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Topological thermal Hall effect of magnetic monopoles in the pyrochlore U(1) spin liquid
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“Magnetic monopole” is an exotic quantum excitation in three-dimensional U(1) spin liquid, and its emergence
is purely of quantum origin and has no classical analog. We predict topological thermal Hall effect (TTHE) of
“magnetic monopoles” and present this prediction through non-Kramers doublets on a pyrochlore lattice. We
observe that when the external magnetic field polarizes the Ising component of the local moment, internally this
corresponds to the induction of emergent dual U(1) gauge flux for the “magnetic monopoles.” The motion of
“magnetic monopoles” is then twisted by the induced dual U(1) gauge flux. This emergent Lorentz force on
“magnetic monopoles” is the fundamental origin of TTHE. Therefore, TTHE would be a direct evidence of the
“monopole” gauge coupling and the emergent U(1) gauge structure in pyrochlore U(1) spin liquid. Our result
does not depend strongly on our choice of non-Kramers doublets for our presentation and can be well extended
to Kramers doublets. Our prediction can be readily tested among the pyrochlore spin liquid candidate materials.
We give a detailed discussion about the expectation for different pyrochlore magnets.
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I. INTRODUCTION

Emergent gauge structure and theory comprise an impor-
tant subject in modern condensed-matter physics, particularly
for strongly correlated quantum matter [1]. It is this theory that
underlies the unified gauge theory description of fractional
quantum Hall effect and quantum spin liquids (QSLs) [1].
While an initial understanding of the fractional quantum
Hall effect (FQHE) relies on Laughlin’s construction of a
variational wave function [2], later, Ginzburg-Landau field-
theoretical descriptions are developed conceiving an addi-
tional gauge interaction described by the Chern-Simons gauge
theories [3,4]. The discovery of QSLs follows a completely
independent line of development pioneered by Anderson and
collaborators [5–7]. Intriguingly, a QSL state, dubbed the
“chiral spin liquid” state, is proposed to be equivalent to
the FQHE [8]. The modern understanding of QSLs has been
greatly advanced by various lattice gauge theories [9–11]
conceiving nonlocal, fractionalized excitations. To confirm
the existence of QSLs in a realistic quantum material, one
has to establish the presence of the emergent gauge structure
and the associated fractionalized quantum particles, e.g., the
spinon and “magnetic monopole” in U(1) QSL. This requires
a mutual feedback between theories and experiments. More
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precisely, one needs to understand how the emergent gauge
structure manifests itself in the actual experimental observ-
ables. In a more progressive manner, it would be beneficial
to provide some level of controllability or prediction of these
emergent phenomena from the understanding of the rela-
tionship between the microscopic physics and the emergent
gauge structure. In this effort, some of us have proposed ways
to spectroscopically control the spinon band structure and
then the spinon continuum in the inelastic neutron-scattering
measurement for several QSL candidates [12–15] such as
Ce2Sn2O7, Ce2Zr2O7, and YbMgGaO4 [16–24]. As for the
transport properties, two of us have further studied the strong
Mott insulating QSLs and suggested the origin of the emer-
gent Lorentz force from the antisymmetric Dzyaloshinskii-
Moriya interaction for the spinons as the source of the topo-
logical thermal Hall conductivity in these systems [25,26].
In this paper, we turn our attention to study the thermal
Hall transport in another important QSL state, namely the
pyrochlore U(1) QSL.

The pyrochlore U(1) QSL is described by the emergent
compact U(1) lattice gauge theory and supports the gapless
U(1) gauge photon, gapped spinon and “magnetic monopole”
as its elementary excitations [11]. Many pyrochlore materi-
als, mainly the rare-earth pyrochlores [9,27–32], have been
proposed as candidates to realize this U(1) QSL [9]. Al-
though many interesting experimental signatures have been
suggested, the firm establishment of pyrochlore U(1) QSL
has not yet been settled for any material. In this paper, we
develop a theory to predict the phenomenon of the topological
thermal Hall effect (TTHE) in the pyrochlore U(1) QSL and
propose it as a positive evidence of the emergent U(1) gauge
structure. Our observation stems from the physical meaning
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FIG. 1. Schematic picture of the thermal Hall effect from the
“magnetic monopoles” on the dual diamond lattice for the pyrochlore
U(1) QSL, where the heat current “J” has contributions from all
mobile excitations. We single out the “magnetic monopoles” (in
green) that are suggested to contribute to the thermal Hall effect in
this work.

of the spin variables in the U(1) QSL. It is observed that the
Ising component of the spin works as an emergent electric
field in the U(1) lattice gauge theory. From the view of the dual
gauge theory, this emergent and internal electric field behaves
as a dual U(1) gauge flux for the “magnetic monopoles.” The
external magnetic field, which couples linearly with the spins
through a simple Zeeman coupling, polarizes the internal elec-
tric field and thereby modifies the dual U(1) gauge flux that
is experienced by the “magnetic monopoles.” This coupling
between the internal variable and the external field effec-
tively generates an emergent Lorentz force on the “magnetic
monopoles.” A topological thermal Hall effect is generated for
the “magnetic monopoles,” which is schematically shown in
Fig. 1. The dual Hamiltonian for the “magnetic monopoles,”
which captures this effect, is given as

Hdual = −t
∑
〈rr′〉

�†
r �r′e

−i2πarr′ − μ
∑

r

�†
r �r

+
∑
rr′

U

2
(curl a − Ērr′ )2 − K

∑
rr′

cos Brr′ , (1)

where �
†
r (�r) denotes a creation (annihilation) operator of

the “magnetic monopoles” on a dual diamond lattice r site.
Here the sherif symbol r is reserved for the dual diamond
lattice that will be explained later. The first line describes the
hopping of the “magnetic monopoles” on the dual diamond
lattice and minimally couples to the dual dynamical U(1)
gauge field arr′ , and the second line is the Maxwell term of the
U(1) gauge field. The detailed description of the notation in
Eq. (1) is given in Sec. II. The external magnetic field modifies
the dual U(1) gauge flux in the above equation and generates
the TTHE for the “magnetic monopoles,” which is explained
in Sec. III.

Thermal Hall effect has been measured and detected in
the pyrochlore ice materials Tb2Ti2O7 [33] and Yb2Ti2O7

[34]. In Tb2Ti2O7, the crystal electric-field ground state of the
Tb3+ ion under the D3d crystal electric field is a non-Kramers
doublet [29], although the crystal-field gap to the first excited
doublet is relatively small among the rare-earth pyrochlore

magnets. In Yb2Ti2O7, the crystal electric-field ground state
of the Yb3+ ion is a Kramers doublet. In this paper, we will
first deliver our theory with the non-Kramers doublets for the
pyrochlore ice U(1) QSL and then explain the extension to
the Kramers doublets. Although we start with the spin ice
manifold, our results do not rely on the proximity of the spin
ice configuration. As long as the pyrochlore U(1) QSL is
realized, our results would be applicable, regardless whether
the system is close or not close to the spin ice manifold.

The remaining parts of the paper are organized as follows.
In Sec. II, we construct the dual lattice gauge theory for the
pyrochlore U(1) QSL and introduce the “magnetic monopole”
degrees of freedom into the formulation. In Sec. III, we
present the induction of dual U(1) gauge flux through the
Zeeman coupling. The thermal Hall current for the “mag-
netic monopoles” under a temperature gradient is analyzed in
Sec. IV A. In Sec. IV B, we calculate the “monopole” band
dispersion from the mean-field monopole Hamiltonian with
an induced dual U(1) gauge flux. In Sec. IV C the temperature
dependence of the thermal Hall conductivity is calculated.
We compare our results with other QSLs in Sec. V and
give a detailed discussion about the expectation for different
pyrochlore magnets. The details of calculation and derivation
are presented in Appendices.

