
PHYSICAL REVIEW RESEARCH 2, 013056 (2020)
Editors’ Suggestion

Quantum speedup of branch-and-bound algorithms

Ashley Montanaro*

School of Mathematics, University of Bristol, Bristol, United Kingdom

(Received 8 July 2019; published 16 January 2020)

Branch-and-bound is a widely used technique for solving combinatorial optimization problems where one
has access to two procedures: a branching procedure that splits a set of potential solutions into subsets, and a
cost procedure that determines a lower bound on the cost of any solution in a given subset. Here we describe
a quantum algorithm that can accelerate classical branch-and-bound algorithms near-quadratically in a very
general setting. We show that the quantum algorithm can find exact ground states for most instances of the
Sherrington-Kirkpatrick model in time O(20.226n), which is substantially more efficient than Grover’s algorithm.

DOI: 10.1103/PhysRevResearch.2.013056

Quantum computers can solve certain problems, such as
simulation of quantum-mechanical systems [1] and integer
factorization [2], exponentially faster than the best classical
algorithms known. As well as these special-purpose algo-
rithms, there are general-purpose quantum algorithms which
can outperform their classical counterparts more modestly
for a wide range of problems within the domains of con-
straint satisfaction and optimization [3]. A famous example
is Grover’s algorithm for unstructured search [4], which can
be applied to find the minimal value in a set of size N with
O(

√
N) evaluations of values in the set [5]. This algorithm

achieves a quadratic speedup over exhaustive classical search.
However, for many problems encountered in practice, there
are more efficient classical algorithms than exhaustive search,
which take advantage of the structure of the problem. This
can apply to NP-complete problems, which are expected not
to have polynomial-time algorithms, yet which can sometimes
be solved surprisingly efficiently in practice.

One of the most successful general approaches to solving
constrained optimization problems is known as branch-and-
bound. This approach can be applied to problems where the
goal is to find a minimal-cost valid solution, in a setting
where one has access to two functions: a bounding function
Cost that, for a given subset of the set of possible solutions,
returns a lower bound on the cost of any valid solution in that
subset, and a branching rule Branch to be applied if a subset of
possible solutions cannot yet be ruled out, which will divide
that subset into two or more “live” subsets to be explored in
later iterations. Then the branch-and-bound approach explores
subsets of potential solutions, ruling out those where the cost
of any valid solution is too high (e.g., higher than the lowest
cost of a valid solution found so far). The goal is to use
this additional information to avoid exploring every possible

*ashley.montanaro@bristol.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

solution. Clearly, this approach can equivalently be applied to
problems where the goal is to maximize the value of a valid
solution.

Although the number of subsets produced by the branching
steps can grow exponentially, implying an exponential run-
ning time, algorithms based on this technique can sometimes
find exact solutions to instances of hard optimization prob-
lems substantially beyond the reach of unstructured search.
For example, integer linear programming problems can be
solved using a branch-and-bound approach where the Cost
function is based on relaxing to linear programming problems
(see Appendix A for more details).

Here we describe a general quantum approach to accelerate
classical branch-and-bound algorithms almost quadratically.
The quantum branch-and-bound algorithm can be applied to
speed up any classical algorithm that fits into the branch-
and-bound paradigm (formally defined below). These include
algorithms for integer linear programming, nonlinear pro-
gramming, the traveling salesman problem, and more [6].

The quantum algorithm is based on quantum subroutines
that speed up a related class of classical algorithms: backtrack-
ing algorithms [7,8]. Backtracking is an approach that solves
constraint satisfaction problems given the ability to determine
whether a partial solution to the problem could be extended
to a full solution. Backtracking algorithms can be interpreted
as the special case of branch-and-bound algorithms where
the Cost function either returns 0 (for a valid solution to
the problem) or ∞ (for an invalid potential solution, or a
partial solution that cannot be extended to a full solution), so
the algorithm described here can be seen as generalizing the
results of [7,8].

This result contrasts with other quantum approaches to
solve hard optimization problems, such as the adiabatic al-
gorithm [9] and the quantum approximate optimization algo-
rithm [10], in that the branch-and-bound algorithm guarantees
to find the minimal-cost solution with arbitrarily high proba-
bility; however, for certain problems its running time can be
long (e.g., exponential in the input size).

One area where branch-and-bound algorithms have been
successfully applied classically is finding ground states of
spin models [11–14]. For example, branch-and-bound has

2643-1564/2020/2(1)/013056(11) 013056-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.013056&domain=pdf&date_stamp=2020-01-16
https://doi.org/10.1103/PhysRevResearch.2.013056
https://creativecommons.org/licenses/by/4.0/

ASHLEY MONTANARO PHYSICAL REVIEW RESEARCH 2, 013056 (2020)

been used to find the largest exact ground states known of
instances of the Bernasconi model [15], corresponding to
binary sequences with minimal autocorrelation. The fastest
known branch-and-bound algorithms for this model have run-
time estimated numerically as approximately O(20.79n) [14];
the quantum branch-and-bound algorithm would improve this
scaling to approximately O(20.4n).

Another spin model addressed using branch-and-bound
is the well-studied Sherrington-Kirkpatrick (S-K) model
[16], which is the family of classical Hamiltonians H (x) =∑

1�i< j�n ai jxix j where x ∈ {±1}n and ai j are distributed ac-
cording to the normal distribution N (0, 1). Finding the lowest-
energy state for such a Hamiltonian can be achieved in time
O(2n/2 poly(n)) using Grover’s algorithm. Recently, Callison
et al. [17] have described an intriguing quantum algorithm
that uses quantum walks to solve the S-K model, and gave
evidence based on numerical experiments for small n that the
runtime of the algorithm should be approximately O(20.41n).
Here we apply the quantum branch-and-bound algorithm to
speed up a simple classical branch-and-bound algorithm [12]
for the S-K model, and show rigorously that the runtime of
the quantum algorithm is O(20.226n) on most instances of size
n, which is substantially more efficient than Grover search.
Numerical evidence suggests that the runtime in practice
could be as low as O(20.186n).

Branch-and-cut methods have also been used to find
ground states of spin glasses [13]; these could be accelerated
using the same quantum approach.

Model for branch-and-bound algorithms. For a problem
to be accessible to branch-and-bound, we must have access
to Cost and Branch procedures. Each takes as input a subset
S of potential solutions to an optimization problem, perhaps
chosen from a restricted family of subsets. Cost(S) returns a
lower bound on the cost of any solution within S. Branch(S)
either returns that S only contains one element, or splits S into
two or more disjoint sets S1, . . . , Sk . For simplicity, here we
assume that k is a fixed constant. For the behavior of Cost
to be reasonable, we must have Cost(S) � Cost(S′) whenever
S ⊆ S′. We assume that for all subsets S, either Cost(S) ∈
[0, cmax] for some known cmax, or Cost(S) = ∞, where the
latter corresponds to S containing no valid solutions. We can
assume essentially without loss of generality that Cost is
integer-valued; real-valued cost functions can be handled by
truncating their output to precision δ, and multiplying all costs
by 1/δ. In this situation cmax effectively acts as a precision
parameter.

