric and inversion
breaking semimetal described by tilted Dirac fermions at low ener-
gies. Although the gap opening occurs away from the Fermi surface,
it can have a strong impact on the nonlinear response of the system
in the corresponding metallic phase (μ > 0).

2643-1564/2020/2(1)/013069(13) 013069-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.013069&domain=pdf&date_stamp=2020-01-23
https://doi.org/10.1103/PhysRevResearch.2.013069
https://creativecommons.org/licenses/by/4.0/
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(μ > 0) or hole doped (μ < 0), this scenario is expected to
remain operative up to a critical chemical potential, at which
a superconducting instability takes over (see Ref. [19] for a
discussion of the stability of a doped interacting Dirac liquid
without the tilt).

We therefore consider strongly interacting two-
dimensional TDFs at the neutrality point (μ = 0) and at
zero temperature (T = 0) in the vicinity of a quantum phase
transition (QPT) into an inversion-symmetry broken phase
within the framework of the Gross-Neveu-Yukawa (GNY)
quantum-critical theory. It is well established that the GNY
field theory captures the behavior of strongly interacting
gapless Dirac fermions in the vicinity of a QPT to an ordered
gapped phase [20–27]. Furthermore, the field-theoretic
predictions have been corroborated by the results from
the numerical (mostly quantum Monte Carlo) simulations
[28–31]. By employing a renormalization-group (RG)
analysis to the leading order in the ε (=3 − D) expansion
close to the upper critical D = 3 spatial dimensions, we show
that in the presence of the tilt a QPT into an inversion-
symmetry-broken phase is controlled by an unusual
tilt-dependent line of the quantum-critical points (QCPs)
which may be stable nonperturbatively, due to the
pseudorelativistic invariance of the boson-fermion Yukawa
interaction and the specific form of the tilt term.

We find that the dynamical nonlinear Hall conductivity
(NLHC) is suppressed in the ordered (symmetry-broken)
phase close to this line of QCPs as compared to the nonin-
teracting massive TDFs and therefore can be used to probe
such a symmetry breaking in a TDF metal. This effect can be
traced back to the scattering of the strongly interacting soup
of incoherent fermionic and bosonic excitations close to this
line of QCPs. Furthermore, this suppression increases with the
tilt parameter, consistent with the expectation based on the
scaling of the density of states (DOS).

The paper is organized as follows. In Sec. II we present
a general scaling analysis of nonlinear conductivity in
Dirac systems. In Sec. III we analyze the main features of
the second-order conductivity of two-dimensional TDFs in
the collisionless regime and zero temperature. In Sec. IV we
introduce the GNY quantum-critical theory for TDFs, while
in Sec. IV A we perform the leading-order RG analysis of the
theory and in Sec. IV B compute the interaction correction
to the nonlinear conductivity at the line of strongly coupled
QCPs. Material aspects of our proposal are discussed in
Sec. V. We summarize our work in Sec. VI.

II. NONLINEAR CONDUCTIVITY: SCALING ANALYSIS

Dimensional analysis of the nonlinear conductivity in a
D-dimensional Dirac system with linear dispersion (the dy-
namical exponent z = 1) yields dim[σ (n)] = D − 2n in units
of momentum (inverse length), as shown in Appendix A.
We only address the collisionless regime where frequency
ω � T , which is governed by the particle-hole excitations
created by the external electric field, since in this regime
the conductivity displays universal features dictated exclu-
sively by the dimensionality, the dispersion of the low-energy
quasiparticle excitations, and the electron-electron interac-
tions [32]. For the TDFs at finite temperature and frequency,

the scaling form of the nonlinear optical conductivity reads
(see Appendix A)

σ (n)(nω) ∼ 1

ω2n−D
f (n)

(
ω

T
,
μ

T
,

m f

T
, α, {g}

)
, (1)

where f (n)({X }) is a universal scaling function of the dimen-
sionless parameters {X }, μ and m f stand for the chemical po-
tential and fermion mass, respectively, and α and {g} represent
the tilt parameter and dimensionless couplings. We here only
focus on the high harmonic generation case for which all the
frequencies are equal, and for the notational clarity we use
σ (n)(ω1 = ω,ω2 = ω, . . . , ωn = ω) ≡ σ (n)(nω).

In the proximity of the line of strongly coupled QCPs,
given by Eq. (12), which, as we show, governs the behavior
of the TDFs at the QPT, the nonlinear conductivity picks up a
correction given by

σ (n)
∗ (nω) = Zn+1

� σ (n)(nω). (2)

Here Z� is the renormalization factor for the fermionic field
at this line of QCPs, which is directly related to the corre-
sponding anomalous dimension, and σ (n)(nω) is the nonlinear
conductivity for the noninteracting massive TDFs. Vertex
corrections are absent due to the gauge invariance. The case
of n = 1 and α = 0 corresponds to the linear conductivity of
the untilted Dirac fermions [33]. We show that for the T = 0
SHG (n = 2) the correction explicitly reads

σ (2)
∗ (2ω) =

{
1 − 3

Nf (4 − α2)

}
σ (2)(2ω) (3)

to the leading order in the ε and 1/Nf expansions, with
σ (2)(2ω) as the T = 0 second-order conductivity of the non-
interacting system, given by Eq. (6). We note that the con-
ductivity is suppressed as compared to the noninteracting
system due to the strong interactions of the fermionic and
the order-parameter (bosonic) fluctuations close to the line of
QCPs. The suppression is a monotonically increasing function
of the tilt parameter which is consistent with the increase of
the DOS at any finite energy and at a finite tilt with respect to
the untilted case. Furthermore, we obtain universal interband
features in the NLHC: non-Lorentzian resonance peaks in
the collisionless regime stemming from the anisotropic Fermi
surface at the finite tilt, with the position and the linewidth
strongly dependent on the tilt parameter. We note that the
strong tilt dependence of the linear optical properties of TDFs
was previously discussed [34,35].

