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Insulating quantum magnets lie at the forefront both of fundamental research into quantum matter and
of technological exploitation in the increasingly applied field of spintronics. In this context, the magnetic
thermal transport is a particularly sensitive probe of the elementary spin and exotic topological excitations
in unconventional magnetic materials. However, magnetic contributions to heat conduction are invariably
intertwined with lattice (phonon) contributions, and thus the issue of spin-phonon coupling in determining
the spin and thermal transport properties of magnetic insulators becomes more important with every emergent
topological magnetic system. Here we report the observation of an anomalously strong enhancement of the
thermal conductivity, occurring at all relevant temperatures, in the layered honeycomb material CrCl3 in the
presence of an applied magnetic field. Away from the magnetically ordered phase at low temperatures and small
fields, there is no coherent spin contribution to the thermal conductivity, and hence the effect must be caused by
strong suppression of the phonon thermal conductivity due to magnetic fluctuations, which are in turn suppressed
by the field. We build an empirical model for the thermal conductivity of CrCl3 within a formalism assuming
an independently determined number of spin-flip processes and an efficiency of the phonon scattering events
they mediate. By extracting the intrinsic phonon thermal conductivity, we obtain a quantitative description of
our measured data at all fields and temperatures, and we demonstrate that the scattering efficiency is entirely
independent of the applied field. In this way, we use CrCl3 as a model system to understand the interactions
between spin and phonon excitations in the context of thermal transport. We anticipate that the completely
general framework we introduce will have broad implications for the interpretation of transport phenomena in
magnetic quantum materials.
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I. INTRODUCTION

Transport measurements form one of the three pillars of
experimental condensed matter physics. In insulating crys-
talline systems, the thermal conductivity κ (T ) ranks as one
of the most valuable probes for investigating the low-energy
excitations [1]. Unlike thermal equilibrium quantities such
as the specific heat, c(T ), κ (T ) is a steady-state transport
property and thus contains fundamental information about
the itinerant characteristics of a system, most notably the
relaxation times and scattering strengths of the low-energy
excitations. In the field of insulating quantum magnets, low-
dimensional spin systems may host a wide range of exotic
ground states and κ (T ) has long been one of the most impor-
tant probes of their unconventional spin excitations [2–10].
Because the lattice phonons invariably constitute a strong and
relatively well-characterized contribution to thermal transport,
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κ (T ) measurements offer particular insight into the dominant
spin-phonon scattering mechanisms. Even in materials whose
thermal conductivity is phonon-dominated, meaning that there
is no significant heat transport due to coherent magnetic
modes, a strong field dependence of κ (T ) may still be present
due to destructive effects of the spin sector on the phonon
transport.

CrCl3 is an insulating, layered, honeycomb-lattice com-
pound and has attracted considerable recent attention from
two independent lines of research. One concerns the “can-
didate Kitaev” material α-RuCl3 [11–15], whose proximity
to Kitaev physics may be gauged from the nature of its
magnetic excitations [16–20]. While κ (T ) measurements have
not been able to provide conclusive evidence of fractionalized
fermionic spin modes in α-RuCl3, one of the primary reasons
why the issue remains open concerns the role and indeed the
nature of spin-phonon scattering, which is manifestly strong
over a wide range of temperatures [10,21]. CrCl3 is the 3d
transition-metal structural analog of α-RuCl3, and as such
represents the latter material in the absence of significant
spin-orbit coupling. Although one may fear that this removal
of Kitaev character removes any connection between the two
systems, we will show here that CrCl3 presents a test case for
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FIG. 1. κ shown as a function of T for different values of the
magnetic field applied parallel to the temperature gradient in the
ab plane. (Inset) κ (T ) shown on a logarithmic scale for comparison
of the low-T data with the power-law forms κ (T ) ∝ T 2 and T 3.

spin-phonon scattering effects that are at least as strong as any
comparable phenomena in α-RuCl3.

The second avenue leading to CrCl3 as a key material to
understand is its position in the structural series CrX3, where
X = Cl, Br, I is a halide. Structurally, the chromium trihalides
are van der Waals materials, allowing them to be cleaved
easily and prepared in mono- or few-layer forms that show
strong differences in their physical properties. Magnetically,
the honeycomb layers have ferromagnetic (FM) in-plane in-
teractions and indeed both CrI3 and CrBr3 are bulk ferromag-
nets. This magnetic character has therefore promoted a keen
interest in spin and lattice control in the context of topological
magnonics [22], spintronics, and magnetoelectronics [23,24].
CrCl3 is a historical “mixed FM/AF” system, with antiferro-
magnetic (AF) interlayer interactions ensuring an AF ground
state of antialigned FM layers [25–29], and because of the
rather low field scale (μ0Hs � 2 T, independent of direction)
for complete spin polarization, is an excellent candidate for
studying magnetic-field effects on spin and lattice transport.

In Fig. 1, we show our key experimental result, that the
in-plane thermal conductivity of CrCl3 is greatly enhanced
by a magnetic field. We comment for clarity that by “in-
plane” we refer to measurements of κ (T ) performed with the
temperature gradient ∇T , oriented in the ab plane and with
the field also applied in the plane (H ‖ ∇T ). Qualitatively,
this field dependence of κ (T ) resembles the behavior typi-
cal of magnetoresistance in magnetic conductors, where the
electrical conductivity often increases as the field is increased
[30]; this effect is caused by the field-induced reduction of
the spin-dependent scattering and is often most prominent in
the vicinity of the magnetic ordering transition. In CrCl3, the
origin of this giant thermal magnetoresistance lies in the very
strong field-induced suppression of the spin-phonon scatter-
ing, and one may also observe in Fig. 1 that it is particularly
prominent at the ordering transition (TN ). Quantitatively, the
phenomenon is anomalously large and is particularly unusual
in that it extends over essentially the entire range of tem-
peratures shown in Fig. 1. Here we will show that it can be

modelled accurately with a minimal number of assumptions
and empirical parameters.

In many cases, the phonon thermal conductivity is well
captured by the highly refined Debye-Callaway (DC) model
[31,32], in which all of the most important mechanisms for
phonon scattering are considered over a wide range of tem-
peratures. One obtains the form

κph = k4
B

2π2vsh̄
3 T 3

∫ �D/T

0

x4 ex

(ex − 1)2
τ (ω, T ) dx, (1)

where ω is the phonon frequency, �D is the Debye tem-
perature, vs is a characteristic average phonon velocity, and
the integration variable is x = h̄ω/kBT . In the relaxation-
time approximation, it is assumed that all possible scattering
mechanisms contribute independently to the phonon scatter-
ing time, τ (ω, T ), and hence

τ−1 = τ−1
b + τ−1

pd + τ−1
U + τ−1

res , (2)

where the four relaxation times account respectively for
boundary scattering, point-defect scattering, umklapp scat-
tering, and resonant scattering due to impurities, magnetic
excitations, or other collective modes. A similar formalism
can be adopted for the direct contributions to κ (T ) of well-
defined magnon modes. This type of model has been used to
obtain a quantitative account of the thermal conductivity in a
number of low-dimensional spin systems where both the spin
excitations and their phonon-scattering effects, appearing in
the τ−1

res term, can be characterized accurately [3,5,6,33].
Despite the experimentally verified success of the DC

model for certain cases, in practical applications the model
of Eq. (2) requires at minimum seven to ten fitting parameters
to reproduce even rather smoothly varying κ (H, T ) curves.
The microscopic implications of each term are often very
difficult to verify independently, unless the respective fitting
parameters can be compared among closely related materials
(for example, by doping or elemental substitution). Most im-
portantly for the CrCl3 problem, there are no well-defined spin
excitations over most of the (H, T ) phase diagram, and hence
no possibility of describing the giant spin-phonon scattering
within a τ−1

res term. Clearly the form of this term in Eq. (2)
is too restrictive to capture the rich spectrum of possible
interactions between the phonons and magnetic excitations of
a quantum magnet, particularly if the latter are fractionalized.
Thus we will introduce a more general approach to modeling
the thermal conductivity of a magnetic insulator, a task in
which we will be phenomenological but quantitative.

