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Nondispersive analytical solutions to the Dirac equation
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This paper presents new analytic solutions to the Dirac equation employing a recently introduced method that
is based on the formulation of spinorial fields and their driving electromagnetic fields in terms of geometric
algebras. A first family of solutions describe the shape-preserving translation of a wave packet along any desired
trajectory in the x-y plane. In particular, we show that the dispersionless motion of a Gaussian wave packet
along both elliptical and circular paths can be achieved with rather simple electromagnetic field configurations. A
second family of solutions involves a plane electromagnetic wave and a combination of generally inhomogeneous
electric and magnetic fields. The novel analytical solutions of the Dirac equation given here provide important
insights into the connection between the quantum relativistic dynamics of electrons and the underlying geometry
of the Lorentz group.
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I. INTRODUCTION

In this work we further expand upon the recently developed
framework of relativistic dynamical inversion (RDI) [1]
whose purpose is to solve the following problem. Given an
arbitrary (desired) spinorial space-time wave packet ψ , find
an electromagnetic vector potential Aμ such that the Dirac
equation is satisfied. This is accomplished by RDI in two
steps. First, we verify the attainability of the given evolution
ψ by assessing the existence of the underlying Aμ leading
to valid Maxwell equations (for a proof of this statement see
Appendix A). Second, if it exists, an explicit form of Aμ is
obtained which satisfies the Dirac equation for the given ψ .
Moreover, the method can also be used to assess for attainable
dynamics.

The task of constructing control fields yielding a desired
dynamics at all times and positions is one of the most impor-
tant and challenging problems in quantum control. In particu-
lar, transporting coherent wave packets without disturbance
is a required building block in quantum technologies. By
breaking down the spinor as a series of local Lorentz transfor-
mations (i.e., Lorentz transformations whose parameters are
functions of space and time), RDI allows for finding analytic
solutions which are not feasible by other current methods.

Exact solutions of the Dirac equation, a system of four
partial differential equations, are rare. The vast majority of
them are for highly symmetric stationary systems [2–4]. Only
a handful of solutions for time dependent dynamics exists
[5–16]. For instance, it was long after the first exact time
dependent solution was reported by Wolkow [5], that its

*agontijo@mpi-hd.mpg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

generalization was proposed in [6], followed by a slightly
more general exact solution [7]. Most of the investigations
call for either semiclassical methods [17–19] or numerical
calculations [20–26]. In addition to being computationally
demanding, commonly used numerical schemes are plagued
by unphysical artifacts at the fundamental level [27,28]; thus,
there is a need for systematic construction of analytic so-
lutions. RDI fulfils all these needs by providing stationary
as well as time-dependent exact solutions in two and three
dimensions (see Ref. [1] for other solutions).

Here, RDI is used to construct electromagnetic fields that
move a given Dirac spinor along any desired trajectory in the
x-y plane without spreading. In addition, general solutions for
a combination of plane electromagnetic waves and electric
and magnetic fields along the wave’s propagation direction
with arbitrary perpendicular profiles are also constructed.
Illustrations are given for the particular examples of a Gaus-
sian wave packet moving along both an ellipse and a circle
in the x-y plane. Moreover, we give solutions for a Dirac
electron in a combination of a plane electromagnetic wave
with a constant and homogeneous magnetic field along the
z axis (known as the Redmond solution [6]) as well as in a
combination of a plane electromagnetic wave with a constant
and homogeneous magnetic field and an electric field of
general profile, both along the z axis (first reported by Bagrov
et al. in Ref. [7]). Our solution generalizes the solutions
given by Redmond and Bagrov et al. in that it also allows
for inhomogeneous magnetic fields along the z axis with an
arbitrary perpendicular profile. The analytical solutions of the
Dirac equation given here provide important insights into the
relativistic dynamics of electrons.

II. METHODOLOGY OF RELATIVISTIC
DYNAMICAL INVERSION

The Dirac equation is commonly expressed as

γ μ[ich̄∂μ − ceAμ]ψ = mc2ψ, (1)
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where the summation over repeated indices is adopted, ψ is a
four-component complex spinor, m is the mass, c is the speed
of light, γ μ are the 4 × 4 so-called gamma matrices, Aμ is the
four-vector potential and μ = 0, 1, 2, 3.