III. SECOND-ORDER CONDUCTIVITY OF
NONINTERACTING TILTED DIRAC FERMIONS

We consider an external homogeneous vector potential
A(t ), with the corresponding electric field E(t ) = −∂t A(t ),
as the driving field. The local second-order conductivity is
obtained by utilizing the Kubo formula

σ
(2)
abc(ω1, ω2) = −χ

(2)
abc(i	1, i	2)

ω1ω2

∣∣∣∣
i	m→ωm+iδ

. (4)

Note that δ → 0+, m = 1, 2, and the second-order susceptibil-
ity given in terms of a three-point imaginary-time correlation
function χ

(2)
abc(τ1, τ2) = 〈T ĵc(−τ2) ĵb(−τ1) ĵa(0)〉/2, where T
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stands for the time-ordering operation and ĵa = −e
∑

k

ψ̂
†
k∂kaĤkψ̂k. The paramagnetic current in the interaction

picture ĵa(τ ) = e−τ K̂ ĵaeτ K̂, with K̂ = ∑
k ψ̂

†
k (Ĥk − μÎ )ψ̂k,

corresponds to the single-particle Hamiltonian (h̄ = 1)

Ĥ(k) = αζkxÎ + v(ζkxσ̂x + kyσ̂y) + m f σ̂z, (5)

where ζ = ± stands for two fermion flavors, m f represents
the fermion mass due to the inversion-symmetry breaking, σ̂

are the Pauli matrices, Î is the 2×2 unity matrix, and the Fermi
velocity v = 1 hereafter.

We first calculate the NLHC σ (2)
yxx in response to a linearly

polarized electric field along the x direction. In principle,
there are DC and AC contributions which correspond to rec-
tification and second harmonic effects, respectively. We here
focus on the latter, since we consider the collisionless regime.
The zero-temperature NLHC of an electron-doped system is
given in terms of the Berry curvature through its derivative
(see Appendix B)

σ (2)
yxx (2ω) = ie3

ω

∑
k,ζ

nF
(
εc

k

)∂	yx(k)

∂kx
C

(
ω

2εk

)
. (6)

Here nF(ε) = �(μ − ε) is the Fermi-Dirac distribution func-
tion at T = 0, εc

k = ζαkx + εk , with εk =
√

k2 + m2
f , is the

conduction band dispersion, 	yx(k) = ζm f /2ε3
k stands for

the Berry curvature [36], and C(x) = 1/[(1 − 4x2)(1 − x2)].
We see that even though the system is metallic, there is a
strong interband correction to the NLHC, characteristic of the
collisionless regime.

The NLHC in the noninteracting system, after a momen-
tum integration in Eq. (6), reads explicitly

σ (2)
yxx (2ω) = ie3

ω2
f

(
ω

μ
,

m f

μ
, α

)
, (7)

where the universal function is to leading order in α given by
(see Appendix C)

f (x, y, α) ≈ 12α

π2

xy(1 − y2)�(1 − y)

(x2 − 1)(x2 − 4)
. (8)

In the case of α � 1, the interband resonances occur at
x = ω/μ ≈ 1 and x = ω/μ ≈ 2. The exact dependence of
f (x, y, α) on its arguments for 0 � α � 1 is given by a
quite lengthy analytical expression explicitly displayed in
Appendix C, plotted in Fig. 2.

The corresponding result for the intraband regime ω < μ

is depicted in Fig. 2(a) and the f function is real valued,
similar as in Ref. [5]. Its form in the interband regime ω > μ

is displayed in Figs. 2(b)–2(d), where we can see that both
the position and the shape of interband resonances strongly
depend on the value of α. This effect can be explained by
considering the anisotropic Fermi surface, which leads to a
momentum-dependent optical gap �(k) for the finite-α case.
The single-photon and multiphoton resonances occur when
nω, with n = 1, 2, . . . , is equal to the optical gap at each
momentum. Explicitly, in the presence of the tilt, the optical
gap �(k) = 2

√
m2

f + k2, where k = (kx, ky) runs over the
Fermi surface (kx + ζk0)2 + k2

y /(1 − α2) = R2 in which k0 =
αμ/(1 − α2) and R =

√
μ2 − (1 − α2)m2

f /
√

1 − α2. Such an
optical gap at finite α leads to a splitting of the interband

FIG. 2. Dependence of the universal function f , defined in
Eq. (7), with respect to μ/mf and α for several values of ω/mf ,
as calculated in Appendix C. (a) Intraband regime for which ω < μ

and we set α = 0.2. The function f is purely real in this regime.
(b) Interband regime with ω = 2mf . We can see that the position of
peaks and dips strongly depends on α and an imaginary part in the
resonance region appears. (c) Interband regime with ω = 3mf for
which there are two resonances. At a specific value of α ≈ 0.385
two dips merge. (d) Color plot for the real part of the function f at
ω = 3mf in which the shift in the position of peaks and dips can be
traced.

resonance peaks where the dip and the peak of the real part of
the f function shift in opposite directions. Simultaneously, a
broad non-Lorentzian resonance feature emerges in the imag-
inary part of the f function (see Appendix D for a detailed
discussion). For α � 1, the Fermi surface is almost a circle
with radius kF, which is the Fermi wave vector in the absence
of the tilt. Therefore, the optical gap is nearly independent of
the momentum �(k) = 2

√
m2

f + k2
F = 2μ. Accordingly, the

interband resonances are quite sharp for the case of α � 1.
Another nontrivial feature of the universal f function is the
cusplike resonances [see Figs. 2(b) and 2(c)] in its real part
stemming from its logarithmic form, as explicitly given in
Appendix C [see Eq. (C21)]. The corresponding one- and two-
photon resonances shift in the opposite directions in frequency
by increasing the value of the tilt parameter α. At a critical
value of α, the two resonances morph into a single one and
then pass each other upon a further enhancement of α, as can
be seen in Fig. 2(d).