The focus of our contribution is to describe the heat
conduction of magnetic insulators in the common situation
where this is governed mostly by phonons, but subject to a
spin-phonon scattering to which multiple mechanisms may
contribute. In such a case, it would be highly desirable to
have a method of understanding the magnetic scattering of
phonons without invoking either the microscopic details of the
scattering mechanism or system-specific characteristics such
as the phonon and magnon (or spinon) dispersion relations.
Here we present a phenomenological model to quantify the
T and H dependence of κ , for the worked example of CrCl3,
by considering the phonon heat conduction in the presence of
scattering by magnetic degrees of freedom. The parameters
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determined empirically in our model enable us to quantify
the dominant scattering mechanisms regardless of the energy
scales of the phonons and of the magnetic excitations.

The structure of this article is as follows. In Sec. II, we
summarize briefly our samples and experimental methods. In
Sec. III, we show the results of our κ (H, T ) observations at
all measured fields and compare these with measurements of
the magnetization and specific heat. In Sec. IV, we present
the details of our empirical modeling procedures for the phys-
ically different regimes and extract the quantities required to
describe spin-phonon scattering in CrCl3. Section V provides
a discussion and conclusions.

II. MATERIAL AND METHODS

Thin, purple, platelike single crystals of CrCl3 were grown
by chemical vapor transport [34,35]. CrCl3 is known [36]
to have a rhombohedral low-temperature crystal structure
composed of hexagonal lattices of Cr3+ ions in the ab plane,
whose ABC ĉ-axis stacking is ensured by only rather weak
(van der Waals) structural interactions. Magnetically, as noted
in Sec. I, the S = 3/2 (high-spin) Cr3+ ions in the honeycomb
layers have FM interactions of strength J = −5.25 K [28],
which is a consequence of the near-90◦ Cr-Cl-Cr geometry
(edge-sharing CrCl6 octahedra), while the interlayer interac-
tions (J ′) are AF.

The magnetization m(T ) and heat capacity c(T ) were
measured over a range of temperatures from 2 to 100 K and
of applied magnetic fields up to 18 T using, respectively,
Quantum Design MPMS and PPMS systems. The in-plane
longitudinal thermal conductivity, κxx ≡ κ , was measured on
an as-grown sample of dimensions 2×4×0.5 mm using a
single-heater, two-thermometer configuration in steady-state
operation with the field applied in the ab plane and in the
direction of the thermal gradient (∇T ‖ H ∈ ab); limited κ

measurements were also performed with the field normal to
the plane. The difference in absolute temperatures across the
sample was set never to exceed 5% of the bath temperature
throughout the entire T range of the measurements. All ther-
mometry was performed using Cernox resistors, which were
precalibrated individually and in situ under the maximum
applied fields of each instrument.

III. EXPERIMENTAL MEASUREMENTS

A. Thermal conductivity κ(T )

Figure 1 shows the complete picture of κ as a function of
temperature for all values of the applied in-plane field, H , that
we measured. At zero field (ZF), κ (T ) exhibits a somewhat
flat maximum at 20–25 K with a gentle decline to higher
temperatures; at lower T , it has a marked plateau-type region
at and below the magnetic ordering temperature, TN = 14.2 K.
As H is increased, it is clear that fields on the order of μ0H =
1 T have only a minor effect on κ (T ). However, beyond 1 T,
the applied field causes a dramatic increase of κ (T ) at all
temperatures and the development of a strong and sharp peak
at Tp � 20 K; at 18 T, the maximum exceeds its ZF value by
a factor of 2.2. As we will show below, in fact κ (T ) is almost
completely independent of the direction of the applied field,
indicating a minimal magnetic anisotropy.

At high fields, the peak at Tp and the line shape on both
sides of it, which retains only a minor remnant of the plateau
at TN , are characteristic of phonon-dominated thermal conduc-
tivity. The value of Tp varies little as H is increased. Its phys-
ical origin lies in a crossover between the dominant phonon
scattering mechanisms. At T > Tp, umklapp processes domi-
nate and τ−1

U is the largest term in Eq. (2); for T < Tp, defect-
(τpd ) and boundary-scattering processes (τb) take over. It is
reasonable to assume that κ (T ) at μ0H = 18 T is closest to
reproducing the purely phononic response, κph(T ), of CrCl3,
and we return to this topic in detail in Sec. IV C. As the inset
of Fig. 1 makes clear, at this field the low-T κ (T ) exhibits a
T 3 dependence, suggesting that the thermal conduction is due
to ballistic transport of acoustic (linearly dispersive) phonons.

At all lower fields, including zero, κ (T ) reflects a sys-
tematic suppression due to additional spin-dependent phonon-
scattering processes over essentially the entire T range. Only
at very low temperatures (T < 5 K) does the ZF κ exceed
that at all other fields, because this is where the contributions
of coherent magnon excitations in the magnetically ordered
phase become important. From the inset of Fig. 1, the thermal
conductivity in this regime has no simply characterized form,
and may be a consequence of comparable magnon and phonon
contributions, at least one of which does not show ballistic
transport [37]. By contrast, at all temperatures above 5 K
the dominant effect of the spins is not an additive contri-
bution, from three-dimensionally coherent excitations, but a
destructive effect that we assume is due to scattering of the
phonons by incoherent spin fluctuations. It is the field-induced
suppression of these fluctuations that brings about the striking
enhancement we observe in κ .

B. Magnetization

To understand this interplay of lattice and magnetic excita-
tions, we first consider the magnetic properties of CrCl3. The
magnetization m(H ) is shown in the inset of Fig. 6 for several
different temperatures. As noted in Sec. I, a moderate field
μ0H ≈ 2 T, applied in the plane, is sufficient at T < 5 K to
rotate the FM planes against the AF interplane interaction and
drive the system to saturation. We comment that the field scale
for this process suggests, in contradiction to the conclusion of
Ref. [28], that the interplane J ′ is of order 1 K. We deduce a
saturation moment, ms = m(T → 0), of 2.88 μB per Cr3+ ion.
The same value of ms is obtained by applying the same field in
the out-of-plane direction, demonstrating that in CrCl3, unlike
RuCl3, the magnetic anisotropy is extremely weak [35]. This
ms value is fully consistent with the spin contribution expected
for a single Cr3+ ion of S = 3/2 when the g factor appropriate
for a magnetically isotropic system, g = 2, is assumed.