II. “MAGNETIC MONOPOLES” FROM DUAL
LATTICE GAUGE THEORY

There are two realistic spin models proposed for the py-
rochlore U(1) QSL [30,38,39]. Due to the spin-orbit entangled
nature of the relevant rare-earth ion, the spin models are highly
anisotropic. One of the spin models applies for usual Kramers
doublets as well as non-Kramers doublets. For instance, the
ground state of the Yb3+ ion in Yb2Ti2O7 and Er3+ ion in
Er2Ti2O7 [39,40] are Kramers doublets, while the ground
state of the Pr3+ ion in Pr2Zr2O7 [41] and Tb3+ ion in
Tb2Ti2O7 [30] are non-Kramers doublets. The other model,
known as the XYZ model [12,38], applies to dipole-octuple
doublets, such as Nd3+ ion in Nd2Zr2O7 [42] and Ce3+ ion
in Ce2Sn2O7 and Ce2Zr2O7 [16,17]. It is known that both
spin models reduce to a XXZ model in a certain limit, and
the XXZ model on a pyrochlore lattice supports a pyrochlore
quantum ice U(1) QSL [11]. Generically, this QSL state is a
stable phase derived from the generic spin models. Although
theoretical approaches are valid in the Ising regime [11],
the stability of the pyrochlore U(1) QSL goes beyond the
perturbative Ising regime [28]. Therefore, we adopt a more
inclusive notion of “pyrochlore U(1) QSL.” In this section,
we first start from the ring exchange model that is obtained
from the realistic spin model by the degenerate perturbation
theory in the Ising limit. The discussion is on a generic ground
where the local moment is not specified to be a Kramers
doublet or non-Kramers doublet. Then we obtain a lattice
gauge theory and expose the “monopoles” explicitly by means
of electromagnetic duality transformation.

The pyrochlore U(1) QSL for the effective spin-1/2 mo-
ments can be accessed by a ring exchange model [11]

Hring = − K

2

∑
�p

(τ+
1 τ−

2 τ+
3 τ−

4 τ+
5 τ−

6 + H.c.), (2)
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where K is a renormalized energy scale for the low-energy
effective theory. Here the spin operators are τ±

i = τ x
i ± iτ y

i .
A z-direction is defined locally along the 〈111〉-direction of
each site. An elementary hexagonal ring “�p” is formed by
six neighboring sites i = 1, . . . , 6 on the pyrochlore lattice,
and the subindex “p” refers to the pyrochlore lattice. One can
transform the ring exchange model into a compact U(1) lattice
gauge theory (LGT) [11,43],

HLGT = − K
∑
�d

cos[curl A] + U

2

∑
rr′

(
Err′ − εr

2

)2

, (3)

by introducing a pair of lattice gauge fields, i.e., electric
field Err′ = τ z

i + 1/2 and vector gauge potential e±iArr′ = τ±
i .

These fields are defined on the nearest-neighbor diamond
links rr′, where r and r′ are used to label the dia-
mond lattice sites. The pyrochlore site i sits at the mid-
point of the corresponding link rr′. Two distinct sublattices
r(∈ I), r′(∈ II) reside at the centers of two corner sharing
tetrahedra of the pyrochlore lattice. Err′ (integer valued)
and Arr′ (2π periodic) form a pair of conjugated fields
satisfying [Err′ , Ar1r′

1
] = iδrr1,r′r′

1
. The lattice curl is defined

as summation over all bonds of a diamond hexagon
curl A = ∑

rr′∈�d
Arr′ . Here “�d ” refers to the elementary

hexagon on the diamond lattice formed by the tetrahedral
centers of the pyrochlore lattice. Additionally, an electric-field
stiffness U term is added, where εr = +1 (−1), r ∈ I (II). In
the large-U limit, the Hilbert space of the LGT is properly
casted back to the microscopic spin-1/2 local moment. In the
low-energy and long-distance limit, the actual U is renormal-
ized compared to the original lattice level.

“Magnetic monopole” is the topological defect of emer-
gent U(1) gauge potential and is the source and sink of the
internal magnetic fields. Unlike the spinons that reside on the
tetrahedral centers of the pyrochlore lattice (or the diamond
lattice sites), the “magnetic monopoles” live on the dual
diamond lattice. In the above electric-field and gauge-field
representation, the “magnetic monopole” variable is not ex-
plicit. An electromagnetic duality transformation is performed
on the LGT to expose this variable [11,44]. Although this
is covered in the literature extensively, some steps of the
derivation are not mathematically straightforward. We carry
out the duality transformation in Appendices A and B, where
a special care has been taken for the diamond lattice structure.
The expression of the dual Hamiltonian is presented here,

Hdual[θ, a, B] =
∑
〈rr′〉

U

2
(curl arr′ − Ērr′ )2 −

∑
〈rr′〉

K cos Brr′

− t
∑
rr′

cos(θr − θr′ + 2πarr′ ), (4)

where r, r′ represent dual diamond lattice sites as plot-
ted in Fig. 2. A rotor variable e±iθr is proven to be the
creation/annihilation operator of the “magnetic monopole”
(see Appendix B). We restore the bosonic nature of the
“magnetic monopole” variable by introducing �r ≡ ρreiθr ,
where a unimodular condition |�r| = 1 is often imposed if
one abandons the heavier amplitude fluctuations. We arrive at
the dual Hamiltonian presented in Eq. (1). The dual theory
describes the “magnetic monopole” �r hopping on the dual

FIG. 2. Diamond lattice (in gray line) and the dual diamond
lattice (in red line). The physical spin is located in the middle
of the link on the diamond lattice. The diamond lattice is formed
by the tetrahedral centers of the original pyrochlore lattice. The
spinons (“magnetic monopoles”) hop on the diamond (dual diamond)
lattice. The colored balls correspond to the position of “magnetic
monopoles.”

diamond lattice and minimally coupled to a dual U(1) gauge
field. The dual U(1) gauge field arr′ (real valued) and magnetic
field Brr′ (2π periodic) are defined on the link rr′ of the dual
diamond lattice. These dual fields are related to the field in the
original representation by

curl a ≡
∑

rr′∈�∗
d

arr′ = Err′ − E0
rr′ ,

Brr′ = curl A ≡
∑

rr′∈�d

Arr′ , (5)

where the dual hexagonal ring is labeled by �∗
d . The dual

lattice curl is defined as summation over all bonds of a dual
hexagon. The definitions in Eq. (5) guarantee that the com-
mutation relation is satisfied [Brr′ , ar1r′1 ] = iδrr1,r′r′1 . A back-
ground electric field E0

rr′ is introduced in Eq. (5) to ensure
that the lattice curl of the dual gauge field is divergenceless.
Without loss of generality, we choose a specific two-in–
two-out spin-ice configuration for the background electric
field, e.g.,

E0
r,r+εr e0

= E0
r,r+εr e1

= εr,

E0
r,r+εr e2

= E0
r,r+εr e3

= 0. (6)

For the future reference, we define another electric field
composed of the background electric field and an offset field,

Ērr′ = E0
rr′ − εr

2
. (7)

III. INDUCTION OF DUAL U(1) GAUGE FLUX
BY ZEEMAN COUPLING

The pyrochlore U(1) QSL is in the deconfined phase of the
three-plus-one-dimensional (3 + 1D) LGT. It supports both
deconfined spinons and deconfined “magnetic monopoles,” as
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TABLE I. Correspondence between two different notations for
the elementary excitations in pyrochlore U(1) QSL. “Magnetic
monopole” is sometimes referred to as visons in some literature. Usu-
ally “vison” refers to the Z2 flux [10,35,36] for the Z2 topological
order in 2+1D and is also known as the “m” particle in Kitaev’s toric
code model [37].

Excitations (notation 1) Excitations (notation 2)
Spinon Magnetic monopole
“Magnetic monopole” Electric monopole
Gauge photon Gauge photon

well as the gapless U(1) gauge photon [11] (see Table I). In
the inelastic neutron-scattering experiments, these executions
correspond to the continuous excitations in the spectrum. The
content of the continuum is actually related to the nature
of the local moments, which is elucidated in Refs. [15,44].
The τ z-τ z correlation contains the information of both the
(gapped) “magnetic monopole” continuum and the (gapless)
gauge photon [44]. Moreover, the spectral structure of the con-
tinuum is intimately tied to the symmetry fractionalization of
the spinons and “magnetic monopoles” [15,44,45]. Although
these results are quite useful, they are all consequences of the
deconfinement and fractionalization, not a direct evidence of
the matter-gauge coupling. To demonstrate the consequence
of the matter-gauge coupling, let us consider the Landau-level
physics in the system of electrons. The Coulomb interaction
between the electrons is the consequence of the facts that
the electron carries the U(1) gauge charge and the photon
mediates the interaction through the electron-photon cou-
pling. The electron-gauge coupling of the electrons can be
revealed through the quantum oscillation of a metal in external
magnetic fields, which arises from the population of electronic
Landau levels. In our case, the “magnetic monopole” is cou-
pled to the internal dual U(1) gauge field, and the “magnetic
monopole” is bosonic and gapped. So the usual quantum
oscillation does not exist. Moreover, the internal U(1) gauge
flux is not obviously tunable. Our key observation is that
the external field could generate an internal dual U(1) gauge
flux for the “magnetic monopoles.” This is already pointed in
Sec. I. In the following, we embark on explaining this point
with the non-Kramers doublets.