IV. GROSS-NEVEU-YUKAWA QUANTUM-CRITICAL
THEORY FOR TILTED DIRAC FERMIONS

We now consider the effect of a strong short-range
(Hubbard-like) electron interaction on the nonlinear optical
conductivity within the framework of the GNY quantum-
critical theory for the TDFs. The space–imaginary-time action
of the theory is S = S f + SY + Sb and the noninteracting
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fermionic part reads

S f =
∫

dτ dDr ψ†[∂τ + Ĥ(k → −i∇r )]ψ, (9)

where the Dirac fermion field ψ ≡ ψ (τ, r) and Ĥ(k) is the
Hamiltonian for the noninteracting TDFs in Eq. (5) with
m f = 0. The summation over the valley degree of freedom
is assumed and we consider 2Nf copies of two-component
Dirac spinors hereafter. The short-range interaction is encoded
through the Yukawa coupling between the Dirac fermion
quasiparticles and the fluctuations of the underlying ordered
state assumed to break Ising (Z2) symmetry, such as a sublat-
tice symmetry-breaking charge density wave in graphene,

SY = g
∫

dτ dDr φψ†σ̂zψ. (10)

Here the bosonic field φ ≡ φ(τ, r) with the dynamics given
by the action

Sb =
∫

dτ dDr
{
φ
(−∂2

τ − ∇2 + m2
b

)
φ + λ

4!
φ4

}
, (11)

where m2
b is the tuning parameter for the transition and m2

b > 0
(<0) in the symmetric (symmetry broken) phase.

Engineering scaling dimensions of the Yukawa and φ4

couplings are dim[g2] = dim[λ] = 3 − D, while for the tilt
parameter dim[α] = 0, implying that D = 3 is the upper
critical dimension in the theory. We therefore use the deviation
from the upper critical dimension as an expansion parameter
ε = 3 − D to access the quantum-critical behavior in D = 2.
We set the bosonic and fermionic velocities to be equal to
unity in the critical region [37].

A. Renormalization-group analysis:
Line of quantum-critical points

To obtain the RG flow of the couplings, we integrate out
the modes with the Matsubara frequency −∞ < ω < ∞ and
then use the dimensional regularization in D = 3 − ε spatial
dimensions within the minimal subtraction scheme. The RG β

functions to the leading order in the ε expansion, in the critical
hyperplane (m2

b = 0, m f = 0), read (see Appendix E)

βg2 = εg2 − g4K (α, Nf ), (12)

βλ = ελ − 3

2
λ2 − 4Nf (1 + 2α2)λg2 + 24g4Nf , (13)

βα = 0, (14)

with K (α, Nf ) calculated in Appendix E and displayed in
Fig. 3, βY ≡ −dY/d ln(κ ), κ the RG (momentum) scale, and
the couplings rescaled as X/8π2 → X , with X ∈ {g2, λ}. In
the limit α → 0 it can be readily seen that these β functions
reduce to the well known ones for the Ising GNY theory
[22,38]. Crucially, for any |α| < 1, due to the marginality of
the tilt parameter, the above flow equations yield a line of
QCPs, given by

(g2
�, λ�) = ε

(
1

K (α, Nf )
, h(α, Nf )

)
, (15)

with h(α, Nf ) a complicated function of its arguments (see
Appendix E). Note that K (α, Nf ) is a strictly positive and

FIG. 3. Universal function K (α, Nf ) and corrected NLHC rel-
ative to its bare value σ (2)∗

yxx /σ (2)
yxx , shown as a function of the tilt

parameter α in the spinless case Nf = 2.

monotonically increasing function for 0 � α < 1, and there-
fore the value of the Yukawa coupling at the QCPs is smaller
in comparison with untilted Dirac fermions; the same holds
for the φ4 coupling λ. This can be understood from the
fact that the density of states ρ(E , α) ∼ |E |/√1 − α2, and
therefore at any finite energy the DOS for TDFs increases
as compared to untilted Dirac fermions until the system is
overtilted at |α| = 1. It is thus expected that the location
of the critical point is pushed to a weaker coupling as the
tilt increases and this feature is indeed captured in the RG
analysis. However, the DOS is still vanishing at zero energy
for a finite tilt, implying that the critical points remain at a
finite coupling, again consistent with the RG analysis. At this
line of QCPs, both fermionic and bosonic excitations cease
to exist as sharp quasiparticles because of their nontrivial
anomalous dimension given by η� = g2

�G(α)/2 and η� =
2Nf (1 + 2α2)g2

�, respectively, with G(α) = 4/(4 − α2), ob-
tained from ηi = −(dZi/dg2)βg2 calculated at X = X�, with
Zi(g2), i = �,�, as the leading-order field renormalizations
(see Appendix E). Therefore, a family of non-Fermi liq-
uids emerges from the QCP at a finite temperature for any
|α| < 1.

We would like to emphasize that the marginality of the tilt
parameter α as given by Eq. (14) may be nonperturbative in
nature, implying that the line of QCPs we found to the leading
order in the ε expansion may be stable beyond this order.
The reason for this lies in the pseudorelativistic invariance
of the Yukawa interaction [see Eq. (E3) and the discussion
thereof], given in Eq. (10), and the specific form of the tilt
term. Namely, the tilt term manifestly breaks this symmetry
and commutes with the rest of the free fermion action, as well
as with the matrix entering the Yukawa term. Therefore, the
Yukawa term is expected not to renormalize it, implying that
the tilt parameter remains marginal. On the other hand, it was
shown that manifestly Lorentz symmetry-breaking long-range
Coulomb interaction renders the tilt parameter irrelevant, con-
sistent with the above argument [39].
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B. Interaction correction to the nonlinear conductivity
at the line of quantum-critical points

The leading-order correction to the conductivity in the
vicinity of the QCP is determined by the fermionic field renor-
malization Z� , as given by Eq. (2), which is ultimately related
to the fermionic self-energy at vanishing external momentum
� f (i	), explicitly evaluated in Appendix E, yielding

Z� = 1 − g2
�

1

2ε
G(α). (16)

Therefore, the nonlinear conductivity is modified according
to Eq. (2) due to a strong interaction between incoherent
fermionic and bosonic excitations close to the QCPs. Explic-
itly, the form of the correction to the NLHC reads

σ (2)∗
yxx (2ω) =

(
1 − G(α)

2K (α, Nf )

)3

σ (2)
yxx (2ω), (17)

which is displayed in Fig. 3, and in the large-Nf limit yields
the result shown in Eq. (1).