For perspective on the relation between κ (T ) and m(T ),
in Fig. 2, we show κ (T ) on the same temperature axis as the
field-normalized magnetization, m(T )/H ≡ χ (T ), for fields
of 0 and 1 T in κ and 0.01 and 1 T in χ . This low-field regime
is where the plateau in κ (T ) around TN is most pronounced,
and the field is not sufficient to suppress the spin-induced
scattering of the phonons conducting the heat. For very small
fields, it is clear that χ (T ) becomes very large in the region
of the ordering transition, indicating strong magnetic fluctu-
ations and hence the origin of the κ plateau. This behavior
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FIG. 2. Data for κ (T ) at 0 and 1 T reproduced for comparison
with the field-normalized magnetization, χ (T ) = m/H . The very
strong peak in the low-field χ (T ), indicative of strong fluctuations
towards magnetic order around T = TN , matches the plateau in κ (T )
where its growth is arrested.

is suppressed considerably at 1 T, where the plateau begins
to lose its form. Above 25 K, the residual m scales precisely
with H .

C. Magnetic specific heat

To obtain further insight into both the phonons and their
spin-mediated scattering, next we consider the specific heat as
a function of T and H . Figure 3(a) shows our measurements
of the total specific heat, c(T ), which are fully consistent for
all H with previously reported results [35]. To estimate the
phonon contribution, cph(T ), we employ a three-dimensional
(3D) Debye-model fit of heat-capacity data for the nonmag-
netic analog ScCl3 [38]. The resulting cph(T ), shown by the
green line in Fig. 3(a), agrees well with our data for CrCl3 in
the high-temperature regime, which as the inset illustrates is
T � 100 K.

We attribute the remaining, strongly field-dependent por-
tion of the specific heat to the magnetic degrees of freedom,
meaning we define cmag(T ) = c(T ) − cph(T ). Figure 3(b)
shows cmag(T ) on a logarithmic temperature axis. At ZF,
there are clearly two peaks, a sharp, λ-type anomaly at the
Néel transition, TN = 14.2 K, and a rounder maximum at
17–18 K. When the applied magnetic field is increased to
1 T, the λ anomaly is completely lost, and in fact a detailed
study of the low-field evolution of this feature [35] found
that a field of 0.2 T is sufficient to suppress this indicator
of the ordering transition. As the applied field is increased,
the location Tmax(H ) of the broad maximum shows an abrupt
initial shift towards higher temperatures, before increasing
more slowly with μ0H to a value of 36 K at 14 T.

Quite generally, the broad maximum in cmag(T ) finger-
prints the energy scale of the dominant local spin-flipping
processes in the system. In CrCl3, this is the energy cost for
reversing a single spin in the FM honeycomb layers (in the
rhombohedral structure one would anticipate an energy of
3|J| + J ′). The initial increase in Tmax(H ) can be understood

FIG. 3. (a) Specific heat c(T ) for a selection of different applied
magnetic fields. The black line shows our estimate of the phonon
contribution, cph(T ), obtained from a Debye-model fit to c(T ) data
for the nonmagnetic analog ScCl3 [38]. (b) Estimated magnetic
specific heat cmag(T ) obtained by subtracting cph(T ) from c(T ) at
each field. The inset shows the magnetic entropy smag(T ), which in
the high-temperature limit approaches the value kB ln 4.

as a straightforward reinforcement of this magnetic stiffness
while the applied field competes with J ′ to reorient the FM
layers. The slower increase at μ0H > 2 T corresponds to a
competition of the field with 3|J|, which in Ref. [35] was
formulated as a progressive development of ferromagnetic
correlations in the plane. Because of the low spin-coercivity in
an applied field, FM alignment of very large domains becomes
thermodynamically favorable at higher T . It is important to
note that TN , the temperature for 3D magnetic order, almost
coincides with the broad maximum at ZF. Thus, despite the
quasi-2D nature of the structure of CrCl3, the AF state at ZF
is magnetically 3D, with TN of the same order as the Curie-
Weiss temperature (θCW � 30 K both from our data below the
structural transition at 240 K and from that of Ref. [35]).

While one may fear that our estimated cmag(T ), as a
small difference between two larger numbers, is subject
to significant errors, a complete validation of its accuracy
may be obtained by integration. The magnetic entropy,

013059-4



GIANT THERMAL MAGNETOCONDUCTIVITY IN CrCl3 … PHYSICAL REVIEW RESEARCH 2, 013059 (2020)

FIG. 4. Fractional change in κ (H ). For each selected temperature value we define �κ/κ0 = [κ (H ) − κ (0)]/κ (0). H is applied in the ab
plane in every panel, and also along the c axis at T = 13.5 and 21 K, which highlights the very low magnetic anisotropy. For all temperatures
T > 4 K, the applied field causes a monotonic enhancement of κ . Only at T < 4 K is a different behavior observed as a consequence of the
coherent magnonic contribution: κ is enhanced by a small applied field (which causes magnon stiffening) but suppressed by all higher fields
(where the energy cost of magnon excitation becomes prohibitive).

smag(T ) = ∫ T
0 dT ′ c(T ′)/T ′, is shown in the inset of Fig. 3(b).

Clearly at temperatures beyond 50 K, smag(T ) for all fields
displays a smooth and accurate approach to the limit kB ln 4
expected for the four-level system corresponding to free S =
3/2 spins. This result, which contrasts strongly with the
entropies shown in Ref. [35], indicates that our approach
of deducing the lattice contribution from the material ScCl3

provides a quantitatively accurate estimate of cph(T ).

D. Thermal conductivity κ(H )

The clearest way to gauge the effects of the magnetic state
on the thermal conductivity is to consider the isothermal H de-
pendence of κ . In Fig. 4, we show for a range of temperatures
the fractional change �κ/κ0 = [κ (H ) − κ (0)]/κ (0) caused
by an applied magnetic field. It is apparent immediately that
the generic field response is a monotonic increase in �κ/κ0,
except at the lowest temperatures.

Although our T = 1.6 K data are something of an outlier
for our present purpose, which is to discuss the generic
behavior beyond the ordered regime, we focus first on the
low-T case. Here κ (H ) increases initially, peaking around 2 T
before decreasing to negative values of �κ/κ0 and becoming
H-independent at fields μ0H > 8 T. This behavior, which is
observed for T < 4 K, indicates a coherent magnonic contri-
bution to heat conduction that is comparable to the phononic
one. The coherent spin-sector contribution to thermal conduc-
tivity has been the focus of numerous studies [2,3,6–8,10] and
can in general be described as an independent additive term
beyond the phonon contribution, i.e. κtot = κph + κmag. At low
fields, the initial rise of κ (H ) can be explained by the magnon
stiffening that occurs when μ0H overcomes J ′ to orient all of
the layers ferromagnetically, which results in an increase of
the magnon propagation speed and hence of κmag [39]. How-
ever, this contribution decreases as soon as the field-induced
magnon gap exceeds the measurement temperature, at which
point the magnon population is suppressed exponentially,

leaving a smaller and largely H-independent thermal con-
ductivity, κtot → κph. The coherent magnon contribution also
diminishes quickly as T increases, and in fact �κ/κ0 changes
character well below TN (e.g., T = 8.5 K in Fig. 4).