The Dirac equation (1) can be viewed as a “first quan-
tization” approximation to QED. The solutions of Eq. (1)
exclude effects such as radiation reaction and particle
creation/annihilation prominent at ultrarelativistic energies.
Nevertheless, Eq. (1) provides a mean-field description of rel-
ativistic effects at low and moderate energies. A moving Dirac
electron generates the current Jμ

D = ψ†γ 0γ μψ that emits
secondary radiation, which is not accounted for by Eq. (1).
Therefore a solution of the Dirac equation is physical if the
energy loss due to the secondary radiation is much smaller
than the electron kinetic energy. This criterion should be
satisfied in the applications of the Dirac equation considered
in this work.

Equation (1) can be written in different forms emphasizing
the geometry of the Lorentz group [29–32]. Here, we employ
the Hestenes formulation [29] where the state ψ in Eq. (1) is
represented by the matrix �,

ψ =

⎛
⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎟⎠ ⇐⇒ � =

⎛
⎜⎜⎜⎝

ψ1 −ψ∗
2 ψ3 ψ∗

4

ψ2 ψ∗
1 ψ4 −ψ∗

3

ψ3 ψ∗
4 ψ1 −ψ∗

2

ψ4 −ψ∗
3 ψ2 ψ∗

1

⎞
⎟⎟⎟⎠,

obeying the Dirac equation in the matrix form

(h̄c∂/�γ2γ1 − ceA/� ) = mc2�γ0, (2)

where the Feynman slash notation was employed A/ = Aμγμ,
∂/ = γ μ∂μ (μ, ν = 0, 1, 2, 3). Note that the matrix A/ must
have real coefficients Aμ.

Considering that there is a one-to-one relation between the
Hestenes and the standard four-components spinor formula-
tions of the Dirac equation, the main advantage of using the
former is twofold: a clear geometrical picture can be assigned
to all observables of the Dirac theory as well as to the Dirac
spinor, and secondly the inversion procedure explored in this
work can be applied simply and straightforwardly as follows;
the vector potential may be expressed as a function of the
state

eA/ = h̄∂/�γ 2γ 1�−1 − mc�γ 0�−1, (3)

where

�−1 = �̃

��̃
, �̃ = γ0�

†γ0.

A crucial insight is the spinor factorization for
electrons/positrons: � = √

ρL, where ρ is a non-negative
scalar function modulating the probability density and L is
an invertible matrix representing a Lorentz group element
[29–31]. It is very important to note that for all cases other
than a free electron, the scalar density

√
ρ acts as an envelop

function ensuring that the electron’s probability distribution
ψ†ψ is normalizable. Thus it is always written in the
form exp(− f (x, y, z, t )), where f (x, y, z, t ) is semipositive
definite. For the particular case of a free particle, we have√

ρ = 1.

Considering that L is a member of the special Lorentz
group [29–31], a spinor � can always be written as the
product of spatial rotations R, boosts B and a transforma-
tion of internal degrees of freedom parametrized by the
Yvon-Takabayashi angle β [33,34]. Thus the most general
parametrization of the matrix spinor is [29–32]

� = √
ρ BReiβ/2, i = γ0γ1γ2γ3. (4)

The boost B is written in terms of the velocity components
cv = c(v1, v2, v3) (bold symbols denote three dimensional
vectors throughout)

B = B(v) = vμαμ + 1√
2(1 + v0)

, (5)

with v0 = √
1 + v2, α0 is the 4 × 4 identity matrix and αk =

γkγ0 are the well known gamma Dirac matrices; whereas
the spatial rotations are parametrized by the angles θ =
(θ1, θ2, θ3)

R = R(θ) = exp(−iθ kαk/2). (6)

Note that the density ρ, velocity v, rotation angle θ and
Yvon-Takabayashi angle β are in general functions of space
and time. In this case, we say that the Lorentz transformations
encoded in the spinor � are local. Moreover, It must be
stressed that all solutions to the Dirac equation can be put
in the form given by Eq. (4).

RDI is a trial and error procedure performed in the fol-
lowing way. Space-time functions ρ, v, θ, and β are initially
selected to describe a desired dynamics of the Dirac state �.
The constructed factorization (4) is substituted in Eq. (3) to
obtain the vector potential in the matrix form A/.

If the matrix A/ fails to obey the conditions given in
Appendix B, then the Aμ are not real, the proposed dynamics
is not reachable with physical fields, and the parametrization
ρ, v, θ, and β needs to be modified.