V. MATERIAL REALIZATIONS

The case of WTe2 is particularly interesting because of
a very recent experimental observation of nonlinear Hall
effect [6–8]. Actually, WTe2 without the spin-orbit coupling
can be described in terms of tilted massless Dirac fermions
[7,40], while the spin-orbit coupling opens up a direct gap
located at Q and Q′ valley points in the Brillouin zone
[7,41] with the Berry curvature hot spots localized around
these points [5,9–12]. Considering the tilt parameter α ≈ 0.1,
the Fermi velocity v ≈ 0.5×106 m/s, the Dirac mass m f ≈
75 meV, the chemical potential μ ≈ 1.3m f ∼ 100 meV, and
at h̄ω ≈ 120 meV [6–8], we estimate the noninteracting
NLHC to be |σ (2)(2ω)| = σ0/E0, where σ0 = e2/h̄ and E0 =
(h̄ω)2/eh̄v| f | ≈ 0.31 V/nm, with | f | ≈ 0.14. On the other
hand, if this value of the mass gap is induced by the strong
short-range interaction close to the QCP, the NLHC should
decrease as compared to this result for the noninteracting
gapped (massive) TDFs, according to Eq. (17).

There are several other candidates for the realization of
massless TDFs in two dimensions such as 8-Pmmn boro-
phone [42,43] with an electrically tunable tilt strength [44],
topological crystalline insulators such as SnTe [45], and an
organic compound such as α-(BEDT-TTF)2I3 under pressure
[46–48]. Strong short-range electron interactions, such as the
on-site Hubbard interaction, may catalyze a mass gap therein,
and the predicted behavior of the nonlinear Hall conductivity
can be used to probe this phase transition. Furthermore, an
analog of twisted bilayer graphene featuring tilted and slow
Dirac fermions at low energies may be an ideal candidate
to realize the scenario we proposed in our work. Finally, in
three spatial dimensions, being the upper critical dimension
for the GNY theory, only a correction to the conductivity
stemming from the long-range Coulomb interaction should re-
main [33,49]. This correction is expected to be α independent
due to the irrelevance of the tilt parameter in this case [39].

VI. SUMMARY AND OUTLOOK

To summarize, we have proposed NLHC as an efficient tool
to probe interaction tuned inversion-symmetry breaking in the
materials featuring Dirac fermions with the tilted dispersion.
We showed that the quantum-critical behavior at a strong
short-range interaction is governed by a line of QCPs from
which a family of non-Fermi liquids emerges at a finite
temperature. We found that NLHC decreases as the system
approaches this line of QCPs from the ordered (symmetry-
broken) phase. Our results should motivate further studies
of nonlinear response functions in strongly correlated Dirac
materials, such as the organic compound α-(BEDT-TTF)2I3

[48]. Finally, the family of non-Fermi liquids we uncovered
here should be further characterized in terms of optical and
thermodynamic responses.
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APPENDIX A: DIMENSIONAL ANALYSIS

The light-matter interaction is defined by the interaction
term in the action

Sint ∼
∫

dDx dt J · A, (A1)

where D is the spatial dimension, A is the vector potential, and
the corresponding electric field reads E = −∂t A. The current
is given as the sum of linear and all nonlinear contributions

J ∼
∑
n�1

σ (n) EE . . . E︸ ︷︷ ︸
n times

. (A2)

Note that the dimension of the parameters in the units of
momentum (inverse length) is

dim[Sint] = 0, dim[xμ] = −1, dim[Aμ] = 1,

dim[t] = −dim[ω] = −z, (A3)

where z stands for the dynamical exponent which implies an
energy dispersion as εk ∼ kz. Therefore, we have

dim[Eμ] = dim[Aμ] − dim[t] = 1 + z,

dim[Jμ] = D + z − 1. (A4)

Eventually, we obtain

dim[σ (n)] = D − (n + 1) − (n − 1)z. (A5)

For the Dirac model we have z = 1, which implies
dim[σ (n)] = D − 2n, and thus the scaling form of the nth-
order conductivity reads

σ (n) ∼ 1

ω2n−d
f (n)

(
ω

T
,
μ

T
, α, {g}

)
. (A6)

Note that the linear conductivity of (undoped or intrinsic)
Dirac systems in D = 2 is dimensionless, while the second-
order one scales as 1/ω2. This implies that at low-frequency
spectroscopy like GHz or even THz the nonlinear response
can be considerably stronger than its linear counterpart and
may be a very good instrument to probe those phenomena
which are hidden within the linear response framework.

013069-5
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FIG. 4. Feynman diagram for the second-order susceptibility
which is a three-point correction function of paramagnetic current
operator components. The solid line represents the fermionic propa-
gator while the wavy line stands for the external photons.

APPENDIX B: NONLINEAR HALL CONDUCTIVITY
EVALUATED USING THE KUBO FORMULA

For the Dirac system with the Hamiltonian linearly depen-
dent on the momentum, such as the one we consider here for
TDFs given in Eq. (5), there is only one Feynman diagram for
the second-order susceptibility χ

(2)
αβγ , which is shown in Fig. 4

and is defined as
J (2)
α =

∑
βγ

χ
(2)
αβγ AβAγ . (B1)

The susceptibility corresponding to this bubble diagram reads
[50]

χ
(2)
αβγ (m1, m2) =

∑
P

′ ∑
k

1

β

∑
n

tr[�̂αĜ f (k, n)�̂β

× Ĝ f (k, n + m1)�̂γ Ĝ f (k, n + m1+m2)], (B2)

where
∑′

P stands for the intrinsic permutation symmetry [51],
e.g., (β, m1) ↔ (γ , m2), and the fermionic Green’s function is
given by

Ĝ f (k, n) = [nÎ − Ĥ(k)]−1. (B3)

Note that Î is the identity matrix and n (mi) stands for
the shorthand notation of the dummy (external) Matsubara
frequency iωn = (2n + 1)π/β (iωmi = 2miπ/β) and β =
1/kBT , where kB is the Boltzmann constant and T is the
temperature. The current vertex functions for the TDF Hamil-
tonian given in Eq. (5) read

�̂x = −e∂kxĤ = −eζ σ̂x − eαζ Î, �̂y = −e∂kyĤ = −eσ̂y.