At all temperatures T > 4 K, it is clear that the leading
role of magnetic fluctuations is as scattering centers, rather
than as participants in any kind of coherent heat conduction.
While this type of behavior has been observed in certain
quantum magnetic materials at specific temperatures, where
it can be described by a τ−1

res term in Eq. (2) [5,6,9], systems
in which it appears across the full range of temperatures are
not widely known. Nonetheless, κ increases monotonically
with field in all the relevant panels of Fig. 4; we remark again
that this behavior is largely independent of the field direction.
While it remains the case that increasing H suppresses the
spin fluctuations, its effect is a uniform suppression of the
spin-phonon scattering by an effective reduction in the density
of scattering centers, thus bringing the system closer to purely
phononic heat conduction.

IV. EMPIRICAL MODEL FOR κ(H, T )

To model the thermal conductivity in the presence of such
a large and obviously destructive spin-phonon interference
effect, we base our analysis on the thermal conductivity,
κph(T ), due to phonons. We first reexpress Eq. (2) in the form

τ−1 = τ−1
0 + τ−1

mag, (3)

i.e. we assume that the effective phonon scattering rate can be
separated into a part τ−1

0 ≡ τ−1
0 (T ) containing all the field-

independent terms in Eq. (2) and a part τ−1
mag ≡ τ−1

mag(H, T )
containing all phonon scattering processes involving magnetic
degrees of freedom.

To capture the behavior of κ (H, T ) phenomenologically,
we assume that the relative scattering rate, τ−1

mag/τ
−1
0 , will

depend on the population of magnetic fluctuations, which
we denote nmag, and on a dimensionless coupling constant
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FIG. 5. Schematic representation of the (H, T ) phase diagram of
CrCl3. Graded red colors denote the extent to which the system is
in the regime of high H/T (region I) and blue colors the regime
of low H/T (region II). The black color denotes the regime of
long-ranged 3D AF order and the gray colors the extent to which
the approximations we apply in regions I and II are invalidated by
the residual presence of short-ranged magnetic correlations. Solid
black lines denote the fields and temperatures over which we have
measured the κ (T ) data shown in Fig. 1 and the κ (H ) data shown
in Fig. 4, dashed orange lines the specific-heat data shown in Fig. 3,
and dashed green lines the m(H ) and m(T ) data shown respectively
in Figs. 6 and 8.

describing the strength, or effectiveness, of the phonon scatter-
ing processes, λ(H, T ). Thus the key equation underpinning
our empirical treatment is that the thermal resistivity will be
given by

κ−1(H, T ) = κ−1
ph (T )[1 + λ(H, T ) nmag(H, T )], (4)

where κph, the phonon thermal conductivity in the absence
of spin-phonon interactions, is H-independent and would be
recovered at high applied fields. By some straightforward
algebra, one may verify that λnmag = τ−1

mag/τ
−1
0 = τ0/τmag. We

normalize nmag to the total number of Cr3+ spins so that it
represents a fractional density, and thus the field dependence
of κ is encoded in two unitless parameters, 0 < nmag < 1 and
0 < λ.

Focusing now on the spin fluctuations responsible for
phonon scattering, because these change character across the
(H, T ) phase diagram, we begin by subdividing this into the
two regimes shown schematically in Fig. 5. Qualitatively, at
high fields and low temperatures one expects the fluctuations
to be well-defined but 2D spin-wave excitations within the
FM layers, whereas for temperatures high relative to the field
one expects random fluctuations of weakly coupled spins.
Specifically, for CrCl3, we define region I as covering low
temperatures (T < TN ) for fields H � 2 T and T < 30 K at
our highest measurement field; here we will find that nmag

corresponds closely to the density of magnon excitations
originating within the honeycomb layers, which are highly
spin-polarized and strongly ferromagnetically correlated, and
hence remain coherent 2D entities outside the AF phase.
Region II covers temperatures T > TN for low fields, and at

our higher fields temperatures T > 40 K; here nmag corre-
sponds to the average density of free spins that are not aligned
with the field direction, and as such is well described by
a Weiss-field picture, within which the net magnetization is
determined by conventional paramagnetic behavior. As Fig. 5
makes clear, the AF ordered state occupies a very small region
of the (H, T ) phase diagram, and because the contributions of
coherent 3D magnon excitations to κ are also small (Fig. 1),
the ordered regime is not the focus of our study. However,
we comment that short-ranged magnetic correlations in the
vicinity of the ordered state (gray colors) will act to limit the
applicability of the approximations we apply below.

By considering the magnetic scattering in the high-H/T
I and low-H/T regions II of Fig. 5, we will minimize the
ambiguity at intermediate H/T ratios. In both regions, the
fractional density of magnetic fluctuations, either of 2D spin-
wave excitations or of freely fluctuating spins, can be fixed ac-
curately to known limits. In region I, this limit is the fractional
deviation, 1 − m(H, T )/ms, of the net magnetization from its
high-H/T saturation value, which is ms ≡ m(H → ∞). In
region II, it is the fractional polarization, m(H, T )/ms, which
vanishes in the low-H/T limit.

It is apparent from Eq. (4) that the type of phenomenologi-
cal approach we adopt requires a reliable estimate of the pure
(field-independent) phonon thermal conductivity κph(T ) to be
useful or even viable. If the dependence of κ on the applied
field is sufficiently weak at strong fields, many authors [7,40]
use the κ (T ) data at their highest available magnetic field as
a measure of κph. In Sec. IV C, we will use our modeling
procedure to obtain a field-independent κph(T ) by extrapolat-
ing from our κ (H, T ) measurements (shown in Fig. 1), and
hence will determine how close our κ (μ0H = 18 T) data are
to saturation.

A. Region I: dominant magnon scattering

Our magnetization data (inset Fig. 6) show that, for tem-
peratures T < 30 K, fields μ0H � 5 T are strong enough to
polarize more than 50% of the Cr3+ spins. This temperature
and field range lie well within the “spin-flop” regime [28,35],
where the spins are forced into a quasi-FM-ordered state of
the honeycomb layers. To model this regime, we assume 2D
FM spin-wave excitations with the field-gapped dispersion
relation h̄ω(k, H ) = 1

2 J̃ (ka)2 + gμBH , valid at small k, where
a is the lattice constant and J̃ is an effective magnetic inter-
action strength. The population of magnetic excitations per
unit volume in d dimensions may then be estimated using the
expression [41]

nmag(H, T ) =
∫

dd k

(2π )d

1

eh̄ω(k,H )/kBT − 1
,

= α

(
kBT

J̃

)d/2

Lid/2(e−gμH/kBT ). (5)

From the structure of this expression, only wave vectors k near
the zone center contribute significantly to nmag, and thus we
take the upper limit of the integral to infinity; it is also not
necessary to specify the departure of ω(k, H ) from a simple
quadratic at higher k values. α is a unitless constant set by the
dimension, d , and the normalization. Lis(x) is the polylogarth-
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FIG. 6. Estimate of the population of magnetic scattering cen-
ters, nmag(H ) = 1 − m(H )/ms, taken from the fractional deviation of
the magnetization, m(H ), measured in the MPMS at several fixed
low temperatures from its high-H saturation value. The black dotted
lines show the same quantity computed for 2D magnetic excitations
on a FM honeycomb lattice, using Eq. (5) with d = 2; this approach
can be extended far beyond the range of the available data. (Inset)
Isothermal magnetization m(H ) for fields up to 7 T, shown for the
same temperatures.

mic function of order s, which has an infinite series expression
that is easy to evaluate numerically. As Fig. 6 makes clear, this
approach provides an excellent account of the H and T depen-
dence of m, effective even at temperatures (21 and 32 K) out-
side region I as it is represented in Fig. 5. In Fig. 6, the only fit-
ted parameter is the effective interaction, J̃ = 13.1 K; clearly
J̃ ≈ 3J is again close to the characteristic energy scale of the
2D FM layers at ZF. Here we have treated J̃ as a constant,
anticipating that fields up to 7 T cause only weak changes
in the effective in-plane stiffness, certainly when compared
with their gapping effects (this is to be contrasted with
the “magnon stiffening” discussion in Secs. III C and III D,
where the field dominates J ′).