For the non-Kramers doublets, only the local z component
of the effective spin is odd under the time-reversal symmetry.
The Zeeman coupling of the effective spin to the external field
is given as

HZeeman = −H0

∑
i

(n̂ · ẑi)τ
z
i

� −H0

∑
〈rr′〉

(n̂ · ẑi)(curl arr′ − Ērr′ ), (8)

where the first line is written with the microscopic spin
language while the second line is expressed in terms of
the emergent variables in the pyrochlore U(1) QSL phase.
Here the link 〈rr′〉 on the diamond lattice is identical to the
pyrochlore lattice site i, n̂ defines the direction of the magnetic
field, and ẑi denotes the local z-direction of on the lattice

site i. A weak external magnetic field polarizes the spins
in each pyrochlore tetrahedron partially, and throughout we
work in the weak-field regime such that the U(1) QSL state is
preserved, namely the lattice gauge theory is in its deconfined
phase. Hence, the “magnetic monopole” representation in
Eq. (1) remains to be a valid picture for the system.

The Zeeman coupling term enters into the dual Hamilto-
nian Eq. (1) as a modification of the background electric field
distribution,

Hdual(H0) =
∑
〈rr′〉

U

2
(curl arr′ − Ē ′

rr′ )2 − · · ·

Ē ′
rr′ = Ērr′ + H0

U
(n̂ · ẑi ). (9)

We observe that the external field modifies the internal dual
U(1) gauge flux and thereby generates an emergent Lorentz
force on the “magnetic monopoles.” The motion of the “mag-
netic monopoles” will be twisted by the induced dual U(1)
gauge flux, giving rise to the TTHE of “magnetic monopoles.”
This is a direct manifestation and unbiased signature of
the emergent “monopole”-gauge coupling. This phenomenon
serves as an analog of the Lorentz force for the electron
motion on the lattice, except that the Lorentz force here is
emergent and arises from the induction of the internal dual
U(1) gauge flux via the Zeeman coupling.

The Zeeman coupling depends sensitively on the local
crystal-field axis. Thus, the induced dual U(1) gauge flux
depends on the lattice geometry and the field orientation, i.e.,
the mean-field value of dual gauge flux 〈curl a〉 is related to the
induced local magnetization 〈τ z〉. Without the Zeeman field,
the dual U(1) gauge flux is π for the elementary hexagon on
the dual diamond lattice. The Zeeman coupling breaks the
time-reversal symmetry and shifts the dual U(1) gauge flux
from π by a finite portion

2π〈curl arr′ 〉 = π + 2π
H0

U
(n̂ · ẑi ) mod (2π ), (10)

where 〈curl arr′ 〉 represents a mean-field solution for the dual
gauge flux. The parameter U is often unknown. Physically,
the induced flux can be obtained from the induced local
magnetization that is given as〈

τ z
i

〉 ≡ χi(n̂ · ẑi )H0, (11)

which depends on the local spin susceptibility χi along the
z-direction on each site i. In the weak-field limit, χi should be
uniform by definition and symmetry requirement. It is also a
constant due to the strong spin-orbit coupling in the system.
The above equations give us the relations between the induced
dual U(1) flux and the physical magnetization.

With the mean-field solution of dual U(1) gauge flux in
the presence of the Zeeman field, we write down a mean-field
Hamiltonian for the “magnetic monopoles,”

HMF = − t

2

∑
rr′

e−i2πa0
rr′ �

†
r′�r + H.c. − μ

∑
r

�†
r �r, (12)

where a0
rr′ represents a gauge choice for the dual U(1) gauge

field. The dual gauge field is fixed at a particular mean-field
solution, and its conjugate field, namely the internal magnetic
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field, is omitted. Therefore, the Hamiltonian in Eq. (12) de-
scribes the hopping of “magnetic monopoles” in the presence
of a dual U(1) gauge field, whose fluctuation has been ignored.

IV. TOPOLOGICAL THERMAL HALL EFFECT

In the previous sections, we have explained our ideas
and the physical origin of the TTHE for the “magnetic
monopoles.” Here we further establish the theoretical frame-
work to demonstrate the TTHE and make specific predictions
for the experiments.

A. General framework

To extract information out of the twisted motion of the
“magnetic monopoles,” we perturb the system with a temper-
ature gradient in the plane perpendicular to the external mag-
netic field. In the standard linear response theory, the small
external perturbation appears in the Hamiltonian. The effect
of the temperature gradient T (r) � T0[1 − ψ (r)] takes place
in the Boltzmann factor, i.e., e−H/kBT (r) � e−[1+ψ (r)]H/kBT0 . A
theoretical framework tackling this problem has been pro-
posed by Luttinger [46]. By coupling the Hamiltonian with
a pseudogravitational potential ψ (r), they are able to incor-
porate the temperature gradient into a perturbed Hamiltonian
H̄(r) = [1 + ψ (r)]H.

We start from the mean-field Hamiltonian in Eq. (12) and
treat the dual diamond lattice structure carefully. The pseu-
dogravitational potential ψr couples with an energy-density
operator Hr. The coupling is turned on for one type of the
dual sites with

H̄ =
∑
r∈I

(1 + ψr)Hr. (13)

The energy-density operator at a dual site r is defined as

Hr = − t

2

∑
r′∈r

e−i2πa0
rr′ �

†
r′�r + H.c., (14)

where the summation is over four nearest-neighbor dual sites
r′ ∈ r, which are labeled in Fig. 2. The chemical potential
term is omitted in the energy-density operator, since it has no
contribution to the transport properties below. The energy den-
sity is not modified upon the addition of pseudogravitational
potential, since the four nearest neighbors necessarily belong
to the type-II sites. We work through the lattice version of the
continuity equation for the energy-density operator,

Ḣr +
∑
r′∈r

J E
rr′ = 0. (15)

Working through the above continuity equation with the mod-
ified local Hamiltonian (1 + ψr)Hr, we obtain the modified
energy current operator [47,48],

J E
rr′ = (1 + ψr′ )J 0,E

rr′ , (16)

where J 0,E
rr′ represents the original energy current, which has

the form

J 0,E
rr′ = t2

2

∑
r1∈r′

i�†
r �r1 e

i2π (a0
rr′+a0

r′ r1
) + H.c. (17)

Under the choice of a uniform potential gradient [47], we
have ψr = ri · ∇ψ , where ri represents the position of a unit
cell i. The dual lattice links constituting the unit cell i are
labeled as rr′ ∈ i. The choice of this unit cell depends on the
dual gauge fixing condition, which is specified in Sec. IV B.
In terms of the unit cell coordinate ri, we rewrite the modified
energy current operator as [47]

JE
α (i) = J0,E

α (i) + J1,E
α (i),

J1,E
α (i) = [

J0,E
α (i)rβ

i

]∇βψ, (18)

where α, β = x, y, z. The energy-density vector at the unit cell
i is defined as

J0,E
α (i) =

∑
r,r+εreμ∈i

(εreμ · α̂)J 0,E
r,r+εreμ

. (19)

The linear response of the pseudogravitational field enters
into the energy current expectation value in a twofold way.
Besides the contribution from the distribution function [49],
there is an additional contribution from the current operator.
At the linear order in ∇ψ , we have〈

JE
α

〉 = Tr
[
ρ0J1,E

α

] + Tr
[
ρ1J0,E

α

]
, (20)

where ρ0 is the equilibrium distribution function and ρ1 is a
first-order perturbed distribution function. A statistical force
from the temperature gradient is equivalent to a dynamical
force induced by pseudogravitational potential. The dynam-
ical force acts on the “magnetic monopole” affecting its mo-
tion. By counting all the contributions due to the temperature
gradient at the first order, the thermal Hall coefficient is
calculated and has the following expression [48,50]:

κxy = − k2
BT

N3

∑
k

6∑
n=1

{
c2[g(En,k )] − π2

3

}
�n,k, (21)

where c2(x) = (1 + x)[ln(1 + x)/x]2 − (ln x)2 − Li2(−x)
and Li2(x) is a polylogarithmic with n = 2, or the dilogarithm
function. Here g(ε) = [eε/kBT − 1]−1 is the Bose distribution
function. En,k is the eigenenergy of the “monopole”
Hamiltonian for the nth band at the momentum space k
point. Here the Berry curvature and Chern number for the nth
band are defined as

�n,k = i
〈
∂kx un,k

∣∣∂ky un,k
〉 + c.c.,

Cn(kz ) = 1

2π

∫
BZ

dkxdky �n,k, (22)

where |un,k〉 is the periodic part of the Bloch wave function for
the nth band at k = (kx, ky, kz ). The formula indeed shows that
the thermal Hall current is generated by the Berry curvature
of the “monopole” bands. Due to the time-reversal symmetry
breaking in the presence of the gauge flux, we can have
nonvanishing distribution of Berry curvatures that gives rise
to a finite thermal Hall coefficient.