(B4)

It is convenient to proceed with the calculation in the band
basis, which is denoted by |k, λ〉 with λ ≡ ζ , �, where � =
c, v represent the conduction and valence bands. We note that

〈k, λ1|Ĝ(k, n)|k, λ2〉 = δλ1λ2

n − ε
λ1
k

,

〈k, λ1|�̂α|k, λ2〉 = �λ1λ2
α (k), (B5)

where ελ=±
k = ζαkx + λεk , with εk =

√
k2 + m2

f the energy
eigenvalue for the conduction (λ = +) and valence (λ = −)
bands. We first perform the Matsubara summation over n and
subsequently an analytical continuation as mj → ω j + iδ with
δ → 0+. Eventually, we obtain

χ
(2)
αβγ (ω1, ω2) =

∑
P

′ ∑
{λi}

∑
k

�λ1λ2
α (k)�λ2λ3

β (k)�λ3λ1
γ (k)

ω1 + ω2 + ε
λ2
k − ε

λ1
k + iδ

{
nF

(
ε

λ2
k

) − nF
(
ε

λ3
k

)
ω1 + ε

λ2
k − ε

λ3
k + iδ

− nF
(
ε

λ3
k

) − nF
(
ε

λ1
k

)
ω2 + ε

λ3
k − ε

λ1
k + iδ

}
, (B6)

where nF(x) = 1/(eβ(x−μ) + 1) stands for the Fermi-Dirac distribution function. From now on, we use the shorthand notation
ω j + iδ → ω j . We calculate χyxx(ω,ω) as the AC nonlinear Hall response to an external driving field along the x̂ direction. After
summing over the band indices we find

χ (2)
yxx(ω,ω) = −

∑
k,ζ

{
nF

(
εc

k

) − nF
(
εv

k

)}{ (
�cc

x − �vv
x

)
�cv

y �vc
x

(εcv − 2ω)(εcv − ω)
+

(
�cc

x − �vv
x

)
�cv

x �vc
y

(εcv + 2ω)(εcv + ω)
+

(
�cc

y − �vv
y

)∣∣�cv
x

∣∣2

(εcv − ω)(εcv + ω)

}
, (B7)

where εcv = 2εk = 2
√

m2 + k2. We consider an electron-doped case where the integral over the entire valence band is zero
because the integrand is an odd function of k. For an arbitrary function f (x) we have

∫ 2π

0 dφ sin(φ) f (cos φ) = 0. Using these
two facts, we can make a further simplification

χ (2)
yxx(ω,ω) = −iω

∑
ζ ,k

nF
(
εc

k

)(
�cc

x − �vv
x

)
Im

[
�cv

y �vc
x

]
ε3

cv

6ε4
cv

ε4
cv − 5ε2

cvω
2 + 4ω4

. (B8)

We recall that the Berry curvature reads

	yx(k) = − 2

e2

Im
[
�cv

y �vc
x

]
ε2

cv

= ζm f

2
(
m2

f + k2
)3/2 . (B9)

Using the fact that �cc
x − �vv

x = −e2∂kx εcv , we show that(
�cc

x − �vv
x

)
Im

[
�cv

y �vc
x

]
ε3

cv

= e3

6
∂kx 	yx(k). (B10)
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Eventually, the conductivity can be formally written as [see Eq. (6)]

σ (2)
yxx (2ω) = −χ (2)

yxx(ω,ω)

ω2
= ie3

ω

∑
k,ζ

nF
(
εc

k

)∂	yx(k)

∂kx
C

(
ω

2εk

)
, (B11)

in which

C(x) = 1

(1 − 4x2)(1 − x2)
. (B12)

In the intraband regime 2ω � m f we have x → 0, which leads to C(x) → 1. Therefore, the interband contribution is related to
the factor equal to C(x) − 1.

APPENDIX C: ANALYTICAL FORM OF THE NONLINEAR HALL CONDUCTIVITY

In this Appendix we perform the momentum integration in Eq. (B11). The contribution from two valleys are equal, which
implies

∑
ζ → 2, and we set ζ = 1. At zero temperature we have nF(x) = �(μ − x), where �(x) is the Heaviside step function.

Therefore, we have the following relation for the nonlinear Hall conductivity:

σ (2)
yxx (2ω) = 2

ie3

ω

∑
k

�(μ− αk cos(φ) − εk )
∂	yx(k)

∂kx
C

(
ω

2εk

)
. (C1)

Considering the derivative of the Berry curvature as ∂	yx(k)/∂kx = −3m f k cos φ/2ε5
k , we find

σ (2)
yxx (2ω) = − 3

(2π )2

ie3

ω

∫ ∞

0
k dk

[∫ 2π

0
dφ cos(φ)�(μ − αk cos(φ) − εk )

]
m f k

ε5
k

C

(
ω

2εk

)
. (C2)

We then use the identity that holds for any real a and b,∫ 2π

0
dφ cos(φ)�(a − b cos(φ)) = −2 sgn(b)�

(
1 + a

b

)
�

(
1 − a

b

)√
1 −

(
a

b

)2

, (C3)

to obtain

σ (2)
yxx (2ω) = 6

(2π )2

ie3

ω

∫ ∞

0
k dk �(αk − (μ − εk ))�(αk + μ − εk )

√
1 −

(
μ − εk

αk

)2 m f k

ε5
k

C

(
ω

2εk

)
. (C4)

Now we use another identity∫ ∞

0
dk �(αk − (μ − εk ))�(αk + μ − εk )g(α, k)

=
∫ k1(α)+k0(α)

k1(α)−k0(α)
dk g(α, k), (C5)

where

k0(α) = αμ

1 − α2
, k1(α) =

√
μ2 − m2

f (1 − α2)

1 − α2
. (C6)

Note that for μ > m f > 0 and 0 < α < 1 we always have
k1(α) > k0(α) > 0. Therefore, we have

σ (2)
yxx (2ω) = ie3

ω2
f

(
ω

μ
,

m f

μ
, α

)
, (C7)

where the universal function f (· · · ) is given by

f

(
ω

μ
,

m f

μ
, α

)
= 3ωm f

2π2

∫ k1(α)+k0(α)

k1(α)−k0(α)
dk g(α, k), (C8)

where we define

g(α, k) = k/α

ε5
k

√
(αk)2 − (μ − εk )2C

(
ω

2εk

)
. (C9)

1. Solution of the f function for α � 1

For a very small 1 � α > 0 we have

f = 3ωm f

2π2

∫ k1(α)+k0(α)

k1(α)−k0(α)
dk g(α, k)

≈ 3ωm f

2π2
{2k0(α)g(α, k1(α))}. (C10)

In this case, we can also approximate

k0(α) ≈ αμ, k1(α) ≈
√

μ2 − m2
f . (C11)

Accordingly, we arrive at the result given in Eq. (8):

f ≈ 12α

π2

ωm f
(
μ2 − m2

f

)
(μ2 − ω2)(4μ2 − ω2)

. (C12)

2. Solution of the f function for an arbitrary value of α � 1

In this section we provide an exact solution for the f
function for arbitrary value of α � 1. We recall that

f = 3ωm f

2π2

∫ k1(α)+k0(α)

k1(α)−k0(α)
dk g(α, k). (C13)
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HABIB ROSTAMI AND VLADIMIR JURIČIĆ PHYSICAL REVIEW RESEARCH 2, 013069 (2020)

(a) (b) (c)

FIG. 5. Imaginary part of the universal f function versus the chemical potential. We set ω = 2mf and a resonance is clearly visible at
μ = ω. An imaginary part for the frequency is introduced as ω → ω + i�. We set (a) � → 0+, (b) � = 0.01mf , and (c) � = 0.05mf .