At high H/T , when the total magnetization remains a
significant fraction of ms, we equate the measured deviation
directly with nmag, the population of 2D magnons obtained
using Eq. (5) with d = 2. The agreement remains good for
all temperatures T < 2TN when μ0H � 2 T. Given the dis-
crepancy between the in-plane FM interactions and the out-
of-plane AF ones, whose 3D coupling effects are suppressed
beyond 2 T (inset Fig. 6), it is not surprising that quasi-2D
excitations dominate the spectrum. We comment here that the
CrX3 materials have been considered as candidates for hosting
topological magnons with Dirac cones in their (graphene-
type) dispersion relations [22], but at finite applied fields a full
gap is opened and the magnon dispersion has the quadratic
form assumed in our model.

We stress again that, as shown in Fig. 1, these magnonic
fluctuations are a significant source not of heat conduction
but of phonon scattering. This situation is not generic, and
indeed many of the systems reviewed in Sec. I provide exam-
ples of significant contributions to thermal conductivity from
essentially 1D or 2D excitations in a 3D material [2–9]. In

FIG. 7. Isothermal thermal resistivity, κ−1(H ), obtained from
Fig. 4. The dotted black lines are fits of the data at μ0H > 2 T to
the form of Eq. (4), from which we deduce values for the high-field
limit [the phonon thermal resistivity κ−1

ph (T )], and the dimensionless
and field-independent coupling strength, λ(T ). The inset shows the
values of λ(T ) deduced at each temperature.

general one expects that, when such low-dimensional exci-
tations are not mutually coherent between planes or chains
with characteristic transverse coupling constant J⊥, they will
act to destroy each others’ coherence on a timescale gov-
erned by J⊥/J‖, where J‖ is a characteristic energy scale (a
gap or a stiffness) within the planes or chains. Thus, for
a large system and non-negligible transverse coupling, the
low-dimensional excitations would not contribute to thermal
transport, as we observe for the 2D-coherent magnons of
CrCl3, where J⊥/J‖ ≡ J ′/3J � 1/15, in region I. However,
cases in which J ′ is extremely small, the gap is very large,
or other characteristics conspire to allow significant transport,
have attracted attention precisely because they contradict this
tendency towards incoherence.

The destructive effects of the 2D magnons on thermal con-
ductivity are parameterized by the phonon scattering strength,
λ(H, T ), in Eq. (4). To analyze λ(H, T ), in Fig. 7, we fit the
thermal resistivity data, κ−1(H ), for four of the five temper-
atures shown in Fig. 4. We find that an excellent description
is obtained with a function λ(H, T ) ≡ λ(T ) completely inde-
pendent of the field. Thus, in region I, the field dependence
of κ (H, T ) is contained entirely within our straightforward
assumptions about nmag(H, T ). Further, we observe that λ(T )
peaks in temperature close to TN , and thus we deduce that
scattering by coherent but “only” 2D magnetic excitations
has its strongest effect on the phonon thermal conductivity
in the regime around TN itself; from the form of the mag-
netic specific heat [Fig. 3(b)], it is no surprise that phonon
scattering should be most efficient around this characteristic
temperature. This leads to a suppression effect that includes
the peak region (around Tp ≈ 20 K) and becomes unusually
large as the applied field is reduced below 2 T, where nmag

rises strongly (Fig. 6). We note that, even in a van der Waals
material, the phonons are in general much more 3D in nature
than are the magnons once their interlayer correlations have
been destroyed by the applied field, as a result of which good
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2D magnons with no interlayer coherence are only damaging
to phonons, and hence to thermal conduction.

B. Region II: dominant paramagnetic fluctuations

At higher temperatures, the magnetic fluctuations may no
longer be regarded as well-defined 2D spin-wave excitations.
As the energy scale of thermal fluctuations becomes large
compared to that of the field, planar FM order is destroyed
and the behavior of the spin system becomes paramagnetic.
Despite this loss of coherent 2D magnons, magnetic scattering
continues to play a significant role in controlling the thermal
conductivity in region II, as Fig. 1 shows clearly. This effect
must be a consequence of phonon scattering off randomly
fluctuating free paramagnetic spins, whose relative density is
also given by the fractional deviation of the magnetization
from ms.

Although the dominant physics in region II is thermal
fluctuations that flip individual spins against the magnetic
field, the underlying spin interactions may by no means be
neglected. We model the magnetization profile, m(T ), of
CrCl3 by a Weiss-field approach [41] in which the molecular-
field term takes into account the FM correlations within the
honeycomb planes. In this framework,

m(H, T ) = msBS

[
gμBS

kBT

(
μ0H +Bmol

m(T )

ms

)]
, (6)

where BS (y) is a Brillouin function of order S, S = 3/2,
and g = 2. The solution for m(T ) is found by fixed-point
iteration and, as shown in Fig. 8(a), an exceptionally good
fit to the measured magnetization is obtained over the entire
paramagnetic temperature range, T � 40 K, for all fields be-
low 7 T. The fitted constant Bmol = 22.4 T � 15 K is given
once again by the FM in-plane coupling scale. In addition to
providing smooth and easily computed curves at all measured
field strengths, this model allows us to predict m(T ) with
high confidence over the same temperature range at fields of
μ0H = 9 and 18 T that are prohibitively high for SQUID
magnetometer measurements (Fig. 8). The clear deviations
between model and measurement at low fields and tempera-
tures are consequences of the AF order, and are suppressed
by fields in excess of 1 T (inset Fig. 6), to the point where
deviations at the fields we can only model (μ0H = 9 and 18 T)
are expected to be negligible.

To estimate the scattering strength, λ(H, T ) in Eq. (4), in
region II, we observe first that when T → ∞ the magnetic
degrees of freedom become entirely disordered, meaning that
nmag → 1. Thus, to preserve the empirical observation that
the field dependence of κ (T ) disappears at high T (Fig. 1),
it is necessary that λ(H, T ) → 0 as T → ∞. On physical
grounds, this must be the case because different phonon scat-
tering mechanisms will overwhelm the magnetic contribution
in Eq. (3), rendering τ−1

mag � τ−1
0 . However, from the Weiss-

field estimate of m(H, T ) shown in Fig. 8, it is clear that this
regime is reached only at our lowest measurement fields, and
that nmag(H, T ) remains significantly less than unity over the
available temperature range for all fields above 1 T.