For our purpose, it is sufficient to consider the TTHE
in the presence of the mean-field dual U(1) gauge flux. At
the mean-field level, the dual U(1) gauge field is fixed by
the background electric field, and the internal magnetic field
is absent. The energy current in Eq. (17) is obtained by
using the Hamiltonian in Eq. (12). Beyond the mean-field
solution, we find that the gauge fluctuations give the thermal
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current operator a correction. The expression and derivation
of this additional contribution is presented in Appendix C.
The (gapless) gauge photon contributes directly to the thermal
conductivity κxx around the same energy scale as the “mag-
netic monopoles” except that it remains active down to the
lowest energy/temperature and the contribution can directly
come from the (fluctuating) Maxwell term. In addition, the
spinons would contribute to the thermal effect κxx when the
temperature is relatively high to activate spinons. In our cur-
rent theoretical understanding, the “magnetic monopoles” are
singled out to be responsible for the thermal Hall conductivity,
and the TTHE in this work refers particularly to the “magnetic
monopole” thermal Hall effect.

B. The modified “magnetic monopole” bands
under the magnetic field

To demonstrate the TTHE for the “magnetic monopoles”
in the pyrochlore U(1) QSL, we first evaluate the “mag-
netic monopole” band structure under the magnetic field.
Generically speaking, when a generic magnetic field is ap-
plied, the “magnetic monopole” should develop a Hofs-
tadter band structure as the induced flux is incommensurate.
The corresponding continuum of “magnetic monopoles” in
the τ z-τ z correlation is converted into the continuum from
the monopole Hofstadter band. It would be interesting to
search for this evolution in the inelastic neutron-scattering
measurements.

We choose the external field to be aligned in the direction
n̂ = 〈01̄1̄〉. To proceed with the mean-field Hamiltonian in
Eq. (12), we fix the Zeeman coupling strength such that the
dual U(1) gauge flux is commensurate with the lattice. A
convenient case is considered here with H0/U = √

6/8, so
that we have

2π curl a0
r,r+eμ

=

⎧⎪⎨
⎪⎩

π − π/2, μ = 0,

π + π/2, μ = 1,

π + 0, μ = 2,

π + 0, μ = 3.

(23)

where a0
rr′ represents a gauge choice for the dual U(1) gauge

field. The gauge fixing condition on the 3D dual diamond
lattice is illustrated in Fig. 3(a). The yellow (red) arrow on
the dual links indicates that a “magnetic monopole” picks up
a finite phase φ = π (π/2) while hopping along the pointed
direction. Gray links have zero phases φ = 0. The gauge
fixing condition is expressed as

2πa0
r,r+eμ

= ξμ(q1 · r) + ημ(q2 · r), r ∈ I,

q1 = 2π (100), ξμ = (1001),

q2 = π (100), ημ = (0001), (24)

where the “monopole” charge is assumed to be unit qm = 1.
With this gauge choice, gauge fields are nonvanishing at the
links locating within a quasi-2D plane perpendicular to the
e2-direction. The dual lattice hexagons form a honeycomb-
like structure in this quasi-2D plane. A projected view of the
lattice in this plane is illustrated in Fig. 3(b). We define a
magnetic unit cell consisting of eight distinct dual diamond
sites. A 3D superlattice is defined by a new set of primitive

FIG. 3. (a) Gauge fixing on the dual diamond lattice. The yellow
(red) arrow on the dual links represents a finite phase φ = π (π/2)
picked up by “magnetic monopole” when hopping along the pointed
direction. While, the “monopole” hopping on the gray bond is free
of the phase, i.e., φ = 0. (b) A projected view of lattice in the plane
perpendicular to e2-direction. The dual sites with indexes 1, 2, . . . , 8
constitute a magnetic unit cell. The basis vectors within the plane are
labeled by a1, a2.

vectors aν, ν = 1, 2, 3 with

a1 = 4(e0 − e3),

a2 = e0 − e1,

a3 = e3 − e2. (25)

where the basis convention of these vectors and the corre-
sponding reciprocal basis vectors are given in Appendix D.

This is a commensurate case so that one can work out from
Eq. (23). The “magnetic monopole” mean-field Hamiltonian
is given by

HMF(k) = Hhop(k) − μ I8×8. (26)

The hopping Hamiltonian takes a particle-hole symmetric
form with respect to exchanging type-I and -II sublattice sites
of the dual diamond lattice,

Hhop(k) = −t

[
0 h(k)

h†(k) 0

]
(27)
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with the hopping Hamiltonian between type-I and -II sublattice sites given by

h(k) =

⎡
⎢⎢⎣

eik0 + eik1 0 0 eik3 + eik2

eik3 ei(π+π/2) + eik2 eik0 eiπ + eik1 0 0
0 eik3 eiπ + eik2 eik0 + eik1 0
0 0 eik3 ei(3π/2+π ) + eik2 eik0 eiπ + eik1

⎤
⎥⎥⎦, (28)

where kν ≡ k · aν, ν = 1, 2, 3. Due to the particle-hole sym-
metry, the energy spectrum of Hhop(k) comes with positive-
negative pairs. The four hole bands are plotted in a (kx, ky)
Brillouin zone with a perpendicular momenta kz = −3π/8
(see Fig. 4). A chemical potential to remedy the negative
energy situation is added in the mean-field Hamiltonian so that
the “magnetic monopole” remains gapped.

C. Topological thermal Hall effect of “magnetic monopoles”

With the above setup and preparation, we here carry out
the calculation for the TTHE of “magnetic monopoles” and
show its temperature dependence. First, we evaluate the Berry
curvatures for the “monopole” bands. The Berry curvatures
of the lowest two “magnetic monopole” bands are plotted
in the (kx-ky) plane with kz locating at the BZ boundary in
Fig. 5. The Chern number of the lowest band at any given
kz is a positively quantized number C1(kz ) = 1. The second-
lowest band is endowed with a non-negative, quantized Chern
number, namely C2(kz ) = −1, 0. The two lowest-lying bands
are of opposite Chern numbers for a majority of kz points.

We calculate the thermal Hall coefficient using
“monopole” bands in Eq. (26). The temperature dependence
of the thermal Hall coefficient κxy/T is depicted in Fig. 6.
With the increasing temperatures, κxy(T )/T grows from
zero and then shows a nonmonotonic behavior. Eventually,
κxy(T )/T drops to zero in the high-temperature limit. The
trend of this curve can be understood from Eq. (21), which
consists of a product of the Berry curvature and a function
c2. The function c2(g) is a monotonically increasing function
of the occupation g(ε), which has a minimum value c2 = 0
at g = 0 and saturates to a maximum value π2/3 in the

FIG. 4. Energy dispersions of Hhop(k) for the four hole bands are
plotted in the (kx, ky ) Brillouin zone with a perpendicular momentum
kz = −3π/8. The unit of momentum (kx, ky ) is a−1, with “a” being
the length of the dual diamond link.

limit g → +∞. In the zero temperature limit, all bands are
unoccupied, so that the thermal Hall coefficient vanishes. As
the temperature increases, the lowest band starts to have a
finite occupancy, giving rise to the increase of κxy(T )/T . If
we further increase the temperature, then the second-lowest
band, with opposite sign of Berry curvature, are activated,
which explains the drop of the curve. Eventually, all bands
are equally populated in the high-temperature limit, although
at very high temperatures the “magnetic monopole” and
U(1) QSL simply break down. The κxy(T )/T is proportional
to the total Chern number, which has a vanishing value.
Alternatively, one can vary the chemical potential while
keeping the temperature fixed as shown in the inset of
Fig. 6. The thermal Hall coefficient decreases along with the
chemical potential. The chemical potential shifts all bands
into a higher-energy regime. The occupation of all bands
becomes smaller, which is responsible for the decrease in
κxy(T )/T .