We introduce a new variable y:

y =
√

m2
f + k2, ydy = kdk. (C14)

Therefore, we have

f = 3ωm f

2π2

16

α

∫ y+(α)

y−(α)
dy

√
α2

(
y2 − m2

f

) − (μ − y)2

(y2 − ω2)(4y2 − ω2)
, (C15)

where y±(α) =
√

m2
f + [k1(α) ± k0(α)]2. It can be shown

that α2(y2 − m2
f ) − (μ − y)2 = (1 − α2){a2 − (y − y0)2}, in

which we define

a = αk1(α) =
α
√

μ2− (1 − α2)m2
f

(1 − α2)
, y0 = k0(α)

α
= μ

1 − α2
.

(C16)

After straightforward manipulation we find

f = 3ωm f

2π2

16
√

1 − α2

6αω3

∫ y+−y0

y−−y0

dy
√

a2 − y2

{
1

y + y0 − ω

− 1

y + y0 + ω
+ 2

y + y0 + ω/2
− 2

y + y0 − ω/2

}
.

(C17)

The explicit form of the above function is obtained after
solving the master integral

F (y, a, b) =
∫

dy

√
a2 − y2

y + b
= F0(y, a, b) + F1(y, a, b),

(C18)

where

F0(y, a, b) =
√

a2 − y2 + b arctan

(
y√

a2 − y2

)
, (C19)

F1(y, a, b) =
√

a2 − b2[ln(b + y)

− ln(a2 + by +
√

a2 − b2
√

a2 − y2)]. (C20)

Eventually, we obtain

f = 4
√

1 − α2

π2α

m f [Q(y+ − y0) − Q(y− − y0)]

ω2
, (C21)

where

Q(y) = F1(y, a, y0 − ω) − F1(y, a, y0 + ω)

+ 2F1(y, a, y0 + ω/2) − 2F1(y, a, y0 − ω/2). (C22)

It is worth noting that the contribution from F0(y, a, b) in the
end cancels out in the Q function. Equations (C21) and (C7)
together yield the nonlinear conductivity in the bare bubble
level. The numerical plots given in Fig. 2 are generated by
using Eq. (C21).

APPENDIX D: NON-LORENTZIAN VERSUS
LORENTZIAN RESONANCE

The nonlinear Hall conductivity is given in Eq. (7) in which
the universal function f (ω/μ, m f /μ, α) shows interesting
interband features. The interband resonance peak becomes
broader when the value of the tilt parameter is increased
while there is no scattering mechanism in the model (we
consider the collisionless regime). Intriguingly, we can see
the difference of this resonance with the usual Lorentzian
one after including a finite imaginary part for the frequency,
e.g., ω → ω + i�. The shape of the resonances for different
values of α and � are illustrated in Figs. 5 and 6. For small α

and finite � the resonances feature a Lorentzian shape, while
by increasing the value of α they become broader without
a considerable change in the peak value. The Lorentzian
function changes its curvature sign from negative to positive
when we move away from the resonance [see Fig. 5(c)], while
in the non-Lorentzian case the curvature is always negative
[see Fig. 5(a)].

APPENDIX E: DETAILS OF THE
RENORMALIZATION-GROUP ANALYSIS

OF THE GROSS-NEVEU-YUKAWA THEORY
FOR THE TILTED DIRAC FERMIONS

For the sake of completeness, we repeat here some of
the details already presented at the beginning of Sec. IV.
The momentum–imaginary-time action for the noninteracting
tilted Dirac fermions in D spatial dimensions reads

S f =
∫

dτ dDr ψ†(τ, r)[∂τ + Ĥ(k → −i∇r )]ψ (τ, r).

(E1)
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(a) (b) (c)

FIG. 6. Real part of the universal f function versus the chemical potential. We set ω = 2mf and a resonance is clearly visible at μ = ω.
An imaginary part for the frequency is introduced as ω → ω + i�. We set (a) � → 0+, (b) � = 0.01mf , and (c) � = 0.05mf .

Here Ĥ(k) is the real-space Hamiltonian for the free tilted
massive Dirac fermions obtained from its momentum space
representation given by

Ĥ(k) = αζkxÎ + v(ζkxσ̂x + kyσ̂y) + m f σ̂z, (E2)

where ζ = ± stands for two fermion flavors, m f represents
the fermion mass due to the inversion-symmetry breaking,
σ̂ are the Pauli matrices, Î is the 2×2 unity matrix, |α| < 1
is the tilt parameter, and the Fermi velocity v = 1 hereafter.
The short-range interaction is encoded through the Yukawa
coupling between the Dirac fermion quasiparticles and the
bosonic degrees of freedom representing the fluctuations of
the underlying ordered state, assumed to be a charge density
wave for simplicity, and reads

SY = g
∫

dτ

∫
dDr φ(τ, r)ψ†(τ, r)σ̂zψ (τ, r). (E3)

The dynamics of the bosonic fluctuations is described by the
action

Sb =
∫

dτ

∫
dDr

{
φ(τ, r)

(−∂2
τ − ∇2 + m2

b

)
φ(τ, r) + λ

4!
φ4

}
,

(E4)

where m2
b is the bosonic mass scaling as the distance from

the QCP and m2
b is the tuning parameter for the QPT. It can

be readily shown that for each of the valleys ζ = ±, the
above action can be cast in the manifestly Lorentz-invariant
form, except for the tilt term, which explicitly breaks this
symmetry. For instance, taking ζ = +, to obtain such a form
of the action, we can choose the 2×2 Dirac γ matrices as
γ0 = σ̂z, γ1 = −σ̂y, γ2 = σ̂x, and ψ̄ = ψ†γ0. In particular, the
Yukawa term in Eq. (E3) can be rewritten in the relativistic
form as SY = g

∫
dτ

∫
dDr φψ̄ψ . Taking into account the

other valley, the basis of the 4×4 γ matrices can be chosen as
�μ = {�0, �1, �2} = {σ̂z ⊗ τ̂0,−σ̂y ⊗ τ̂z, σ̂x ⊗ τ̂0}, with the τ̂

matrices acting in the valley space and τ̂0 as the 2×2 unity

matrix. In this basis the fermionic part of the action including
now both (decoupled) valleys takes the Lorentz invariant form
(except for the tilt term).