From experiment, we have been able to obtain four highly
accurate estimates of λ(T ) at temperatures up to T = 32 K,
as shown in the inset of Fig. 7. Because the function λ(T )

FIG. 8. (a) Magnetization m(T ) measured at fixed field values
of 0.01, 0.1, 1, and 5 T. Thin solid lines are fits made by applying
the Weiss-field model [Eq. (6)] at T > 40 K. This model can be
extrapolated to T = 0, although of course it does not include the
AF magnetic order, and this accounts for the deviations at T <

40 K for low fields. In addition we show calculations made with
the same model parameters for m(T ) at 9 and 18 T, beyond the
range of the data, where deviations due to AF order would be very
small. (b) nmag(T ) deduced from m(T ); here we show the quantity
nmag(H, T ) = 1 − m(H, T )/ms(H, T = 0) at each constant value of
H . Solid lines marked 2DSW are estimates of nmag(T ) obtained from
the 2D spin-wave model of Sec. IV A. Dashed lines marked WFM
are estimates of nmag(T ) obtained from the Weiss-field model of
Sec. IV B. Solid lines for 5, 9, and 18 T mark spline fits connecting
the two regimes; at 1 T the 2DSW approach is not effective because
it does not contain the magnetic order, and here the solid line is a fit
to the data.

is already well past its peak value, we use the logic of the
previous paragraph to adopt test functions for the form of
the vanishing of λ(T ) in region II, taking for specificity
Gaussian, exponential, and power-law (Lorentzian) forms.
Stated briefly, all forms of this functional tail give equally
valid fits to the data throughout region II, and we pursue
the quantitative aspects of this assertion in conjunction with
the extraction of the phonon thermal conductivity, κph(T ),
in the next subsection. The key qualitative point to be made
here is that any H dependence of the functional tail is so
weak that, once again, a completely adequate fit to all data
is obtained by taking λ(H, T ) ≡ λ(T ), exactly as in region I.
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Thus we have obtained the profound result that, to a very good
approximation, the effect of a magnetic field on the thermal
conductivity may be encoded entirely within the number
of magnetic fluctuations, nmag(H, T ), acting to scatter the
phonons transporting the heat, while their scattering efficiency
is effectively H-independent.

C. Phonon thermal conductivity

In the preceding subsections we have shown that is it
possible to obtain excellent descriptions of m(T ), and hence
nmag(T ), in both regions I and II, as shown respectively in
Figs. 6 and 8, by using minimal physical assumptions. Even
without a quantitative matching of our two treatments, it is
possible on this basis to obtain accurate fits of κ−1(H, T ) at
all fields and temperatures (Fig. 7) by using Eq. (4) with a
field-independent scattering strength, λ(T ). The exercise of
matching the models of Secs. IV A and IV B across the inter-
mediate temperature regime would involve the extrapolation
of either into a parameter range where it is explicitly no longer
valid. However, the 2D spin-wave model applied in region
I does account correctly for the temperature regime around
the peak in κ (T ) for all fields in our measurement range, and
thus this matching takes place only on the high side of the
peak.

It is clear from Eq. (4) that κ (T ) is governed largely by
the “continuous parameter” κph(T ), and as such that the most
systematic matching of the two regimes would be ensured by
obtaining an optimal estimate of this quantity. κph(T ), as the
thermal conductivity due only to phonon contributions, is in
principle obtained in region I as the H → ∞ limit, where the
spin excitations have an infinite gap and nmag → 0, whence
κ (T ) → κph(T ). In Sec. I, we summarized the difficulties in
obtaining κ (T ) from a DC formalism [31,32], and in fact
these are manifest even in obtaining κph(T ). Despite the
many parameters, the form of the available relaxation-time
terms remains highly constraining; in the present case, in the
absence of a nonresonant spin-phonon suppression term, it
is not possible to satisfy the low- and high-T limits simul-
taneously with an accurate estimate of the peak position, Tp.
An approach simpler than the full DC treatment is to proceed
from the expression [1]

κph(T ) = 1
3 cph(T )vs�eff (T ) = 1

3 cph(T )v2
s τeff (T ), (7)

where cph(T ), the specific heat in the lattice sector, is known,
vs is again an average phonon velocity, and a simple model
can be constructed for the effective mean free path, �eff ,
whose corresponding effective scattering time, τeff (T ), may
be connected to Eq. (3). However, once again it is not possible
within such a simplified framework to obtain an accurate value
of Tp, and hence κ (H, T ) cannot be reproduced with any
quantitative accuracy.

To ensure full generality of our treatment and to avoid
the pitfalls inherent in adopting any approximate forms, we
proceed instead directly from our data to compute the esti-
mates κest

ph = κ (H, T )[1 + λ(T )nmag(H, T )] for each available
field value. Our fits of κ−1(H ) in region I, shown in Fig. 7,
provide reliable estimates of κph at four discrete temperatures,
which are shown as the green diamonds in Fig. 9. Inverting
our κ (H, T ) data requires quantitative estimates of λ(T ) and

FIG. 9. Estimates of the field-independent lattice contribution,
κest

ph (T ) (dashed lines), obtained by using Eq. (4) with our measured
thermal conductivity data (Fig. 1) at constant fields of 1, 5, 9, and
18 T. Green diamonds show values of κph obtained from fits of the
isothermal κ (H ), shown in Fig. 7, at temperatures of 8.5, 13, 21, and
32 K. The thick solid line shows the optimal κph(T ) deduced from
the κest

ph (T ) curves (see text).

a single function nmag(H, T ). For the latter we proceed, as
shown in Fig. 8(b), by comparing our 2D spin-wave esti-
mates at all low temperatures (solid lines) and our Weiss-field
estimates at all high temperatures (dashed lines) with our
m(T ) data at 1 and 5 T. As in Fig. 8(a), we also use our
Weiss-field estimates at 9 and 18 T. By inspection, the upper
temperature, Tu(H ), beyond which the Weiss-field approach
is quantitatively accurate, may be taken as Tu(H ) = 40 K for
all fields; in fact a constant Tu(H ) would not be anticipated
simply from the extent of region II in Fig. 5, and this result is
actually a consequence of the additional effects of magnetic
correlations above TN at low fields. The lower temperature,
Tl (H ), below which the 2D spin-wave result is quantitatively
accurate, appears to be approximately 25, 30, and 35 K at
5, 9, and 18 T, values which track the edge of region I as
represented in Fig. 5. At 1 T, the spin-wave approach is
clearly no longer appropriate, because the tendency to AF
order created by J ′ is not fully suppressed (Fig. 5; while we
may use the m(T ) data here for quantitative purposes, we
observe that the spin-wave result for a monolayer appears to
be reliable to approximately 20 K. We note that these values
of Tl (H ) are not dissimilar to the values Tmax(H ) obtained
from the peak in the magnetic specific heat (Sec. III C), and
comment that this latter scale might indeed be anticipated as
the upper limit to an ordered magnetic configuration on which
to base a 2D spin-wave treatment. To bridge the shrinking gap
between Tl (H ) and Tu(H ), we adopt the spline fits shown in
Fig. 8(b).