Finally, we comment on the temperature dependence of the
TTHE that takes place along different directions and under
different external field strengths. The thermal Hall coefficient
κxz(T ) shows exact same temperature dependence as κxy(T )
with an opposite sign, while κyz(T ) takes a vanishing value
at all temperature. In the next subsection, we investigate on
the external field-strength dependence of the thermal Hall
coefficient. Conclusively, the dependence of the thermal Hall
coefficient on the field strengths are qualitatively similar.

D. Topological thermal Hall effect in weak external-field limit

The TTHE is related to the Berry curvature of “magnetic
monopole” bands that arise from the induced dual U(1) gauge
flux. Under generic magnetic fields, the flux is incommen-
surate, and diagonalizing the monopole Hamiltonian in the
presence of arbitrary gauge flux constitutes a 3D Hofstadter

FIG. 5. Berry curvatures of the lowest two bands in the (kx, ky )
Brillouin zone with the perpendicular momentum kz = −3π/8. The
unit of momentum (kx, ky ) is a−1. (a) The lowest band n = 1;
(b) second-lowest band n = 2.
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FIG. 6. The “magnetic monopole” thermal Hall coefficient κxy/T
versus the temperature kBT/t . Curves with different colors (from
top to bottom) are plotted with a decreasing sequence of chemical
potential −μ/t = 4, 4.2, 4.5, 5. The thermal Hall coefficient κxy/T is
in a unit of k2

B/(2π h̄a) � 2.8 × 10−4 W/(K2m). Inset: The thermal
hall coefficient κxy/T is plotted versus the chemical potential −μ/t
for a set of temperatures.

problem [44,51]. The incommensurability merely brings some
calculational complexity, but our formalism should be readily
extended over there and the calculation can be performed
numerically.

To demonstrate the usefulness of our theory in the generic
commensurate flux cases, we calculate the thermal Hall coef-
ficient along the same external field direction n̂ = 〈01̄1̄〉 with
the field strength,

H0/U =
√

3√
2

p

2q
, p, q ∈ Z, (29)

where p, q are integer numbers and the external field strength
is proportional to a gauge flux ratio p/2q. The gauge flux on
the diamond hexagon takes the form

2π curl a0
r,r+eμ

=

⎧⎪⎨
⎪⎩

π − (p/q)π, μ = 0,

π + (p/q)π, μ = 1,

π + 0, μ = 2,

π + 0, μ = 3.

(30)

Accordingly, the gauge fixing condition on the dual diamond
lattice is given by

2πa0
r,r+eμ

= ξμ(q1 · r) + ημ(q2 · r), r ∈ I,

q1 = 2π (100), ξμ = (1001),

q2 = (p/q)2π (100), ημ = (0001). (31)

The case we demonstrated in Sec. IV B is regarded as a special
case with p = 1, q = 2. For the general integer values of
(p, q), the magnetic unit cell is enlarged along the a2-direction
in Fig. 3, constituting 4q number of distinct dual diamond
sites. With the gauge fixing condition for generic commensu-
rate flux, we estimate the TTHE under various external field
strength. We plot the thermal Hall coefficient κxy/T versus
the gauge flux ratio p/2q in Fig. 7 for three representative
temperature points. The thermal Hall coefficient admits a
primitive zone of gauge flux ratio p/2q ∈ [−0.5, 0.5) and is
periodic with respect to the shift of integer gauge flux ratio. At
the zone center and boundary p/2q = 0,−0.5, the TTHE is
absent due to the preservation of the time-reversal symmetry.
The magnitude of the thermal Hall coefficient κxy increases
along with the ratio p/2q ∈ [0, 0.5) and changes sign when
the external field direction is reversed p/2q ∈ [−0.5, 0). The
finite value of thermal Hall coefficient indicates that the TTHE
is no fluke under the specific gauge choice; rather, it is a uni-
versal phenomenon in the presence of generic commensurate
flux.

For the incommensurate flux case at arbitrary field
strength, we can approximate the incommensurate flux to a
nearby commensurate one in the weak-field limit. The weak-
field limit is consistent with our previous assumption, which
guarantees the existence of the underlying QSL ground state.
Furthermore, we have considered a semiclassical version of
the “monopole” thermal Hall effect under generic magnetic
fields and develop a continuous theory for this effect. This
will be explained in a future work.

V. DISCUSSION

To summarize, we made the observation from the elec-
tromagnetic duality that the external magnetic field could
generate emergent electric field distribution and thus the dual
U(1) gauge flux for the “magnetic monopoles.” We developed
a formalism to calculate the modulation of the monopole band
structure and the monopole Berry curvature and explained

FIG. 7. The “magnetic monopole” thermal Hall coefficient κxy/T versus the field-strength ratio p/2q for various temperature: (a)
kBT/t = 0.8, (b) kBT/t = 0.4, and (c) kBT/t = 0.1. The chemical potential is fixed at −μ/t = 4. κxy/T is in a unit of k2

B/(2π h̄a) �
2.8 × 10−4 W/(K2m).
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the physical origin of the monopole thermal Hall effects.
To provide an illuminating discussion of the implication and
underlying insights of our results, we first make a com-
parison between our current theory for the pyrochlore U(1)
QSL and other U(1) QSLs. Then we will focus on the py-
rochlore magnets and make a materials’ survey about the ther-
mal Hall effects among the pyrochlore U(1) QSL candidate
materials.

A. Comparison with other U(1) QSLs in both weak
and strong Mott regimes

Thermal Hall effect was suggested for the spinon Fermi
surface U(1) QSLs in the weak Mott regime. This effect
is actually quite natural in the weak Mott regime [49,52].
Over there, the concept of spinons are not so distinct from
the physical electrons due to the weak Mott gap and strong
charge fluctuations. Physically, this can be understood from
the fact that the external gauge flux enters into the four-spin
ring exchange interaction [52,53]. From the gauge theory de-
scription, the internal U(1) gauge flux is locked to the external
U(1) gauge flux through the strong charge fluctuations, such
that the spinon motion is twisted by the induced internal
U(1) gauge flux. Similar ideas have been extended to the
mixed valence compounds where the Fermi surface of neutral
particles has been proposed [54], although the thermal Hall
measurement in SmB6 or YbB12 gives a zero result [55].
For strong Mott insulators, the charge gap is large and the
charge fluctuation is strongly suppressed. This induction of
the internal U(1) gauge flux via strong charge fluctuations
does not apply to the strong Mott regimes.

In the U(1) QSLs in the strong Mott regime, different phys-
ical mechanisms are needed to understand the large thermal
Hall effect. For the U(1) QSLs whose gauge flux is related
to the scalar spin chirality (Si × S j ) · Sk , we pointed out
that the combination of the Dzyaloshinskii-Moriya interaction
and a simple Zeeman coupling could generate an internal
U(1) gauge flux and thus twist the motion of the spinons
[25,26]. This mechanism does not depend on the choices of
the (bosonic) Schwinger spinons or the (fermionic) Abrikosov
spinons. The (fermionic) Abrikosov spinons describe more
QSL states in 2D. The bosonic Schwinger spinon does not
work for U(1) QSLs in 2D due to the confinement issue from
the instanton effect. So for the Schwinger spinon description,
this mechanism would only apply to the 3D U(1) QSL. In
contrast, this mechanism broadly applies to the U(1) QSLs
with the fermionic spinon description.

For the pyrochlore U(1) QSL that is also in the strong
Mott regime, the relation of the internal variable and the
physical variable is much simpler than the one described in the
previous paragraph. So the linear Zeeman coupling already
induces an internal dual U(1) gauge flux and twist the motion
of the “magnetic monopoles.”