An abstraction of the problem of finding a minimal-cost
solution to a problem given access to the Cost and Branch
procedures is the following model of search within trees [18],
illustrated in Fig. 1. The search space is described by a rooted
tree where each node v is either labeled with an integer c(v)
between 0 and cmax or with ∞, and satisfies the promise that
if w is a child of v, then c(w) � c(v). We are given query
access to two oracles, each of which takes as input a node v.
One oracle returns c(v) and the other returns the children of v,
if there are any. The goal is to find a leaf node v such that c(v)
is minimized, while making the minimal number of queries.

In this abstraction, a node in the tree represents a subset of
possible solutions (with a leaf representing a single possible
solution), and its label represents a lower bound on the cost

1

1 3

∞ 2 3 5

7 ∞ 6 4 6 8

FIG. 1. An example tree corresponding to a branch-and-bound
algorithm. Nodes are labeled with their cost bounds, which are
nondecreasing on any path from the root to a leaf. The green node is
the optimal solution; yellow nodes are removed if the tree is truncated
at the optimal cost.

of any solution in that subset. A label of ∞ represents that
there is no valid solution in that subset. Revealing the children
of a node corresponds to splitting a set of potential solutions
into subsets. Note that the backtracking approach for solving
constraint satisfaction problems corresponds to exploring a
tree of this form where each node is labeled either with 0
or ∞.

The best classical strategy for solving the search problem
in such a tree is to maintain a list of “live” nodes (those whose
children have not yet been explored), and always to choose to
explore the live node with the lowest cost [18]. This strategy is
known as best-first search. Although it is optimal in terms of
query complexity, it may require a very large amount of space
to store the list of live nodes, so in practice other strategies
may be preferred (such as depth-first search); strategies which
achieve near-optimal query complexity in limited space are
known [18].

We will consider particular subtrees of the overall tree,
obtained by truncating it at a particular cost c, i.e., deleting
all nodes whose labels are greater than c. This is equivalent
to changing the Cost function to a Cost′ function such that
Cost′(x) = ∞ if Cost(x) > c. This transformation clearly pre-
serves the tree structure and the monotonicity of the Cost
function. We also have that truncating the tree at a cost cmin

equal to the minimal cost of a valid solution preserves the
presence of a minimal-cost valid solution in the tree.

As observed by Karp and Zhang [19], this kind of trun-
cation controls the complexity of a class of classical search
algorithms: Any algorithm which outputs all the minimal-cost
leaves must explore the entire tree truncated at cost cmin.
Otherwise, it could not be sure that it had found all the
minimal-cost leaves. In particular, if all solutions have distinct
costs, any algorithm which outputs the minimal-cost solution
must explore the whole tree truncated at that cost.

Statement of results. We can now state our main result. Let
T be the tree corresponding to a branch-and-bound algorithm
A. Let d be the depth of T , let cmin be the minimal cost of
a valid solution, and let Tmin be the size of the truncated tree
with cost bound cmin. (If there is no solution, cmin = ∞, and
Tmin is the size of the whole tree T .) Fix a constant ε > 0.
Then there is a quantum algorithm which uses

Õ(
√

Tmind3/2 log cmax)

013056-2

QUANTUM SPEEDUP OF BRANCH-AND-BOUND … PHYSICAL REVIEW RESEARCH 2, 013056 (2020)

calls to Cost and Branch, and except with failure probability
at most ε, returns a solution with minimal cost, if one exists,
and otherwise returns “no solution.” The Õ notation hides
polylogarithmic factors in d , 1/ε, and log cmax.

Assuming that Tmin � poly(d), Tmin � log cmax, this is
roughly a quadratic speedup over any possible classical
branch-and-bound search algorithm which finds all minimal-
cost solutions in the tree corresponding to A, whose com-
plexity (as discussed above) is lower-bounded by Tmin. In the
usual case where there is a unique minimal-cost solution,
the speedup is approximately quadratic over any possible
classical branch-and-bound algorithm (i.e., one that uses only
the Cost and Branch procedures).

Quantum branch-and-bound algorithm. In order to state
the quantum branch-and-bound algorithm, we will need two
quantum-algorithmic ingredients. Both relate to determining
properties of trees, in a model where only the root node is
known in advance, and the structure of the tree can only be
revealed via “oracle” queries to nodes. A query to a node
reveals the neighbors of the node and whether the node
is marked. This model disallows the straightforward use of
methods such as Grover’s algorithm to search in the tree.

The first ingredient is quantum tree search. It follows from
[7,20,21] that there is a quantum algorithm which, given ε

and oracle access to a tree with depth at most d , N nodes, and
maximal degree k = O(1), makes

O(
√

Nd3/2 log d log(1/ε)) (1)

queries and performs O(1) other elementary operations per
query, and except with failure probability at most ε,

(i) if the tree contains at least one marked node, the
algorithm returns the label of a marked node;

(ii) if the tree does not contain any marked nodes, the
algorithm returns “not found.”

Jarret and Wan have described an algorithm [22] which
solves the same tree search problem with complexity bounded
by O(

√
Nd log4(md) log(m/ε)), where m is the number of

marked nodes. This is an improvement on (1) by up to a factor
of almost d when m is small. However, if m is very large (e.g.,
exponential in d), this complexity bound can be larger than
(1). Here, we will need to apply quantum tree search in a
setting where we have no upper bound on m, which could be
as large as N , which in turn can be exponentially large in n. So
we will state complexity bounds based on (1), though in some
cases (e.g., when m is small) the algorithm of Jarret and Wan
may be more efficient.

When we use the quantum tree search algorithm we will
have access to an upper bound on the size of the tree. Al-
though, as stated above, having access to such an upper bound
is not necessary, it can be seen by inspecting the proof of
correctness in [7] that the algorithm is simplified somewhat
given this additional information. However, this does not
affect its asymptotic complexity.

The second ingredient we will need is quantum tree size
estimation [8]. The quantum tree size estimation algorithm,
given query access to a tree with depth at most d , N nodes,
and maximal degree k = O(1), and parameters T0, ε, δ, makes

O

(√
T0d

δ3/2
log2(1/ε)

)

Algorithm 1. Quantum branch-and-bound algorithm with failure
parameter ε.

1. Set T ← 1, cold ← 0, ε ′ ← ε/(Kd log2 cmax) for some
sufficiently large constant K .

2. While T � Tmax:

(a) If T > Tmax/2, cnew ← cmax. Otherwise, set cnew ← 0
and for i = 1 to log2 cmax:

i. If Countcnew+cmax/2i (T, ε ′, 1/2) does not return
“contains more than T nodes,” set
cnew ← cnew + cmax/2i.

(b) Run Searchcnew (ε ′). If it returns the label of a solution,
use binary search on c between cold and cnew within
Searchc(ε ′) to find the minimal c such that a solution
with cost c exists, and return that solution.

(c) Set T ← 2T , cold ← cnew.

3. Return “no solution.”

queries and performs O(log T0) other elementary operations
per query, and except with failure probability at most ε,

(i) if N � T0/(1 + δ), the algorithm outputs Ñ � T0 such
that |Ñ − N | � δN ;

(ii) if N > (1 + δ)T0, the algorithm outputs “contains
more than T0 nodes.”

The restriction to k = O(1) in these algorithms is not
significant, as any node with degree k can be replaced with
a binary tree of depth O(log k). Hence, if each node had
degree at most k, the tree size N would increase by a constant
factor and the depth d would increase by an O(log k) factor,
corresponding to the complexity bounds increasing by a factor
polylogarithmic in d .