For λ(T ), as noted in Sec. IV B, we have tested three func-
tions that reproduce the four data points spanning the peak in
this quantity shown in the inset of Fig. 7; one has a Gaussian
form, λ1(T ) = a1 exp[−(T − T1)2/2σ 2], one an exponential
form, λ2(T ) = a2T b exp(−T/T2), and one a Lorentzian form,
λ3(T ) = a3γ /π [(T − T3)2 + γ 2]. The three functions differ
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only in the rate at which λ vanishes in the high-T regime
and all three may be used to obtain consistent descriptions
of the data with only minor differences in the value of the
estimated κph(T ) at T > 40 K and in the temperature at which
all datasets converge. Because of a mild but unexpected bulge
around 40 K in our measured κ (T ) data (Fig. 1), which is most
pronounced at 18 T and which we believe is not intrinsic to the
phonon thermal conductivity, a rapid vanishing of λ(T ) cannot
accommodate this feature. To avoid an ill-defined subtraction
of this poorly understood contribution, it is most convenient
to use the Lorentzian continuation of λ(T ), but we make
no claim to have proven a physical underpinning for this
form.

Inverting our κ (H, T ) data using these estimates of
nmag(H, T ) and λ(T ) provides four different curves for κest

ph (T )
based on our measurements at 1, 5, 9, and 18 T. From Fig. 9,
it is clear that all four estimates of κph(T ) are very similar
across the full range of temperatures and that they converge
completely in both the low- and high-T limits. In detail, the
estimate based on our 1 T data, which are affected by the AF
ordering tendencies, are something of an outlier. Otherwise,
the three estimates based on 5, 9, and 18 T converge to high
accuracy at all temperatures, with a maximum deviation of
order 10% at Tp. Because the minor bulge in our κ (T ) data
around 40 K (Fig. 1) is strongest at 18 T, we judge the
near-identical κph(T ) curves deduced from μ0H = 5 and 9 T
to be the most representative and adopt these as our definitive
result for the phonon thermal conductivity.

Fixing κph(T ) allows us unprecedented physical insight
into the effects of phonon scattering by the spin fluctuations,
and into the way in which these effects are suppressed by
the magnetic field. In Fig. 10(a), we show the quantity λnmag,
which is equivalent to the relative scattering rate τ0/τmag. At 5,
9, and 18 T (dotted lines), λnmag displays a clear peak around
20 K that is suppressed from a value of nearly 1 by a factor of
approximately 2 at each field step. For comparison, we show
as solid lines the equivalent quantities for 0 and 1 T, which
we have taken directly from our data because our methods for
estimating nmag are not suitable at these low fields. We observe
the same general form, but with the peak twice as strong
again.

In Fig. 10(b), we show the suppression factor, f = (1 +
λnmag)−1, corresponding to Fig. 10(a), which is an inverted
function reaching a minimum of 1/3 at Tp for a field of
0 T, where λnmag � 2. Thus the quantitative conclusion con-
cerning spin-fluctuation scattering of the phonon modes in
CrCl3 is that this mechanism is so effective around the Néel
temperature of the AF ordered phase that 2/3 of the phonon
contributions to the thermal conductivity are removed. The
spin-scattering effect is not at all resonant, retaining a sig-
nificant value over the entire range of temperatures from 0
to 100 K. Finally, in Fig. 10(c), we use our deduced values
of κph(T ), nmag(H, T ), and λ(T ) to reconstruct our measured
κ (H, T ) data for all fields and temperatures. Quantitatively
excellent agreement is achieved in all cases, with deviations
from 1% at 5 and 9 T to 15% around the peak at 1 T, where
in any case our approximations are of limited validity. We
stress that this is not a circular exercise, because all of the field
dependence of κ (H, T ) is reproduced using only nmag(H, T ).
We comment also that κph(T ) does lie significantly above our

FIG. 10. (a) The quantity λnmag shown as a function of tempera-
ture for fields of 0, 1, 5, 9, and 18 T. Dotted lines for 5, 9, and 18 T are
obtained from our estimated nmag(H, T ) (Secs. IV A and IV B) mul-
tiplied by the Lorentzian continuation of λ(T ) (see text); solid lines
for 0 and 1 T, shown for comparison, were obtained directly from the
data. (b) Suppression factor, f = 1/(1 + λnmag), corresponding to
λnmag in panel (a). (c) Reconstruction of our measured κ (H, T ) data,
shown as discrete points, based on the empirical model of Eq. (4).
Calculated κ (H, T ) values (solid lines) are based on a single curve
for κph(T ) (solid black line) and use the Lorentzian continuation
of λ(T ). Inset: magnification of the high-T regime (T > 40 K) to
illustrate convergence of the data and calculations to κph(T ).

18 T data; while this separation may be slightly exaggerated
in the high-T regime [inset Fig. 10(c)] by our use of the
Lorentzian continuation, the 20% difference around the peak
position is a robust result that serves as a warning against
assuming that high-field data must lie beyond the range of spin
fluctuations.

It is clear that our models provide a quantitatively accurate
fit to the thermal conductivity at all fields and temperatures
with only one exception. This is the low-field plateau in the
measured κ (T ) that arises due to the ordering transition, a
feature that lies explicitly beyond our modeling. Thus we
have shown that CrCl3 provides an ideal system for modeling
the magnetic fluctuations at finite fields and temperatures,
and that the dramatic suppression of its thermal conductivity
caused by these fluctuations can further be modelled by multi-
plying their density by a field-independent phonon scattering
strength.
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V. DISCUSSION AND CONCLUSION

We first reiterate what we have achieved in describing the
thermal conductivity of a correlated magnetic insulator with
significant spin-lattice coupling. We have shown that, beyond
a very narrow regime of field and temperature hosting 3D
magnetic order, the thermal conductivity is due entirely to
phonons, but that the contributions of these phonons is subject
to a suppression factor. This suppression is due entirely to
scattering from spin fluctuations that are not coherent in 3D,
and can be extremely strong (up to 65%), but can itself be
suppressed to zero by a sufficiently strong magnetic field. This
phenomenon can be captured quantitatively by expressing the
suppression in terms of only two parameters, an independently
determined number of active magnetic fluctuations and a
dimensionless parameter for their scattering efficiency. This
latter turns out to be entirely independent of the field, meaning
that the scattering strength is dictated only by the temperature,
while the full suppressive effects of the applied field are
contained within the number of fluctuations.

Applying this very general framework, for CrCl3 we model
the fluctuation number, nmag(H, T ), by considering the two
regimes of high and low H/T . In the former, magnetic fluctu-
ations take the form of field-gapped 2D spin waves in the FM
honeycomb planes and nmag is given by a conventional spin-
wave theory, but the complete lack of interlayer coherence
means that these modes are not only incapable of transporting
heat themselves but are destructive to the more 3D phonons
that do so. In the latter, the system is paramagnetic and
dominated by thermal fluctuations, but it is still field-polarized
and thus the intrinsic intralayer FM interaction continues to
play a role. The energy scale of this interaction, of order 15 K,
is in fact fundamental to the thermodynamic and transport
response of the system at all fields and temperatures, and its
fingerprints are found in quantities ranging from the magnetic
specific heat to the empirically determined phonon scattering-
strength parameter, λ(T ), which peaks in temperature around
this value before falling to zero. With these ingredients, our
formalism can reproduce, and indeed predict the form of,
κ (T ) at different applied fields over the entire temperature
range. Discrepancies between the data and the model appear
only at low fields in the vicinity of TN , where nmag cannot
describe adequately the population of fluctuating spins in the
critical regime.