In general, for the QSLs with a continuous gauge theory
description, one key to resolve the mechanism for the thermal
Hall effect is to understand the physical manifestation of the
internal gauge flux and then the role of the external probes.
This is related to the relation between the microscopic degrees
of freedom and the emergent degrees of freedom in the lattice
gauge theory formulation.

B. Comparison with Z2 QSLs

For Z2 QSLs, the above mechanism does not apply because
the internal gauge flux is gapped and discrete and cannot be
changed in a continuous manner. An example would be the Z2

QSL from the Balents-Fisher-Girvin model [56]. Although the
Z2 vison experiences a dual background π flux and the Sz-Sz

dynamical correlation has a spectral periodicity enhancement,
a small magnetic field cannot modify this background flux
continuously. Likewise, the spinons experience a background
0 flux, and the magnetic field cannot change this flux continu-
ously. Thus the mechanism in the previous subsection neither
applies to the spinon nor to the vison. In Z2 QSLs, instead,
it is the nontrivial band structure of matter field that directly
contributes to the thermal Hall conductivity. A representative
example would be the Kitaev model at the isotropic point
where the spinons develop a gapless Dirac-type majorana
ferminon band structure [57]. When the magnetic field is
applied to the system, the field generates a mass gap for
the majorana fermions and creates a topological spinon band
structure with a nontrivial Chern number. This is the origin of
the thermal Hall effect for Kitaev QSL.

Another studied case [58] is gapped Z2 QSLs with the
Schwinger boson description. The Dzyaloshinskii-Moriya in-
teraction and the Zeeman coupling together break the time-
reversal symmetry and inversion symmetry. It was sug-
gested that, using the Schwinger boson construction, the
Dzyaloshinskii-Moriya interaction and the Zeeman coupling
together generates a nontrivial Berry curvature distribution
for the (gapped) bosonic spinon bands. At finite temperatures,
the spinon bands are populated thermally, contributing to the
thermal Hall conductivity.

C. Materials’ survey

The pyrochlore U(1) QSLs have been proposed for several
rare-earth pyrochlore magnets. Here we give a detailed dis-
cussion about the potential thermal Hall conductivity in some
key representatives.

We start with the non-Kramers doublets. Here the Tb
family Tb2Ti2O7 [29,59,60] and the Pr family (Pr2Zr2O7,
Pr2Sn2O7, Pr2Hf2O7) [61–63] have been proposed as py-
rochlore U(1) QSLs. The thermal Hall effect has been
measured in Tb2Ti2O7 [33], and inelastic neutron-scattering
measurement has been performed on the Pr-based family
[41,62,64]. The continuous spectrum has been obtained exper-
imentally. It was proposed that the inelastic neutron-scattering
results for the non-Kramers doublets would contain the con-
tinuum of the “magnetic monopoles” from the duality ar-
guments [44]. Another theory from the crystal field disor-
ders of the non-Kramers doublets interpreted the excitation
continuum differently [64]. The Tb2Ti2O7 sample can be-
come Ising ordered once the stoichiometry of the sample is
changed [59,60]. Actually, since Tb3+ carries a non-Kramers
doublet, the Ising order transition should be understood as
the “magnetic monopole” condensation from the U(1) QSL
if the original disordered state is a U(1) QSL [65]. Therefore,
both Tb-based and Pr-based rare-earth pyrochlore materials
can be good candidates for the pyrochlore U(1) QSLs. We
expect a nontrivial thermal Hall effect to be established in
these candidate materials.
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The well-known Yb2Ti2O7 [66–74] is now under debate
[39]. Here the Yb3+ ion is a Kramers ion and differs from
the non-Kramers Pr3+ ion. The actual low-temperature phase
depends sensitively on the preparation of the samples. For
the physical point of view, it does not really matter strongly
whether the magnetic ordered state of the system is proximate
to the spin ice or not proximate to spin ice. The pyrochlore
U(1) QSL can persist beyond the perturbative spin ice regime.
A more sensible question would be whether Yb2Ti2O7 is
proximate to the pyrochlore U(1) QSL rather than proximate
to the (perturbative) spin ice manifold. If the system is proxi-
mate to the pyrochlore U(1) QSL, then TTHE of “magnetic
monopoles” could be relevant and may even persist to the
weak-ordered regime, despite the fact that the Zeeman cou-
pling involves the transverse spin components. The Zeeman
coupling with the transverse spin components modifies the
spinon dispersion and could provide a thermal Hall signal
of spinons. As the spinons usually have much higher energy
scales than the “magnetic monopoles,” we expect that the
low-temperature thermal Hall effect is still dominated by the
“magnetic monopoles.”

Recently, Ce2Zr2O7, Ce2Sn2O7, and Ce2Hf2O7 have been
realized and proposed as QSLs [16,17]. The Ce3+ ion is also a
Kramers ion of the dipole-octupole type [38] but differs from
the Yb3+ ion. Each state of the ground-state doublet of the
Ce3+ ion is a 1D irreducible representation of the D3d point
group [12,15], while the two states of the Yb3+ ion comprise a
two-dimensional irreducible representation. It was suggested
that two distinct symmetry-enriched U(1) QSLs, i.e., dipolar
U(1) QSL and octupolar U(1) QSL, can be stabilized by
studying the generic model for dipole-octupole doublets. The
dipolar U(1) QSL is identical to the one obtained for the
non-Kramers doublets and the usual Kramers doublets. Since
the external magnetic field primarily couples to the dipolar
component at the linear level, if the dipolar U(1) QSL is sta-
bilized, then we expect the TTHE of “magnetic monopoles.”
On the other hand, if the octupolar U(1) QSL is stabilized,
then the external magnetic field would modify the spinon band
structure [12,15] but would not change the dual U(1) flux for
the “magnetic monopoles,” so we do not expect the TTHE for
the “magnetic monopoles.”
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APPENDIX A: DUALITY TRANSFORMATION

Starting from the ring exchange Hamiltonian in Eq. (2), we
rewrite in terms of a particle number ni (integer valued) and a
conjugated phase φi,

τ±
i = e±iφi

τ z
i = ni − 1

2 , (A1)

which satisfy the commutation relation

[φi, ni] = i. (A2)

Moreover, τ z
i takes the eigenvalue of ±1/2. To ensure

the Hilbert space is not enlarged, we add a constrain term
(ni − 1

2 )2 with a strength U . The particle number takes values
ni = 0, 1, and we obtain a Hamiltonian

Hring = −K
∑
�p

cos(φ1 − φ2 + φ3 − φ4 + φ5 − φ6)

+ U

2

∑
i

(
ni − 1

2

)2

. (A3)

Now we transform to the electric field and gauge field, which
are defined on the diamond lattice (see Fig. 2)

Arr′ = εrφrr′

Err′ = εrnrr′ , (A4)

where the pyrochlore site i sits in the middle of the link
rr′. εr = +1(−1) for diamond lattice type-I (II). Thus, the
variables are antisymmetric Gr′r = −Grr′ , G = A, E . And the
commutation relation follows from Eq. (A2)

[Arr′ , Err′ ] = ε2
r [φi, ni] = i. (A5)

We fix the branch-cut for the 2π -periodic variable as Arr′ ∈
[−π,+π ), so that a lattice curl of this variable remains
nonvanishing,

curl A(rr′) =
∑

rr′∈�d (rr′ )

Arr′ , (A6)

where the original diamond hexagon �d (rr′ ) is labeled by the
dual diamond link rr′ that penetrates the hexagon. The phase
terms in Eq. (A3) is expressed in an elegant way,

HLGT[A, E ] = −K
∑
�d (rr′ )

cos(curl Arr′ )

+ U

2

∑
rr′

(
Err′ − εr

2

)2

, (A7)

which has been presented in Eq. (3) as a lattice gauge theory.
And the corresponding action reads,

SLGT[A, E ] =
∑
rr′

Arr′∂t Err′ + HLGT[A, E ]. (A8)

Along this line of derivation, we should keep track of a
“two-in–two-out” configuration of the spins in a pyrochlore
tetrahedra, ∑

i∈tehr

τ z
i = 0, (A9)

where pyrochlore sites i belong to the tetrahedra labeled by its
center r site. As a result, the electric field is imposed with a
constraint

divE (r) ≡
∑
r′∈r

Err′ =
∑
i∈r

ni = 2εr, (A10)
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where the summation defines a lattice divergence and r′ ∈ r
refers to the four nearest-neighbor original sites of a given
original site r.