Let Countc(T0, ε, δ) denote the quantum tree size esti-
mation algorithm applied to count the number of nodes in
the truncated tree corresponding to the branch-and-bound
algorithm with cost bound c, where d and k are fixed, and
similarly let Searchc(ε) denote the quantum tree search algo-
rithm applied to search in the truncated tree with cost bound
c, where a node is marked if it corresponds to a valid solution
to the original problem (i.e., was a leaf with finite cost in the
original tree). Assume that we have an upper bound cmax such
that all valid solutions have cost strictly less than cmax, and an
upper bound Tmax � kd on the size of the tree;further assume
for simplicity that cmax is a power of 2.

Then the quantum branch-and-bound algorithm is stated
formally as Algorithm 1. The intuitive idea behind it is as
follows: we want to find a cost c � cmin such that the size
Tc of the tree truncated at cost c is not much greater than Tmin.
Given such a c, we can find a minimal-cost solution within the
tree using Searchc, with a complexity of O(

√
Tmin poly(d))

queries. And to find such a c efficiently, we can perform a
binary search on c using Countc, to find the maximal c such
that the tree size is smaller than some upper bound, which
is not much greater than Tmin. There is the technicality that
Countc(T, ε, δ) may not return the correct answer for some
choices of c and T . However, this turns out not to affect
the correctness or performance of the binary search, because
Countc(T, ε, δ) does always return the correct answer when

013056-3

ASHLEY MONTANARO PHYSICAL REVIEW RESEARCH 2, 013056 (2020)

the size of the tree truncated at c is sufficiently small with
respect to T . The formal proof of correctness and runtime of
the algorithm is deferred to Appendix B.

Sherrington-Kirkpatrick spin glass. The Sherrington-
Kirkpatrick (S-K) model [16] is the family of classical Hamil-
tonians H (x) = ∑

1�i< j�n ai jxix j where x ∈ {±1}n and ai j

are distributed according to the normal distribution N (0, 1).
Let A = (ai j) denote the corresponding square matrix where
ai j = 0 for i � j. Given a Hamiltonian H described by the
matrix A, our computational task is to determine Emin(H) :=
minx H (x).

Determination of the limiting form of the expected ground
state energy Emin := EH [Emin(H)] as n → ∞ has been a
question of extensive interest within the theory of spin glasses.
A precise limiting expression is known for this quantity, which
evaluates to Emin = [−0.763167 · · · + o(1)]n3/2. This formula
was conjectured by Parisi [23] and later proven correct by
Talagrand [24]. Although an explicit expression, evaluating it
numerically is nontrivial; however, the constant factor is now
known to many digits of precision [25,26].

Finding the ground state energy of general Ising model
Hamiltonians (of the form of H with arbitrary coefficients ai j)
is NP-hard, which holds even given locality restrictions on the
pairs i, j such that ai j
= 0 [27]. The S-K model is a natural
family of Ising model Hamiltonians, and has been a target for
a number of different algorithmic approaches, both heuristic
(e.g., [28,29]) and exact [11,12,30]. Although it was recently
proven that ground state energies of the S-K model can be
approximated efficiently [31], there is no known efficient (i.e.,
polynomial time in n) method to compute them exactly.

There is a straightforward exact approach to computing
Emin(H) which fits into the branch-and-bound paradigm and
was proposed in [12]. Variables x1, . . . , xn ∈ {±1} are as-
signed values sequentially. To determine a lower bound on the
cost of any assignment beginning with a partial assignment
x1, . . . , x�, we observe that

H (x1, . . . , x�, z�+1, . . . , zn)

=
∑

1�i< j��

ai jxix j +
�∑

i=1

n∑
j=�+1

ai jxiz j +
∑

�+1�i< j�n

ai jziz j

and hence

min
z

H (x1, . . . , x�, z�+1, . . . , zn)

=
∑

1�i< j��

ai jxix j + min
z

⎛⎝ �∑
i=1

n∑
j=�+1

ai jxiz j +
∑

�+1�i< j�n

ai jziz j

⎞⎠
�

∑
1�i< j��

ai jxix j −
n∑

j=�+1

∣∣∣∣∣
�∑

i=1

ai jxi

∣∣∣∣∣+min
z

∑
�+1�i< j�n

ai jziz j

=: BoundA(x).

The first and second components of BoundA(x) can be com-
puted from x in time O(n2). The third component is equal
to minx H ′(x), where H ′ is formed from H by deleting the
first � rows and columns of the matrix A = (ai j). Thus, if
we have already solved the n − 1 minimization problems
obtained by restricting A to the corresponding submatrices,

we can compute BoundA(x) efficiently. As the runtime of the
overall algorithm is exponential in n, this additional cost does
not significantly affect its overall complexity.

This algorithm fits into the formal model for branch-and-
bound discussed above in a straightforward way: the branch-
and-bound tree is a binary tree, where nodes at depth � cor-
respond to �-bit strings, for 0 � � � n, and the Cost function
is BoundA. So the quantum branch-and-bound algorithm can
immediately be applied to accelerate it quadratically. Note
that Cost should be non-negative and integer-valued; this can
be achieved by truncating the real values ai j after p binary
digits to produce a new Hamiltonian H̃ , rescaling by 2p, and
performing an overall energy shift. It is sufficient to take p =
O(log n) to achieve Emin(H̃) = Emin(H) + o(1). This corre-
sponds to a cost bound for the integer-valued problem cmax =
poly(n).

Let TA denote the size of the branch-and-bound tree cor-
responding to the Hamiltonian H with matrix A, using cost
function BoundA, truncated optimally at cost Emin(H). In
Appendix C we prove that for sufficiently large n, PrA[TA �
20.451n] � 0.01. So for the vast majority of instances of size
n, the runtime of the classical branch-and-bound algorithm
is O(20.451n) steps, which is already faster than Grover’s
algorithm. The runtime of the quantum branch-and-bound
algorithm on these instances is O(20.226n) steps, observing
that the depth d of the branch-and-bound tree is equal to n,
and log cmax = O(log n), so these only contribute lower-order
terms to the complexity. The constant 0.01 could be made
arbitrarily small.

This rigorous result is only an upper bound on the tree
size of the classical algorithm (and by extension the runtime
of the quantum algorithm), which may not be tight. To in-
vestigate this, a depth-first variant of the classical algorithm
was implemented and run on instances of the S-K model
for n � 50. Extrapolation of the tree sizes obtained suggests
that the true scaling of TA for random A is O(20.371n), which
would correspond to a quantum runtime of O(20.186n). See
Appendix E for further details.

Conclusions and further work. We have described a quan-
tum algorithm which can accelerate classical branch-and-
bound algorithms in a very general setting. We finish by dis-
cussing potential routes to improving the results of this work.
First, in some cases the square-root dependence of the runtime
on Tmin cannot be improved; even in the special case where
the Cost function either evaluates to 0 or ∞, there are depth-d
trees for which the quantum algorithm requires �(

√
Tmind)

queries to determine whether there is a leaf of cost 0 [32].
However, it might be possible to improve the depth depen-
dence by a factor of up to d , e.g., by extending ideas of [22].