A key strength of our modeling procedure is its basis in the
simple phonon-scattering form expressed in Eq. (4). Despite
its phenomenological nature, our approach is both completely
general and fully quantitative. It is not dependent on specific
properties of the magnetic state of the system and, crucially, it
is independent of the nature of the magnetic excitations, which
in the quantum limit may not necessarily be conventional
magnons, but topological ones or even only fractions of a sin-
gle spin flip [3,33]. Our treatment is also insensitive to specific
phonon scattering mechanisms, which as Sec. I makes clear
can take many possible forms; in this context we note again
that the spin-fluctuation scattering we consider is nonresonant
and that these fluctuations are paramagnons (quasi-FM spin
fluctuations in the paramagnetic regime) over the entire range
of T and H . While we have kept our treatment independent
of assumptions about the phonon thermal transport in order

to make it fully quantitative (Sec. IV C), one may also ask
whether the analysis could be improved, or otherwise brought
into contact with conventional treatments based on the specific
heat or the DC framework. While this is certainly possible in
parts of the parameter space, we have not been able to find
a global description for CrCl3 within either approach, and on
this basis would not expect this type of traditional formalism
to be suitable for general magnetic materials. We stress again
that, if the κph(T ) curve we extract from our data is regarded
as a given, the number of “free” parameters in our modeling
procedure can be argued to be zero, should one allow that J̃
in region I and Bmol in region II are given by the in-plane
FM energy scale, 3J ≈ TN , and that the form of the high-T
vanishing of λ(T ) is immaterial.

An essential aspect of our study is the issue of system
dimensionality. While all magnetic insulators are 3D, in low-
dimensional quantum magnets the regime of 3D behavior may
be a very small part of the (H, T ) parameter space. In CrCl3,
the stronger coupling in the honeycomb layers mandates a
2D treatment in the regime of large H/T , where the field
destroys 3D correlations but does not damage the 2D FM
correlations; by contrast, thermal fluctuations act to damage
all correlations. The FM nature of the layers also has another
unexpected consequence in that, although the CrX3 systems
are regarded structurally as van der Waals materials, featuring
a very low cohesive energy for exfoliation [35], CrCl3 does
not show the conventional features of a 2D magnet. In the
specific heat, the 3D ordering peak effectively coincides with
the broad maximum characterizing the majority of the spin-
fluctuation processes, while the minimal anisotropy is also
consistent with 3D magnetism. In more detail, the interlayer
superexchange interaction, J ′ ≈ 1 K, while not an insignifi-
cant fraction of the intralayer J = −5.25 K, is indeed rather
smaller, and it is the FM nature of the in-plane order that
allows J ′ to “leverage” a TN scale of order 3|J|. We comment
that layered magnetic materials are ubiquitous both in con-
densed matter and in the heterostructures being fabricated for
spintronic functionalities, and hence our considerations can be
expected to have far-reaching applicability.

While it is intuitively clear that the origin of the giant
magnetoconductivity we observe lies in “strong spin-lattice
coupling” [35], we stress that this is not merely another
spin-phonon story. The qualitative difference in the present
study is that we are measuring a transport property, meaning
a property exclusively of the excitations in the spin and lattice
sectors of the system. In this sense our focus is a specific
and sensitive probe of a much less commonly studied aspect
of magnetoelastic coupling, namely, the nature and scattering
of these two sets of excitations over the complete (H, T )
parameter space.

One may nonetheless ask why, quantitatively, the scattering
effect is so strong in CrCl3. Here we point to the possibility
that the spin-phonon coupling can be relatively normal but J
is in fact anomalously small. As noted in Sec. II, the FM J is a
consequence of the near-90◦ Cr-Cl-Cr bond angle enforced by
edge-sharing CrCl6 octahedra, and this type of interaction is
far smaller in magnitude than comparable AF bonds at higher
angles. In general, the interaction strength is very sensitive to
the bond angle in this regime, implying that small phononic
displacements may have strong relative effects; when
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normalized by the small J values, these magnetoelastic effects
then appear in the conventional range. While first-principles
calculations have been performed recently to accompany the
experimental observation that the interlayer magnetic inter-
action strength, J ′, changes over a wide range in few-layer
CrCl3 samples [42], we are not aware of calculations inves-
tigating the lattice-sensitivity of the in-plane interaction, J ,
which could in principle be modulated by pressure in bulk
samples or by substrate choice in few-layer heterostructured
samples.

Returning to α-RuCl3, small Heisenberg interactions, J ,
are also a sought-after feature of candidate Kitaev materi-
als. When these dominant magnetic effects are suppressed,
the remaining terms in the anisotropic spin Hamiltonian are
thought to give rise to fractional spin excitations (of Majo-
rana [16,19,43] or generalized Majorana character [44]) and
to spin-liquid ground states in the presence of an applied
magnetic field [10,17,45]. It is clear [10] that the thermal
conductivity measured in α-RuCl3 shows strong spin-phonon
scattering effects over the entire range of temperatures, but
a detailed interpretation lies beyond the scope of a DC ap-
proach [21] and a theoretical analysis of phonon scattering by
fractionalized spins is still awaited. We comment in passing
that phonon coupling to chiral Majorana edge states has
recently been invoked [46,47] as an ingredient essential for
the interpretation of controversial thermal Hall conductivity
data reported [48] for α-RuCl3 at finite fields; however, we
stress that the strong spin-phonon scattering observed in both
α-RuCl3 and CrCl3, and which we model here, involves the
bulk spin excitations. We suggest that the more general, data-
oriented approach we adopt for CrCl3 may help to clarify the
situation even in the absence of a microscopic discussion of
phonon scattering by fractional spin excitations.

Returning to the higher chromium trihalides, CrBr3 has
been proposed [22] as a candidate for hosting topological
magnons. CrI3 is known [24] to present a situation where
the bulk material has FM interlayer interactions, but the few-
layer form takes on a different interlayer structure and these
interactions become AF. In a similar vein, it has been found
very recently in CrCl3 that the interlayer interaction remains
AF [49] as the system thickness is reduced to two layers, while

showing the dramatic increase noted above [42]. Efforts to
include CrBr3 in a systematic comparison are ongoing [50].
These results have drawn a great deal of attention with a
view to fabricating highly controllable spintronic materials,
possibly functioning with topologically protected informa-
tion. While thermal conductivity measurements on few- or
many-layer samples are not yet available, our results offer
both a general framework for analyzing the different possible
contributions to spin and thermal transport and a general
warning concerning the need to take full account of spin-
phonon scattering effects.

In summary, we have investigated the thermal conductiv-
ity of the layered ferromagnet CrCl3 over a wide range of
temperature and magnetic field. We find a giant field-induced
enhancement of the phononic contribution at all temperatures
below 70 K, pointing towards a strong spin-fluctuation scat-
tering effect. We construct an empirical model for the thermal
conductivity by introducing a general framework based on
two quantities that can be determined separately, the number
of active spin-flip processes and their efficiency in scattering
phonons. This formalism provides a quantitative description
of our measured data at all fields and temperatures, has pre-
dictive power in unmeasured regions, and allows an accurate
extraction of the purely phononic response. We anticipate
that this approach will find wide application in interpreting
the spin and thermal transport properties of many insulating
magnetic materials, where spin-phonon scattering is a strong
and unavoidable feature of the physics.
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