Next we transform the LGT to a dual theory by defining

curl arr′ = Err′ − E0
rr′

Brr′ = curl Arr′ , (A11)

where a magnetic field arr′ (integer valued) and dual gauge
field Brr′ (2π periodic). The curl of the dual gauge field is
related to the electric field and therefore the z-component
spin. It is valid for a gauge-invariant quantity to represent a
physical one. Since the dual gauge field is integer valued, we
expect no divergence for its lattice curve. On the other hand,
as dictated in Eq. (A10), the electric field has a nonvanishing
divergence. A background electric field is introduced to ensure
the divergencelessness of the dual gauge field. We pick a
particular configuration within the two-in–two-out spin ice
manifold,

E0
r,r+εr e0

= E0
r,r+εr e1

= εr

E0
r,r+εr e2

= E0
r,r+εr e3

= 0. (A12)

The dual lattice gauge theory is written as

Hdual[a, B] =
∑
rr′

U

2
(curl arr′ − Ērr′ )2 − K

∑
rr′

cos Brr′ ,

(A13)

where the background electric field is defined in Eq. (7). The
corresponding action follows from Eq. (A8):

Sdual[a, B] =
∑
rr′

Arr′∂t
(
curl arr′ + E0

rr′
) + Hdual[a, B]

=
∑
rr′

Brr′∂t
(
arr′ + a0

rr′
) + Hdual[a, B], (A14)

where a0
rr′ is the vector potential responsible for the electric

field E0
rr′ = curl a0

rr′ . And in the second equality we have
exchanged the sequence of the summation over original and
dual lattices, ∑

rr′

∑
rr′∈�∗

d (rr′ )

=
∑
rr′

∑
rr′∈�d (rr′ )

. (A15)

The divergence of the magnetic field is nonzero by defini-
tion

divBr ≡ div · curl A(r)

=
∑
r′∈r

∑
rr′∈�d (rr′ )

Arr′ [−π,π )

= 2πZ. (A16)

The “magnetic monopole” number operator is defined as the
topological defect of this magnetic field,

Nr ≡ 1

2π
divBr, (A17)

which takes integer values. The commutation relation between
the dual variables can be derived from Eq. (A5),

⎡
⎣ ∑

rr′∈�d (rr′ )

Arr′ , Err′

⎤
⎦ = i, (A18)

so that we have⎡
⎣Brr′ ,

∑
r1r′1∈�∗

d (rr′ )

ar1r′1

⎤
⎦ = i, rr′ ∈ �∗

d (rr′ ). (A19)

Particularly, we can make a convenient choice,

[
Brr′ , ar1r′1

] =
{

i, r1r′1 = rr′

0, r1r′1 �= rr′, (A20)

which we have used in and below Eq. (5). Finally, we note
that the two dual variables are antisymmetric with respect
to exchanging the lattice sites. This fact follows from the
definitions in Eqs. (A4) and (A11).

From Eqs. (A16) and (A17), we see that the “magnetic
monopole” is the topological defect of the dual vector gauge
potential in the compact U(1) quantum electrodynamics and
has no classical analog. Even though the spinon and the “mag-
netic monopole” can be interchanged by the electromagnetic
duality of the lattice gauge theory, the “magnetic monopole”
might be more close in spirit to Dirac’s magnetic monopole
from the original definition and theory of the pyrochlore U(1)
QSL [11].

So far, we have derived the dual gauge theory. The com-
mutation relation of variables is properly kept along the way.
And we have identified the “magnetic monopole” number op-
erator; however, a conjugated phase operator of the “magnetic
monopole” is missing in the present formulation. Moreover,
the dual gauge field is a discretized variable, which is cumber-
some to deal with in terms of standard field theory methods.
Fortunately, during the process of “softening” the dual gauge
field, we can introduce the phase operator of the “magnetic
monopole” in a natural way. Then we are able to establish a
commutation relation between the introduced phase variable
and the “magnetic monopole” number operator.

APPENDIX B: “VARIABLE-SOFTEN” PROCEDURE

The model describes a confinement-deconfinement phase
transition due to the discreteness of the dual U(1) gauge field.
Otherwise, the partition function is basically a trivial Gaussian
model. Let us consider the dual gauge field part of the partition
function,

Z[a] ≡
∑
{arr′ }

e−∑
rr′

U
2 (curl arr′ −Ērr′ )2

=
∫

Da
∑
{prr′ }

e−∑
rr′

U
2 (curl arr′ −Ērr′ )2

ei2π
∑

rr′ curl arr′ ·prr′ ,

(B1)

013066-11



ZHANG, GAO, LIU, AND CHEN PHYSICAL REVIEW RESEARCH 2, 013066 (2020)

where we have the used the Poisson’s resummation rule to
leverage the discreteness of arr′ ,

+∞∑
m=−∞

ei2πmx =
+∞∑

n=−∞
δ(x − n). (B2)

We can further transform the expression

Z[a] =
∫

Da
∑
{prr′ }

e−∑
rr′

U
2 (curl arr′ −Ērr′ )2

× ei2π
∑

rr′ arr′ ·curl prr′ (B3)

by manipulating the two summations involved,∑
rr′

curl arr′ · prr′ =
∑
rr′

∑
rr′∈�∗

d (rr′ )

arr′ · prr′

=
∑
rr′

∑
rr′∈�d (rr′ )

arr′ · prr′

=
∑
rr′

arr′ · curl prr′ . (B4)

Importantly, the dual gauge field is antisymmetric, i.e., ar′r =
−arr′ . The curl of the auxiliary field curl prr′ is antisymmetric
as well, so the summation in Eq. (B4) gives nonvanish-
ing result. Moreover, this curl is divergentless, since prr′ is
an integer-valued variable. The divergentless and antisym-
metric properties can be made explicit in the path integral
formulation,

Z[a] =
∫

Dae−∑
rr′

U
2 (curl arr′ −Ērr′ )2 × {...}

{...} =
∑

{Masym
rr′ }

δ[divMasym(r)] ei2π
∑

rr′ arr′ ·Masym
rr′ , (B5)

where Masym
rr′ is antisymmetric, integer-valued variable, and

the lattice divergence is divMasym(r) = ∑
r′∈r Masym

rr′ . The δ

function can be removed by introducing another auxiliary
field θr,

{...} =
∑

{Masym
rr′ }

ei2π
∑

rr′ arr′ ·Masym
rr′

∫
Dθ ei

∑
r divMasym

r ·θr . (B6)

Now we are in the position to remove the antisymmetric
condition ∑

r

divMasym
r · θr =

∑
r

∑
r′∈r

Masym
rr′ · θr

=
∑
rr′

(Mrr′ − Mr′r)θr

=
∑
rr′

Mrr′ (θr − θr′ ). (B7)

We arrive at an elegant expression, which is similar to the
result in Ref. [75],

{...} =
∑
{Mrr′ }

ei2π
∑

rr′ arr′ ·Mrr′ ei
∑

rr′ Mrr′ (θr−θr′ ). (B8)

Following the series of transformation and perform a Villain
approximation, we end up with the dual theory in Eq. (1):

Hdual[θ, a, B] =
∑
rr′

U

2
(curl arr′ − Ērr′ )2 −

∑
rr′

K cos Brr′

− t
∑
rr′

cos(θr − θr′ + 2πarr′ )

cond: divB(r) = 2πNr. (B9)

where a parameter t is added as a chemical potential term
for the Mrr′ . So far, we have resolve the discreteness issue of
the dual gauge field by introducing a phase field θr. At the
moment, the physical meaning of this variable is not clear,
namely, the commutation relation with the other variables are
not given.