Ambainis and Kokainis [8] have given a quantum algo-
rithm which, given a deterministic classical algorithm that ex-
plores a search tree to find a marked node and uses Q queries
to do so, can find a marked node using Õ(

√
Qd3/2) queries.

This improves on the quantum tree search algorithm used here
in that its complexity depends on Q, rather than the size T
of the whole tree. It seems unclear whether this algorithm
could be applied to accelerate Algorithm 1 directly, for at
least two reasons. First, the algorithm as designed also uses
the Count subroutine, whose runtime depends on the entire

013056-4

QUANTUM SPEEDUP OF BRANCH-AND-BOUND … PHYSICAL REVIEW RESEARCH 2, 013056 (2020)

tree size. Second, in practice any classical or quantum branch-
and-bound algorithm is likely to explore the whole tree of
potential solutions, in order to ensure that it has not omitted
any solutions with lower cost than the current best solution.

Finally, in order to determine whether the quantum branch-
and-bound algorithm will genuinely outperform the best clas-
sical methods for problems of practical interest, once all
overheads are taken into account, a more detailed analysis
of the algorithm’s runtime should be undertaken, extending
previous analysis for backtracking [33].

Supporting data are available at the University of Bristol
data repository, data.bris [34].

Acknowledgments. I acknowledge support from the Quan-
tERA ERA-NET Cofund in Quantum Technologies imple-
mented within the European Union’s Horizon 2020 program
(QuantAlgo project), EPSRC Grant No. EP/R043957/1,
EPSRC Early Career Fellowship No. EP/L021005/1, and
EPSRC/InnovateUK Grant No. EP/R020426/1. This project
has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation program (Grant Agreement No. 817581). I
would like to thank Viv Kendon for insight into the results of
[17], and Stephen Piddock for helpful discussions throughout.

APPENDIX A: EXAMPLE: INTEGER
LINEAR PROGRAMMING

To gain some intuition for how the results presented here
could be applied, in this Appendix we describe one simple
and well-known application of branch-and-bound techniques:
integer linear programming. An integer linear program (ILP)
is a problem of the form

minimize cT x

subject to Ax � b,

x � 0,

x ∈ Zn,

where b and c are vectors, A is a matrix, and inequalities are
interpreted componentwise. Integer linear programming prob-
lems have many applications, including production planning,
scheduling, capital budgeting, and depot location [35].

We can solve ILPs using branch-and-bound as follows.
We begin by finding a lower bound on the optimal solution
to the ILP, by relaxing it to a standard linear program (LP)
and solving the LP, that is, removing the constraint x ∈ Zn.
This corresponds to the Cost function. If the solution s is
integer-valued, we are done, as it corresponds to a valid
solution to the ILP. Otherwise, consider an index i such that
the found solution value si is not an integer. To implement
branching, we consider the two ILPs formed by introducing
the constraints xi � �si�, xi � si�. At least one of these must
have the same optimal solution as the original ILP. We then
repeat with these new ILPs. An appealing aspect of this
method is that the solution to the relaxation simultaneously
tells us a lower bound on the cost, and a good variable to
branch on.

The sequences of additional constraints specify subsets of
potential solutions to the overall ILP. The Branch and Cost

functions take this sequence as input and solve the resulting
LP, to make a decision about which variable to branch on
next, and compute a lower bound on cost, respectively. The
complexity of the LP-solving step is polynomial in the input
size, so the primary contribution to the overall runtime will in
general be the exponential scaling in terms of the number of
branching steps. A standard classical method could be used
(e.g., the simplex algorithm), or one of the recently developed
quantum algorithms for linear programming [36–40].

A particularly simple and elegant special case of this
approach is the knapsack problem. Here we are given a list of
n items, each with weights wi and values vi, and an overall
weight upper bound W . We seek to find a subset S of the
items that maximizes

∑
i∈S vi, given that

∑
i∈S wi � W . We

can write this as an integer linear program as follows:

maximize
n∑

i=1

vixi

subject to
n∑

i=1

wixi � W,

xi ∈ {0, 1} for all i.

Each variable xi corresponds to whether the ith item is in-
cluded in the knapsack. Then the LP relaxation is simply to
replace the constraint xi ∈ {0, 1} with the constraint 0 � xi �
1 for all i. This is equivalent to allowing fractional amounts of
each item to be included.

The branch-and-bound approach to solving ILPs can im-
mediately also be applied to the generalization to mixed
integer linear programming, where only certain variables are
constrained. Now we only branch on those variables which
are forced to be integers. One can also apply it to “branch
and cut” algorithms. In this approach, when the LP relaxation
returns a non-integer-valued solution, one may also add a new
constraint (hyperplane) which separates that solution from all
integer-valued feasible solutions.

APPENDIX B: ANALYSIS OF ALGORITHM 1

In this Appendix we prove the correctness and the claimed
runtime bound of Algorithm 1.

Theorem 1. Let cmin be the minimal cost of a valid solution,
and let Tmin be the size of the truncated tree with cost bound
cmin. (If there is no solution, cmin = ∞, and Tmin is the size of
the whole tree.) Algorithm 1 uses

O

(√
Tmind log cmax log

(
d log cmax

ε

)
×
[

log

(
d log cmax

ε

)
+ d log d

])
oracle calls, and except with failure probability at most ε, re-
turns a solution with minimal cost, if one exists, and otherwise
“no solution.”

Proof. We first show that the algorithm succeeds with prob-
ability at least 1 − ε. The loop executes at most O(d) times,
so each of Count and Search is used at most O(d log cmax)
times. By a union bound, it is sufficient to pick ε′ =
O(ε/(d log cmax)) to ensure that all the uses of Count and

013056-5

ASHLEY MONTANARO PHYSICAL REVIEW RESEARCH 2, 013056 (2020)

Search succeed, except with total probability at most ε. So
we henceforth assume that Count and Search do always
succeed.

If this is the case, we first observe that the algorithm always
correctly outputs a minimal-cost solution, if one exists, or
otherwise “no solution.” This is because at the final iteration
(when T > Tmax/2), if no solution has previously been found
then Search will explore the entire tree and find a solution
if one exists. To see that it outputs a minimal-cost solution,
note that the binary search on c using Search is over the range
[cold, cnew], and cold is no larger than the largest value of cnew

previously computed, so any solution with cost smaller than
cold would have been found in a previous iteration.

It remains to prove the runtime bound. Let Tc de-
note the size of the truncated tree with cost bound c
(so Tmin = Tcmin). The first binary search (in part 2a)
executes Countc O(log cmax) times, each iteration using
O(

√
T d log2(1/ε′)) queries, and the second binary search

executes Searchcnew O(log cmax) times, where each iteration
uses O(

√
Tcnew d3/2 log d log(1/ε′)) queries. At each iteration

of the loop, after the binary search using Countc, Tcnew �
3T/2 by correctness of the quantum tree size estimation
algorithm. Further, at the first iteration when T � 3Tmin/2
(if such an iteration occurs), for all c � cmin, Countc does
not return “contains more than T nodes.” This implies that
cnew � cmin, because as the binary search terminated at cost
cnew, Countcnew+1 must have returned “contains more than T
nodes.” Note that this holds even though Countc can return an
arbitrary outcome when Tc ∈ (2T/3, 3T/2].