Engineering scaling dimensions in the units of momen-
tum (inverse length) of the Yukawa and φ4 couplings are
dim[g2] = dim[λ] = 3 − D, while dim[α] = 0, and therefore
D = 3 is the upper critical dimension in the theory. We will
therefore use ε = 3 − D, the deviation from the upper critical
dimension as an expansion parameter to access quantum-
critical behavior in D = 2.

1. Fermionic self-energy

To find the correction to the nonlinear conductivity close
to the QCP we compute the leading-order zero-temperature
(T = 0) self-energy for the tilted Dirac fermions [see
Fig. 7(a)]

� f ,ζ (i	, k) = g2
∫

[dω]
∫

[dDq]σ̂zG f ,ζ (iω + i	, k + q)

× σ̂zGb(iω, q), (E5)

where [dω] ≡ dω/2π , [dDk] ≡ dDk/(2π )D, and the
fermionic and bosonic propagators read, respectively,

G f (iω, k) = iω + αζkx + τ σ̂xkx + σ̂yky + m f σ̂z

(ω + iατkx )2 + k2 + m2
f

, (E6)

Gb(iω, k) = 1

ω2 + k2 + m2
b

, (E7)

and we set the bosonic and fermionic velocities to be equal
to unity in the critical region [37]. After performing the
matrix algebra in D = 2, the above self-energy in the critical
hyperplane (all masses set to zero) explicitly reads

� f ,ζ (i	, k) = g2
∫

[dω][dDq]
i(ω + 	) − αζ (kx + qx ) − ζ σ̂x(kx + qx ) − σ̂y(ky + qy)

{[ω + 	 + iαζ (kx + qx )]2 + (k + q)2}(ω2 + q2)
. (E8)

We now set k = 0 and ζ = 1 to obtain

� f (i	, 0) = −g2
∫

dDq
(2π )D

∫ ∞

−∞

dω

2π

i(ω + 	) − α · q − σ · q
{[i(ω + 	) − α · q]2 − q2}(ω2 + q2)

, (E9)
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FIG. 7. Feynman diagrams to the leading order in the ε expansion: (a) fermionic self-energy, (b) bosonic self-energy, (c) correction to the
Yukawa vertex, (d) correction to the λ vertex from the bosonic quartic coupling, and (e) correction to the λ vertex from the Yukawa interaction.
The solid line represents the fermionic propagator while the dashed line stands for the bosonic propagator.

with α ≡ αx̂ and x̂ the unit vector in the x direction. We
perform the integral over ω,

� f (i	, 0) = −g2

2

∫
dDq

(2π )D

1

q

i	 − α · q − σ · q
(i	 − α · q)2 − 4q2

. (E10)

Next we drop the term proportional to σ · q, since it can only
generate a term of the form σ · α, which we eliminate by the
corresponding counterterm, to find

� f (i	, 0) = −g2

2

∫
dDq

(2π )D

1

q

i	 − α · q
(i	 − α · q)2 − 4q2

, (E11)

which yields

lim
i	→0

∂� f (i	, 0)

∂ (i	)
= g2

2

∫
dDq

(2π )D

1

q

4q2 + (α · q)2

[4q2 − (α · q)2]2
. (E12)

We then integrate over the momentum using the hard cutoff �

in D = 3 and use that α = αx̂ to find

lim
i	→0

∂� f (i	, 0)

∂ (i	)
= g2

(4π )2
G(α)

∫ �

λ

dq

q
, (E13)

with λ = �/b. Here b > 1 but b − 1 � 0 is the Wilsonian
RG parameter. Finally, we use the correspondence between
the hard cutoff and the dimensional regularizations

∫ �

λ

dq

q
→ 1

ε
, (E14)

which can be explicitly checked, for instance, by setting
α = 0 in Eq. (E9), and keep only the divergent piece in
the self-energy. This procedure is systematically used in our

analysis. Furthermore, we define

G(α) = 2
∫ 2π

0

dφ

2π

∫ π

0
dθ sin θ

4 + α2(sin θ cos φ)2

[4 − α2(sin θ cos φ)2]2

= 4
∫ π

0
dθ sin θ (4 − α2 sin2 θ )−3/2

= 4

4 − α2
= 1

1 − α2/4
. (E15)

Note that this function is strictly positive for |α| < 1.
We then obtain the fermion field renormalization constant

Z� = 1 − lim
i	→0

∂� f (i	, 0)

∂ (i	)
= 1 − g2

(4π )2

1

ε
G(α). (E16)

We now calculate Zα using the condition

−Z�Zααkx − kx
∂� f (i	, k)

∂kx

∣∣∣∣
i	→0,k→0

= −αkx. (E17)

We use Eq. (E10) for a finite external momentum k, obtained
by shifting q → q + k, which then yields

∂� f (i	, k)

∂kx

∣∣∣∣
i	→0,k→0

= g2

(4π )2
αG(α)

1

ε
, (E18)

with G(α) given by Eq. (E15). Therefore, using this result, the
already obtained Z� in Eq. (E16), and Eq. (E17), we find that
Zα = 1, implying that the parameter α remains marginal to the
leading order in the ε expansion.