Further progress is made by manipulating the condition in
Eq. (B9). The full partition function and action are given by

Z =
∫

DθDa
∫

cond
DBei

∑
rr′ Brr′ ∂τ (arr′+a0

rr′ )−Hdual[θ,a,B]

≡
∫

DθDa
∫

cond
DBe−Sdual[θ,a,B], (B10)

where the condition in the integral can be made explicit by
inserting another δ function,

Z =
∫

DθDa
∫

DBδ[divB(r) − 2πNr]e
−Sdual[θ,a,B]

=
∫

DθDaDBD� ei
∑

r �r(divBr−2πNr )e−Sdual[θ,a,B], (B11)

where G(�) = ei
∑

r �r(divBr−2πNr ) is regarded as a gauge fixing
generator [76], which can be transformed in the similar way
as in Eq. (B7),

G(�) = ei
∑

rr′ Brr′ (�r−�r′ )e−i2π
∑

r Nr�r . (B12)

This function generates a gauge transformation for functions
involving the dual gauge field and the phase variable,

G(�)Sdual(arr′ , θr, Brr′ )G
†(�)

= Sdual[arr′ + (�r − �r′ ), θr + 2π�r, Brr′], (B13)

under the condition that the following commutation relation is
satisfied:

[θr, Nr′] = iδr,r′ . (B14)

The transformed action is equivalent to the original one by
absorbing the field �r, and we have

Z =
∫

DθDaDBD� e−Sdual[θ,a,B]ei
∑

r �r(divBr−2πNr )

=
∫

DθDa
∫

DBe−Sdual[θ,a,B]δ[divB(r) − 2πNr]

=
∫

DθDa
∫

cond
DBe−Sdual[θ,a,B], (B15)

where the action is intact after applying the gauge generator
obeying the commutation rule in Eq. (B14). Therefore, the
variable θ admits a physical meaning of the conjugated phase
of the magnetic monopole. eiθ (e−iθ ) is the creation (annihila-
tion) operator for the magnetic monopole.
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Conclusively, we finish the task of softening the dual gauge field in the dual theory, meanwhile introducing the magnetic
monopole phase variable. We emphasize the peculiar definition of curl and divergence in the diamond lattice structure and the
antisymmetric property of the link variables.

APPENDIX C: THERMAL HALL CURRENT OPERATOR

In Sec. III, we present the result for the thermal Hall current at the mean-field level. Here we derive a compact expression for
the thermal Hall current in the presence of gauge fluctuation. We start from the same energy continuity equation as in Eq. (15),
yet with a different energy-density operator,

Hdual =
∑

r

Hr

Hr =
∑
r′∈r

⎧⎨
⎩U

2

∑
rr′∈�d (rr′ )

(curl arr′ − Ērr′ )2 − K

2
B2

rr′ −
t

2
ei(θr−θr′+2πarr′ ) + H.c.

⎫⎬
⎭, (C1)

where we have kept the rotor variable eiθr instead of the boson field used in the main text. The summation of the first term comes
from ∑

rr′
�

∑
rr′

∑
rr′∈�d (rr′ )

�
∑

r

∑
r′∈r

∑
rr′∈�d (rr′ )

.
(C2)

Next we evaluate the time partial derivative of the energy density

Ḣr = −i[Hr,Hdual]

= i
UK

4

∑
r′∈r

∑
rr′∈�d (rr′ )

∑
r1r′1

[
(curl arr′ − Ērr′ )2, B2

r1r′1

] +
∑
r′∈r

∑
rr′

[
B2

rr′ , (curl arr′ − Ērr′ )2
]
. (C3)

The first (1st) and second (2nd) commutators are calculated, respectively. In the first term, we use the commutation relation in
Eq. (A19), while in the second term, we use a modified version of commutation relation, i.e., [Brr′ , curl arr′ ] = i, rr′ ∈ �d (rr′ ).

{1st} ≡
∑

rr′∈�d (rr′ )

∑
r1r′1

[
(curl arr′ − Ērr′ )2, B2

r1r′1

]

=
∑

rr′∈�d (rr′ )

∑
r1r′1

(curl arr′ − Ērr′ )
[
curl arr′ , B2

r1r′1

] + [
curl arr′ , B2

r1r′1

]
(curl arr′ − Ērr′ )

=
∑

rr′∈�d (rr′ )

∑
r1r′1

δ
[
r1r′1 ∈ �∗

d (rr′ )
]{

(curl arr′ − Ērr′ )
( − 2iBr1r′1

) + (−2iBr1r′1

)
(curl arr′ − Ērr′ )

}

=
∑

rr′∈�d (rr′ )

∑
r1r′1∈�∗

d (rr′ )

(curl arr′ − Ērr′ )
(−2iBr1r′1

) + (−2iBr1r′1

)
(curl arr′ − Ērr′ )

= −2i
∑

rr′∈�d (rr′ )

(curl arr′ − Ērr′ )curl Brr′ + curl Brr′ (curl arr′ − Ērr′ ), (C4)

{2nd} ≡
∑
r1r′1

∑
rr′∈�d (r1r′1 )

[
B2

rr′ , (curl arr′ − Ērr′ )2
]

=
∑
r1r′1

∑
rr′∈�d (r1r′1 )

[
B2

rr′ , curl arr′
]
(curl arr′ − Ērr′ ) + (curl arr′ − Ērr′ )

[
B2

rr′ , curl arr′
]

=
∑
r1r′1

∑
rr′∈�d (r1r′1 )

δ
[
rr′ ∈ �d (rr′ )

]{
(2iBrr′ )(curl arr′ − Ērr′ ) + (curl arr′ − Ērr′ )(2iBrr′ )

}

=
∑
r1r′1

∑
rr′

δ
[
rr′ ∈ �d (r1r′1 )

]
δ
[
rr′ ∈ �d (rr′ )

]{
(2iBrr′ )(curl arr′ − Ērr′ ) + (curl arr′ − Ērr′ )(2iBrr′ )

}

=
∑
rr′

δ
[
rr′ ∈ �d (rr′ )

]∑
r1r′1

δ
[
r1r′1 ∈ �∗

d (rr′ )
]{......}

013066-13



ZHANG, GAO, LIU, AND CHEN PHYSICAL REVIEW RESEARCH 2, 013066 (2020)

=
∑

rr′∈�d (rr′ )

∑
r1r′1∈�∗

d (rr′ )

{......}

= 2i
∑

rr′∈�d (rr′ )

∑
r1r′1∈�∗

d (rr′ )

Brr′ (curl arr′ − Ērr′ ) + (curl arr′ − Ērr′ )
∑

r1r′1∈�∗
d (rr′ )

Brr′ . (C5)

Collecting terms from the two terms, we end up with an
expression which involves the gauge fields in addition to the
contribution from the matter field (“magnetic monopole”).
There is no matter-gauge coupling in the expression of the
current, since the two sets of variables commute with each
other. Combining the mean-field solution in Eq. (17) and this
gauge field solution, we arrive at a total thermal Hall current
operator,

J 0,E
tot = J 0,E + δJ 0,E . (C6)

APPENDIX D: BASIS CONVENTION

The thermal Hall effect considered in the main text takes
place in the (x, y) plane. Here we define a cuboid Brillouin
zone (BZ) in this absolute coordinate.

The basis vectors of the diamond links are

e0 = 1√
3

(+1,+1,+1); e1 = 1√
3

(+1,−1,−1)

e2 = 1√
3

(−1,+1,−1); e3 = 1√
3

(−1,−1,+1). (D1)

Within the same set of coordinate, we write down the real-
space basis vectors aν (ν = 1, 2, 3) of the 3D superlattice,

a1 = 4(e0 − e3) = 8√
3

(1, 1, 0),

a2 = e0 − e1 = 2√
3

(0, 1, 1),

a3 = e3 − e2 = 2√
3

(0, 0, 1). (D2)

The reciprocal Wigner-Seitz BZ is spanned by bν (ν =
1, 2, 3),

b1 =
√

3π

4
(1, 0, 0),

b2 =
√

3π (−1, 1, 0),

b3 =
√

3π (1,−1, 1). (D3)

The shape of the BZ can be adjusted to a cuboid one
covering the same amount of volume in the momentum space.
We define a new set of reciprocal basis vectors

B1 = b1 =
√

3π

4
(1, 0, 0),

B2 = b2 + 4b1 =
√

3π (0, 1, 0),

B3 = b3 + b2 =
√

3π (0, 0, 1). (D4)

The BZ spanned by above basis vectors is cuboid, instead
of the BZ with irregular shape in Eq. (D3). This definition
make it convenient for the summation in Eq. (21), The BZ
is also used in the plot of band structure in Fig. 4, Berry
curvatures in Fig. 5, and the calculation of Chern number in
Eq. (22).
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