Therefore, at this iteration the tree truncated at cost cnew

contains a minimal-cost solution, which will be found by
the binary search on c using Searchc, and the algorithm will
terminate. On the other hand, if there is no iteration such
that T � 3Tmin/2, we must have Tmin > 2Tmax/3. Combining
these two claims, we have T � 3Tmin throughout the algo-
rithm. The loop over exponentially increasing values of T
does not affect the overall complexity bound, so the overall
complexity is

O

(√
Tmind log cmax log

(
d log cmax

ε

)
×
[

log

(
d log cmax

ε

)
+ d log d

])
queries, as claimed. �

We remark that it seems that, in general, Algorithm 1
could not be replaced with simply using the Search subroutine
with exponentially increasing values of the cost parameter (an
approach taken in [41] for the special case of accelerating
backtracking algorithms for the traveling salesman problem).
This is because increasing the cost at which the tree is
truncated by a constant factor could increase the size of the
truncated tree substantially beyond Tmin.

APPENDIX C: TRUNCATED TREE SIZE BOUND FOR
SHERRINGTON-KIRKPATRICK MODEL

In this Appendix, let TA denote the size of the tree corre-
sponding to the classical branch-and-bound algorithm applied

to find the ground state energy of an Ising Hamiltonian H
corresponding to an n × n matrix A, using the bounding
function BoundA described in the main text, where the tree
is truncated at the optimal value cmin.

We will prove the following result:
Theorem 2. Let A be an n × n matrix corresponding to a

Sherrington-Kirkpatrick model instance on n spins. For all
sufficiently large n,

PrA[TA � 20.451n] � 0.01.

The dominant term in the quantum complexity is the
square root of the classical complexity, which is determined
by TA, so Theorem 2 implies that the quantum branch-and-
bound algorithm has an O(20.226n) running time on 99% of
Sherrington-Kirkpatrick model instances.

In order to prove Theorem 2, we will need two technical
lemmas, proven in Appendix D.

Lemma 1. Let x1, . . . , xN ∼ N (0, 1). Let f : RN → R be
continuous and 1-Lipschitz in each coordinate separately,
i.e., | f (x1, . . . , xN) − f (x1, . . . , xi−1, x′

i, xi+1, . . . , xN)| �
|xi − x′

i| for all i ∈ [N]. Then

Pr [f (x) � Ex[f (x)] + t] � e−t2/(2N),

Pr [f (x) � Ex[f (x)] − t] � e−t2/(2N).

Lemma 1 was shown in [42] but with an incorrect con-
stant. We will also need a bound on the expectation
EA[minz∈{±1}n zT Az]. A precise value for this is known as
n → ∞, but we will need a bound that holds for arbitrary n:

Lemma 2. Let A be an n × n matrix corresponding to a
Sherrington-Kirkpatrick model instance on n spins. For all n,
EA[minz∈{±1}n zT Az] � −0.601

√
n − 0.833n3/2.

We are now able to prove Theorem 2. The basic strategy
is to upper-bound the expected value of TA, using that (by
linearity of expectation) this can be expressed as a sum over
all bit strings x ∈ {±1}�, 0 � � � n, of the probability that
the node corresponding to x is contained within the truncated
branch-and-bound tree. These bit strings x are precisely those
such that BoundA(x) � minz∈{±1}n zT Az, and a tail bound can
be used to upper-bound the probability that this event occurs.

There are two technical difficulties which need to be han-
dled. First, this approach does not give a good upper bound
in the case where minz∈{±1}n zT Az is high, which can occur
with non-negligible probability, leading to EA[TA] becoming
large. We therefore handle this case separately and show that
it occurs with low probability. Next, to find a tail bound
on BoundA(x), we need to compute expressions of the form
EA[minz∈{±1}n−� zT Az]; although a limiting form for this is
known [23,24,26], we will additionally need relatively tight
bounds in the case � ≈ n. We therefore split into cases � �
0.9n [where (n − �) → ∞ and we can use the precise limiting
result] and � > 0.9n (where we use Lemma 2).

Proof of Theorem 2. Write μ = EA[minz∈{±1}n zT Az], and
let γ > 0 be an arbitrary value to be determined. We will
upper-bound the probability that TA � B for some B as fol-
lows, where we use the notation [Y] for the indicator random

013056-6

QUANTUM SPEEDUP OF BRANCH-AND-BOUND … PHYSICAL REVIEW RESEARCH 2, 013056 (2020)

variable which evaluates to 1 if Y is true, and 0 if Y is false:

PrA[TA � B] = PrA
[
TA � B ∧ min

z
zT Az � μ + γ n3/2

] + PrA
[
TA � B ∧ min

z
zT Az > μ + γ n3/2

]
� PrA

[
TA

[
min

z
zT Az � μ + γ n3/2

]
� B

] + PrA
[

min
z

zT Az > μ + γ n3/2
]

� 1

B
EA

[
TA

[
min

z
zT Az � μ + γ n3/2

]] + PrA
[

min
z

zT Az > μ + γ n3/2
]

= 1

B

n∑
�=0

∑
x∈{±1}�

EA
[[

BoundA(x) � min
z

zT Az
][

min
z

zT Az � μ + γ n3/2
]] + PrA

[
min

z
zT Az > μ + γ n3/2

]

� 1

B

n∑
�=0

∑
x∈{±1}�

PrA
[
BoundA(x) � μ + γ n3/2

] + PrA
[

min
z

zT Az > μ + γ n3/2
]

� n + 1

B
max

�,x∈{±1}�
2�PrA

[
BoundA(x) � μ + γ n3/2

] + PrA
[

min
z

zT Az > μ + γ n3/2
]
,

where the second inequality is Markov’s inequality and we use linearity of expectation in the second equality.
To upper-bound the last term, we use Lemma 1. We first observe that f (A) = minz zT Az is 1-Lipschitz in each variable, as if

we modify A to produce A′ by changing apq to a′
pq for some pair p < q,

min
z∈{±1}n

∑
i< j

a′
i j ziz j = min

z∈{±1}n

⎛⎝(a′
pq − apq)zpzq +

∑
i< j

ai jziz j

⎞⎠ � −|a′
pq − apq| + min

z∈{±1}n

∑
i< j

ai jziz j, (C1)

and by a similar argument minz∈{±1}n

∑
i< j a′

i j ziz j � |a′
pq − apq| + minz∈{±1}n

∑
i< j ai jziz j . So Lemma 1 implies that

PrA
[

min
z

zT Az > μ + γ n3/2
]
� e−(γ n3/2)2/[2(n

2)] � e−γ 2n.

For this to be upper-bounded by a small constant (e.g., 0.005) we can take γ = O(1/
√

n).
We next upper-bound the first term by bounding PrA[BoundA(x) � μ + γ n3/2]. We only need to consider � � 0.4n in the

maximization, because when � � 0.4n, trivially upper-bounding this probability by 1 already gives a sufficiently strong bound.
Recall that

BoundA(x) =
∑

1�i< j��

ai jxix j −
n∑

j=�+1

∣∣∣∣∣
�∑

i=1

ai jxi

∣∣∣∣∣ + min
z

∑
�+1�i< j�n

ai jziz j .