2. Self-energy for the bosonic field

To find the RG flow equation for the Yukawa coupling,
we compute the self-energy for the bosonic field and the
correction to the Yukawa vertex. We first compute the
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self-energy for the bosons [Fig. 7(b)], which reads

�b(i	, k) = −2g2
∫

[dω]
∫

[dDq]tr[σzG f (iω, q)σzG f (iω + i	, q + k)]. (E19)

Since we are after the wave-function renormalization of the bosonic field, we set k = 0 in the above self-energy. After taking
the trace, introducing the Feynman parameter, and shifting the integral over the frequency, we obtain

�b(i	, k = 0) = 4g2Nf

∫ 1

0
dx

∫
[dω]

∫
[dDq]

(ω − x	)[ω + (1 − x)	] + q2

[ω2 + (1 − x)2iα	qx + x(1 − x)	2 + q2]2
, (E20)

with 2Nf as the number of two-component Dirac spinors. The
bosonic wave-function renormalization is determined by the
renormalization condition

Z� − ∂�b(i	, 0)

∂ (	2)

∣∣∣∣
	→0

= 1. (E21)

After taking the derivative and performing the remaining
integrals, we obtain

Z� = 1 − g2

8π2
2Nf (1 + 2α2)

1

ε
. (E22)

3. The β function for Yukawa coupling

We now compute the correction to the Yukawa vertex
[Fig. 7(c); we take ζ = 1 for the valley index]

δg = −g3
∫

[dω]
∫

[dq]σ̂zG f (iω, q)σ̂zG f (iω + i	, q + k)

× σ̂zGb(iω, q). (E23)

After setting the external momentum and frequency to zero,
since we are only after the divergent piece of the integral, we
obtain

δg = g3σ̂z

∫
[dω]

∫
[dq]

1

[(ω + iαqx )2 + q2](ω2+ q2)
,

(E24)

which, after carrying out the frequency and the momentum
integrals, in turn yields

δg = g3σ̂z
1

8π2
V (α)

1

ε
, (E25)

where

V (α) = 2

|α|arccosh

(
2√

4 − α2

)
. (E26)

The renormalization condition for the Yukawa coupling reads

Z�Z1/2
� gσ̂z − δg = g0κ

−ε/2σ̂z, (E27)

where κ is the RG momentum scale [20]. Using that the bare
coupling g0 is stationary under the RG transformation, we find
the infrared β function for the Yukawa coupling βg2 ≡ − dg2

d ln κ
,

βg2 = εg2 − g4[G(α) + 2V (α) + 2Nf (1 + 2α2)]

≡ εg2 − g4K (α, Nf ), (E28)

with

K (α, Nf ) = G(α) + 2V (α) + 2Nf (1 + 2α2). (E29)

Here we use that α is a marginal parameter to the leading
order in the ε expansion and rescale g2/8π2 → g2. In the limit
α → 0 we obtain the known result for the β function for the
Yukawa coupling in the Ising GNY theory [22,38]

βg2 = εg2 − 2g4

(
Nf + 3

2

)
. (E30)

For |α| < 1 different from zero, the location of the critical
point

g2
� = ε

K (α, Nf )
(E31)

is always pushed down in comparison to the case without
the tilting (α = 0), since the function K (α, Nf ) defined in
Eq. (E28) is positive, even, and monotonically increasing for
0 < α < 1.

4. The β function for λ coupling

The vertex correction of the λ coupling for tilted Dirac
fermions turns out to be equal to the case α = 0. Namely, the
renormalization of the φ4 vertex does not depend on α as the
bosonic propagator is α independent [see Fig. 7(d)] and reads

δλλ = 3

2

λ2

8π2

1

ε
. (E32)

Furthermore, the explicit calculation of the correction of
the λ coupling due to the Yukawa interaction [Fig. 7(e)] gives
the same result as without the tilt. This is a consequence
of the fact that the tilt parameter can be eliminated in the
corresponding integral by the shift of the frequency and the

(a)
(b)

FIG. 8. (a) Function h(α, Nf ) determining the value of the cou-
pling λ at the fixed point X� = {g2

�, λ�}, λ� = ε h(α, Nf ), of the RG
flow given by Eqs. (E28) and (E35), with g2

� given in the text.
(b) Eigenvalue M22 of the stability matrix Mi j (X ) at the fixed point
X = X�, showing that indeed the λ direction is stable and therefore
X� is a QCP at least for the values of Nf � 10.
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HABIB ROSTAMI AND VLADIMIR JURIČIĆ PHYSICAL REVIEW RESEARCH 2, 013069 (2020)

fact that the diagram is calculated in the limit of the vanishing
external momentum and frequency. Explicitly, the divergent
part of this contribution reads

δλY = −24g4

4

∫
[dω]

∫
[dDq]tr[σ̂zG f (iω, q)σ̂zG f (iω, q)

× σ̂zG f (iω, q)σ̂zG f (iω, q)]

= −24Nf
g4

8π2

1

ε
. (E33)

The renormalization condition of the λ coupling reads

Z2
�λ − (δλλ + δλY ) = λ0κ

−ε, (E34)

where λ0 is the bare coupling and the term on the right-hand
side accounts for the scaling dimension of the λ coupling
dim[λ] = 3 − D = ε. Using that the bare coupling is station-
ary under the RG transformation, and the results in Eqs. (E32)
and (E33), we obtain the infrared β function for the φ4

coupling

βλ = ελ − 3
2λ2 − 4Nf (1 + 2α2)λg2 + 24g4Nf , (E35)

which in the limit α = 0 agrees with the known result for
the Z2 GNY theory for the untilted Dirac fermions [22,38].
Substituting the value of the critical Yukawa coupling given
by Eq. (E31) into the above β function for the λ coupling,
we find that the fixed point is located at λ� = εh(α, Nf ),
with h(α, Nf ) a complicated function of its arguments, plotted
in Fig. 8(a) as a function of the tilt parameter for different
values of Nf . The value of λ� for α �= 0 is smaller than that
for α = 0, as expected from the scaling of the density of
states for the TDFs. The fixed point X� ≡ (g2

�, λ�) is in fact
a critical point since the eigenvalues of the stability matrix
Mi j (X ) = ∂βXi/∂Xj , where X ≡ {g2, λ}, equal to its diago-
nal elements, are both negative at X = X�. The eigenvalue
M11(X�) = −εK (α, Nf ) < 0, since the function K (α, Nf ) is
positive for |α| < 1. The other eigenvalue M22(X�) is also
negative, as can be seen in Fig. 8(b).
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