The function fx(A) = BoundA(x) is 1-Lipschitz in each variable by a similar argument to (C1). Thus, for any η � 0,

PrA[BoundA(x) � EA[BoundA(x)] − ηn3/2] � e−η2n. (C2)

First assume that 0.4n � � � 0.9n, so (n − �) → ∞ as n → ∞. For any x ∈ {±1}�, we have

EA[BoundA(x)] =
∑

1�i< j��

EA[ai j]xix j −
n∑

j=�+1

EA

[∣∣∣∣∣
�∑

i=1

ai jxi

∣∣∣∣∣
]

+ EA

⎡⎣min
z

∑
�+1�i< j�n

ai jziz j

⎤⎦ (C3)

= −(n − �)EA

[∣∣∣∣∣
�∑

i=1

ai j

∣∣∣∣∣
]

+ EA

⎡⎣min
z

∑
�+1�i< j�n

ai jziz j

⎤⎦ (C4)

= −(n − �)

√
2

π

√
� − [0.763 · · · + o(1)](n − �)3/2, (C5)

013056-7

ASHLEY MONTANARO PHYSICAL REVIEW RESEARCH 2, 013056 (2020)

where we use linearity of expectation to obtain the first expression, that
∑�

i=1 ai j ∼ √
�N (0, 1), and the known limiting result

EA[minz
∑

�+1�i< j�n ai jziz j] = [−0.763167 · · · + o(1)](n − �)3/2 [23,24,26].
Writing α = �/n, we have that

EA[BoundA(x)] =
{

−(1 − α)
√

α

√
2

π
− [0.763 · · · + o(1)](1 − α)3/2

}
n3/2 =: g1(α)n3/2.

On the other hand, for � � 0.9n, we follow a similar argument but apply the nonasymptotic result of Lemma 2 to bound
EA[minz

∑
�+1�i< j�n ai jziz j], which implies that

EA[BoundA(x)] � −(n − �)

√
2

π

√
� − 0.601

√
n − � − 0.833(n − �)3/2 (C6)

� −(n − �)

√
2

π

√
� − 1.434(n − �)3/2 (C7)

=
[
−(1 − α)

√
α

√
2

π
− 1.434(1 − α)3/2

]
n3/2 =: g2(α)n3/2. (C8)

In either case, we have

PrA[BoundA(x) � μ + γ n3/2] = PrA[BoundA(x) − EA[BoundA(x)] � μ + γ n3/2 − EA[BoundA(x)]].

By (C2), using μ = [−0.763167 · · · + o(1)]n3/2 and observing (see Fig. 2) that EA[BoundA(x)] > μ + γ n3/2 for sufficiently
large n, so the right-hand side is negative as required, we have

PrA[BoundA(x) � μ + γ n3/2] �
{

e−{g1(α)+[0.763···+o(1)]−γ }2n, if 0.4 � α � 0.9,

e−{g2(α)+[0.763···+o(1)]−γ }2n, if α � 0.9.

So

max
��0.4n,x∈{±1}�

2�PrA[BoundA(x) � μ + γ n3/2]

� max

{
max

α∈[0.4,0.9]
2αne−[g1(α)+0.763···+o(1)]2n, max

α∈[0.9,1]
2αne−[g2(α)+0.763···+o(1)]2n

}
= max

{
max

α∈[0.4,0.9]
2n{α−[g1(α)+0.763···+o(1)]2/ ln 2}, max

α∈[0.9,1]
2n{α−[g2(α)+0.763···+o(1)]2/ ln 2}

}
,

observing that γ = o(1). It remains to determine upper bounds on the functions

α − [g1(α) + 0.763 · · · + o(1)]2

ln 2
= α −

{−(1 − α)
√

α

√
2
π

+ 0.763 . . . [1 − (1 − α)3/2]
}2

ln 2
+ o(1) =: h1(α) + o(1), (C9)

α − [g2(α) + 0.763 · · · + o(1)]2

ln 2
= α −

[−(1 − α)
√

α

√
2
π

+ 0.763 · · · − 1.434(1 − α)3/2
]2

ln 2
+ o(1) =: h2(α) + o(1). (C10)

This can easily be achieved numerically, giving (see Fig. 3)
the result that h1(α) < 0.45003 for 0 � α � 1 and h2(α) <

0.45003 for α � 0.9. Hence

PrA[TA � B] � (n + 1)2[0.45003+o(1)]n

B
+ 0.005,

and to upper-bound the first term by 0.005, for sufficiently
large n one can take B = 20.451n. This completes the proof. �

APPENDIX D: PROOFS OF TECHNICAL LEMMAS

In this Appendix we prove Lemmas 1 and 2. We say that
f (x1, . . . , xN) satisfies the bounded differences condition with

constants di, i ∈ [N], if | f (x) − f (x′)| � di whenever x and x′
differ only in the ith coordinate.

Lemma 3 (McDiarmid’s inequality or method of bounded
differences [[43], Corollary 5.2]). If f (x1, . . . , xN) satisfies
the bounded differences condition with constants di, and
x1, . . . , xN are independent random variables, then

Pr [f (x) � Ex[f (x)] + t] � e−2t2/d ,

Pr [f (x) � Ex[f (x)] − t] � e−2t2/d ,

where d = ∑N
i=1 d2

i .
Lemma 1 (restated). Let x1, . . . , xN ∼ N (0, 1).

Let f : RN → R be continuous and 1-Lipschitz in
each coordinate separately, i.e., | f (x1, . . . , xN) −
f (x1, . . . , xi−1, x′

i, xi+1, . . . , xN)| � |xi − x′
i| for all i ∈ [N].

013056-8

QUANTUM SPEEDUP OF BRANCH-AND-BOUND … PHYSICAL REVIEW RESEARCH 2, 013056 (2020)

FIG. 2. The functions g1(α), g2(α) defined in (C5), (C8).
g1(α) � −0.763 for all α � 0.4, while g2(α) � −0.763 for all α �
0.9.

Then

Pr [f (x) � Ex[f (x)] + t] � e−t2/(2N),

Pr [f (x) � Ex[f (x)] − t] � e−t2/(2N).

Proof. For i ∈ [N], j ∈ [M], let y j
i be a Rademacher

random variable, taking values ±1 with equal probability.
Then define the sequence x(y) by x(y)i = 1√

M

∑M
j=1 y j

i . Let

g : {±1}MN → R be defined by setting g(y) = f (x(y)). Then
changing one entry of y can change x(y)i by at most 2/

√
M,

so we can apply Lemma 3 with di = 2/
√

M to obtain

Pr [f (x(y)) � Ey[f (x(y))] + t] � e−t2/(2N),

Pr [f (x(y)) � Ey[f (x(y))] − t] � e−t2/(2N).

As M → ∞, the distribution of x(y)i approaches a standard
normal distribution for all i. The lemma follows. �

FIG. 3. The functions h1(α), h2(α) defined in (C9), (C10).
h1(α) < 0.45003 for all α, while h2(α) < 0.45003 for all α � 0.9.

Lemma 2 (restated). Let A be an n × n matrix correspond-
ing to a Sherrington-Kirkpatrick model instance on n spins.
For all n, EA[minz∈{±1}n zT Az] � −0.601

√
n − 0.833n3/2.

Proof of Lemma 2. We start with

EA

[
min

z∈{±1}n
zT Az

]
= −

∫ 0

−∞
Pr

[
min

z∈{±1}n
zT Az � t

]
dt,

valid as minz∈{±1}n zT Az is nonpositive. Next, for any t � 0 we
have

Pr

[
min

z∈{±1}n
zT Az � t

]
� 2n Pr

⎡⎣∑
i< j

ai j � t

⎤⎦
using a union bound over z and symmetry of the distribu-
tion of ai j . By a tail bound on the normal distribution, we
have

Pr

⎡⎣∑
i< j

ai j � t

⎤⎦ � e−t2/[2(n
2)] � e−t2/n2

for all t � 0. So

EA

[
min

z∈{±1}n
zT Az

]
� −

∫ 0

−∞
min{1, 2ne−t2/n2}dt

= −
∫ −n3/2

√
ln 2

−∞
2ne−t2/n2

dt −
∫ 0

−n3/2
√

ln 2
1dt

= −n2n−1/2
∫ −√

2n ln 2

−∞
e−t2/2dt −

√
ln 2n3/2

� −
√

n

2
√

ln 2
−

√
ln 2n3/2

= −0.600561 . . .
√

n − 0.832555 . . . n3/2,

where we use the bound
∫ ∞

a e−x2/2dx � 1
a e−a2/2 for any a > 0

in the second inequality. �

APPENDIX E: CLASSICAL NUMERICAL
BRANCH-AND-BOUND RESULTS

We implemented the classical branch-and-bound algorithm
described in the main text, with cost function BoundA, us-
ing a simple depth-first search procedure within the branch-
and-bound tree which backtracks on nodes corresponding to
partial solutions with an energy bound worse than the lowest
energy seen thus far (see Figs. 4 and 5). For an S-K model
instance described by a matrix A, this gives an upper bound on
the size TA of an optimally truncated branch-and-bound tree
(equivalently, on the runtime of the best-first search algorithm
applied to find the ground state energy, with cost function
BoundA).

This algorithm enabled instances on more than 50 spins to
be solved within minutes on a standard laptop computer. We
then carried out a least-squares fit on the log of the number of

013056-9

ASHLEY MONTANARO PHYSICAL REVIEW RESEARCH 2, 013056 (2020)

FIG. 4. Median tree size explored by classical branch-and-bound
algorithm with depth-first strategy. 99 random instances generated
for each n. Fit is line y = 20.371n+5.380.

nodes explored, omitting small n, to estimate the scaling of the
algorithm with n. Note that, due to finite-size effects, this may
not be accurate for large n; however, it gives an indication of
tree size scaling. The median normalized ground state energy

FIG. 5. Normalized ground state energy Eminn−3/2 of instances of
the S-K model. 99 random instances generated for each n.

found for the larger values of n (e.g., ≈ −0.71 for n = 50)
seems to approach the limiting value −0.763167 . . . relatively
slowly. These results are consistent with heuristic finite-size
results reported in [28] and were validated using exhaustive
search for small n.

[1] I. Georgescu, S. Ashhab, and F. Nori, Quantum simulation,
Rev. Mod. Phys. 86, 153 (2014).

[2] P. W. Shor, Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer, SIAM J.
Comput. 26, 1484 (1997).

[3] A. Montanaro, Quantum algorithms: An overview, npj
Quantum Inf. 2, 15023 (2016).

[4] L. Grover, Quantum Mechanics Helps in Searching for a Needle
in a Haystack, Phys. Rev. Lett. 79, 325 (1997).

[5] C. Dürr and P. Høyer, A quantum algorithm for finding the
minimum, arXiv:quant-ph/9607014.

[6] E. Lawler and D. Wood, Branch-and-bound methods: A survey,
Oper. Res. 14, 699 (1966).

[7] A. Montanaro, Quantum-walk speedup of backtracking algo-
rithms, Theory Comput. 14, 1 (2018).

[8] A. Ambainis and M. Kokainis, Quantum algorithm for tree
size estimation, with applications to backtracking and 2-player
games, in Proceedings of the 49th Annual ACM Symposium on
the Theory of Computing (ACM, New York, 2017), pp. 989–
1002.

[9] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum
computation by adiabatic evolution, arXiv:quant-ph/0001106.

[10] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approxi-
mate optimization algorithm, arXiv:1411.4028.

[11] S. Kobe and A. Hartwig, Exact ground state of amorphous Ising
systems, Comput. Phys. Commun. 16, 1 (1978).

[12] A. Hartwig, F. Daske, and S. Kobe, A recursive branch-and-
bound algorithm for the exact ground state of Ising spin-glass
models, Comput. Phys. Commun. 32, 133 (1984).

[13] M. Palassini, F. Liers, M. Juenger, and A. Young, Low-energy
excitations in spin glasses from exact ground states, Phys. Rev.
B 68, 064413 (2003).

[14] T. Packebusch and S. Mertens, Low autocorrelation binary
sequences, J. Phys. A: Math. Gen. 49, 165001 (2016).

[15] J. Bernasconi, Low autocorrelation binary sequences: Statistical
mechanics and configuration space analysis, J. Phys. (France)
48, 559 (1987).

[16] D. Sherrington and S. Kirkpatrick, Solvable Model of a Spin-
Glass, Phys. Rev. Lett. 35, 1792 (1975).

[17] A. Callison, N. Chancellor, F. Mintert, and V. Kendon, Finding
spin-glass ground states using quantum walks, New J. Phys. 21,
123022 (2019).

[18] R. Karp, M. Saks, and A. Wigderson, On a search problem
related to branch-and-bound procedures, in Proceedings of
the 27th Annual Symposium on the Foundations of Computer
Science (IEEE Computer Society, New York, 1986), pp. 19–28.

[19] R. Karp and Y. Zhang, Randomized parallel algorithms for
backtrack search and branch-and-bound computation, J. Assoc.
Comput. Mach. 40, 765 (1993).

[20] A. Belovs, Quantum walks and electric networks,
arXiv:1302.3143.

[21] A. Belovs, A. Childs, S. Jeffery, R. Kothari, and F. Magniez,
Time-efficient quantum walks for 3-distinctness, in Automata,
Languages, and Programming: 40th International Colloquium
(ICALP 2013) (Springer, Berlin, 2013), pp. 105–122.

[22] M. Jarret and K. Wan, Improved quantum backtracking algo-
rithms using effective resistance estimates, Phys. Rev. A 97,
022337 (2018).

[23] G. Parisi, A sequence of approximated solutions to the S-K
model for spin glasses, J. Phys. A: Math. Gen. 13, L115 (1980).

[24] M. Talagrand, The Parisi formula, Ann. Math. 163, 221 (2006).
[25] A. Crisanti and T. Rizzo, Analysis of the ∞-replica symmetry

breaking solution of the Sherrington-Kirkpatrick model, Phys.
Rev. E 65, 046137 (2002).

013056-10

https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.79.325
http://arxiv.org/abs/arXiv:quant-ph/9607014
https://doi.org/10.1287/opre.14.4.699
https://doi.org/10.1287/opre.14.4.699
https://doi.org/10.1287/opre.14.4.699
https://doi.org/10.1287/opre.14.4.699
https://doi.org/10.4086/toc.2018.v014a015
https://doi.org/10.4086/toc.2018.v014a015
https://doi.org/10.4086/toc.2018.v014a015
https://doi.org/10.4086/toc.2018.v014a015
http://arxiv.org/abs/arXiv:quant-ph/0001106
http://arxiv.org/abs/arXiv:1411.4028
https://doi.org/10.1016/0010-4655(78)90102-9
https://doi.org/10.1016/0010-4655(78)90102-9
https://doi.org/10.1016/0010-4655(78)90102-9
https://doi.org/10.1016/0010-4655(78)90102-9
https://doi.org/10.1016/0010-4655(84)90066-3
https://doi.org/10.1016/0010-4655(84)90066-3
https://doi.org/10.1016/0010-4655(84)90066-3
https://doi.org/10.1016/0010-4655(84)90066-3
https://doi.org/10.1103/PhysRevB.68.064413
https://doi.org/10.1103/PhysRevB.68.064413
https://doi.org/10.1103/PhysRevB.68.064413
https://doi.org/10.1103/PhysRevB.68.064413
https://doi.org/10.1088/1751-8113/49/16/165001
https://doi.org/10.1088/1751-8113/49/16/165001
https://doi.org/10.1088/1751-8113/49/16/165001
https://doi.org/10.1088/1751-8113/49/16/165001
https://doi.org/10.1051/jphys:01987004804055900
https://doi.org/10.1051/jphys:01987004804055900
https://doi.org/10.1051/jphys:01987004804055900
https://doi.org/10.1051/jphys:01987004804055900
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1088/1367-2630/ab5ca2
https://doi.org/10.1088/1367-2630/ab5ca2
https://doi.org/10.1088/1367-2630/ab5ca2
https://doi.org/10.1088/1367-2630/ab5ca2
https://doi.org/10.1145/174130.174145
https://doi.org/10.1145/174130.174145
https://doi.org/10.1145/174130.174145
https://doi.org/10.1145/174130.174145
http://arxiv.org/abs/arXiv:1302.3143
https://doi.org/10.1103/PhysRevA.97.022337
https://doi.org/10.1103/PhysRevA.97.022337
https://doi.org/10.1103/PhysRevA.97.022337
https://doi.org/10.1103/PhysRevA.97.022337
https://doi.org/10.1088/0305-4470/13/4/009
https://doi.org/10.1088/0305-4470/13/4/009
https://doi.org/10.1088/0305-4470/13/4/009
https://doi.org/10.1088/0305-4470/13/4/009
https://doi.org/10.4007/annals.2006.163.221
https://doi.org/10.4007/annals.2006.163.221
https://doi.org/10.4007/annals.2006.163.221
https://doi.org/10.4007/annals.2006.163.221
https://doi.org/10.1103/PhysRevE.65.046137
https://doi.org/10.1103/PhysRevE.65.046137
https://doi.org/10.1103/PhysRevE.65.046137
https://doi.org/10.1103/PhysRevE.65.046137

QUANTUM SPEEDUP OF BRANCH-AND-BOUND … PHYSICAL REVIEW RESEARCH 2, 013056 (2020)

[26] M. Schmidt, Replica symmetry breaking at low temperatures,
Ph.D. thesis, Universität Würzburg, 2008.

[27] F. Barahona, On the computational complexity of Ising spin
glass models, J. Phys. A: Math. Gen. 15, 3241 (1982).

[28] S. Boettcher, Extremal optimization for Sherrington-
Kirkpatrick spin glasses, Eur. Phys. J. B 46, 501 (2005).

[29] M. Pelikan, H. Katzgraber, and S. Kobe, Finding ground states
of Sherrington-Kirkpatrick spin glasses with hierarchical BOA
and genetic algorithms, in GECCO 2008: Proceedings of the
10th Annual Conference on Genetic and Evolutionary Compu-
tation (ACM, New York, 2008), pp. 447–454.

[30] S. Kobe, Ground-state energy and frustration of the
Sherrington-Kirkpatrick model and related models,
arXiv:cond-mat/0311657.

[31] A. Montanari, Optimization of the Sherrington-Kirkpatrick
Hamiltonian, arXiv:1812.10897.

[32] S. Aaronson and A. Ambainis, Quantum search of spatial
regions, Theory Comput. 1, 47 (2005).

[33] E. Campbell, A. Khurana, and A. Montanaro, Applying quan-
tum algorithms to constraint satisfaction problems, Quantum 3,
167 (2019).

[34] See https://doi.org/10.5523/bris.2lp4ih2gs5o2w1yntjca3e3il7.
[35] D. Chen, R. Batson, and Y. Dang, Applied Integer Program-

ming: Modeling and Solution (Wiley, Hoboken, NJ, 2010).

[36] F. Brandão and K. Svore, Quantum speed-ups for semidefinite
programming, in 58th Annual IEEE Symposium on Foundations
of Computer Science (IEEE, Piscataway, 2017), pp. 415–426.

[37] J. van Apeldoorn, A. Gilyén, S. Gribling, and R. de Wolf,
Quantum SDP-solvers: Better upper and lower bounds, in 58th
Annual IEEE Symposium on Foundations of Computer Science
(IEEE, Piscataway, 2017), pp. 403–414.

[38] J. van Apeldoorn and A. Gilyén, Improvements in quantum
SDP-solving with applications, arXiv:1804.05058.

[39] I. Kerenidis and A. Prakash, A quantum interior point method
for LPs and SDPs, arXiv:1808.09266.

[40] F. Brandão, A. Kalev, T. Li, C. Y.-Y. Lin, K. Svore, and X.
Wu, Quantum SDP solvers: Large speed-ups, optimality, and
applications to quantum learning, in Automata, Languages, and
Programming: 46th International Colloquium (ICALP 2019)
(Springer, Berlin, 2019).

[41] D. Moylett, N. Linden, and A. Montanaro, Quantum speedup
of the traveling-salesman problem for bounded-degree graphs,
Phys. Rev. A 95, 032323 (2017).

[42] S. Lalley, Concentration inequalities, 2013, https://galton.
uchicago.edu/∼lalley/Courses/386/Concentration.pdf.

[43] D. Dubhashi and A. Panconesi, Concentration of Measure for
the Analysis of Randomized Algorithms (Cambridge University
Press, Cambridge, UK, 2009).

013056-11

https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1140/epjb/e2005-00280-6
https://doi.org/10.1140/epjb/e2005-00280-6
https://doi.org/10.1140/epjb/e2005-00280-6
https://doi.org/10.1140/epjb/e2005-00280-6
http://arxiv.org/abs/arXiv:cond-mat/0311657
http://arxiv.org/abs/arXiv:1812.10897
https://doi.org/10.4086/toc.2005.v001a004
https://doi.org/10.4086/toc.2005.v001a004
https://doi.org/10.4086/toc.2005.v001a004
https://doi.org/10.4086/toc.2005.v001a004
https://doi.org/10.22331/q-2019-07-18-167
https://doi.org/10.22331/q-2019-07-18-167
https://doi.org/10.22331/q-2019-07-18-167
https://doi.org/10.22331/q-2019-07-18-167
https://doi.org/10.5523/bris.2lp4ih2gs5o2w1yntjca3e3il7
http://arxiv.org/abs/arXiv:1804.05058
http://arxiv.org/abs/arXiv:1808.09266
https://doi.org/10.1103/PhysRevA.95.032323
https://doi.org/10.1103/PhysRevA.95.032323
https://doi.org/10.1103/PhysRevA.95.032323
https://doi.org/10.1103/PhysRevA.95.032323
https://galton.uchicago.edu/~lalley/Courses/386/Concentration.pdf