If the Aμ are real, then we perform the final step of the
procedure, consisting in the substitution of both the vector po-
tential Aμ and the Dirac spinor describing it, which is simply
the leftmost column of �, into the Dirac equation (1). If the
Dirac equation is satisfied exactly, then the procedure is com-
pleted: the obtained vector potential Aμ = Tr (A/γμ)/4 enables
to recover the electromagnetic fields Fμν = c(∂μAν − ∂νAμ)
and the source Jν = ∂μFμν/(ε0c) generating them. Provided
the current Jν , the obtained fields Fμν necessarily satisfy
Maxwell’s equations. Note that Jν differs from the current
Jμ

D = Tr (�γ μ�̃ )/4 = ψ†γ 0γ μψ emanating from the Dirac
electron.

Before proceeding to the discussion of the newly found
solutions, let us better illustrate the philosophy of RDI by
analyzing the case of a free electron in the Hestenes formalism
(see [29] for more details). In this case, the Dirac-Hestenes
equation (2) becomes

h̄c∂/�γ2γ1 = mc2�γ0. (7)

The two positive energy solutions are

�+
i = Uie

γ2γ1 pμxμ/h̄, (8)

where the Ui are constant spinorial Lorentz transformations.
It is noteworthy that since γ2γ1 = iα3, the exponential term
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is a rotation around the γ2γ1 axis by an angle pμxμ/h̄. In our
examples, it is shown that gauge transformations can also be
described as rotations around the same axis. Inserting (8) into
(7) gives

p/Ui = mcUiγ0 → p/ = mcUiγ0Ũi = mcv/,

since UiŨi = 1. The Lorentz transformations U1 and U2 corre-
spond to states with spin up and spin down, respectively. They
are explicitly given by

U1 = B(v), U2 = B(v)e−iα2π/2.

The two negative energy solutions are

�−
i = Vie

γ2γ1 pμxμ/h̄, (9)

where Vi = B(−v)eiπ/2, because in this case the Yvon-
Takabayashi angle is β = π . Note that ViṼi = eiπ although we
still have Viγ0Ṽi = v/. Thus the four-momentum becomes

p/ = mcv/e−iπ = −mcv/.

Since v0 is positive, the energy cp0 is negative.
From the above discussion it becomes clear that whenever

we parametrize the spinor by local Lorentz transformations,
the addition of the vector potential becomes necessary if
the Dirac equation is to be satisfied, in much the same way
as when local gauge transformations are performed. Thus
we can claim that all the information about the dynamics
of electrons interacting with external fields are contained in
the parametrization of the spinor. This aspect of RDI will
become more apparent during the discussion of our novel
solutions.

III. A GENERAL SOLUTION FOR MOTION CONFINED
TO THE x-y PLANE

We start with the following Dirac spinor describing an
electron wave packet with spin down, which is in a ground
state of some potential, having zero average velocity at time
t = 0 in the laboratory frame

ψ = e− eBG(x,y)
4ch̄

⎛
⎜⎜⎜⎝

0

N (mc2 + ε)

0

0

⎞
⎟⎟⎟⎠, (10)

corresponding to the matrix spinor

� = e− eBG(x,y)
4ch̄ N (mc2 + ε)

⎛
⎜⎜⎜⎝

0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

⎞
⎟⎟⎟⎠, (11)

where G is a positive real function to be determined later, N is
a normalization constant and eB > 0 is also a constant. Such
initial state will always lead to a magnetic field along the z
axis in the laboratory frame that is parallel to the z component
of the electron spin. Moreover, a peculiar feature of electrons
with g factor g = 2 is that the ground state energy in this case
is exactly ε = mc2 for the case of a constant and homogeneous
field [2,35].

We should point out that Eq. (11) is of the form (4). For
instance, since the electron has zero average velocity the boost
B(0) = 1 is simply given by the identity matrix. Moreover,
given that the spin of the electron is down (i.e., along the −ẑ
axis), we know from the previous section that⎛

⎜⎜⎜⎝
0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

⎞
⎟⎟⎟⎠ = exp

(
− iα2π

2

)
= R.

However, the scalar density instead of being equal to one as in
the free particle case, it is now given by

√
ρ = e− eBG(x,y)

4ch̄ N (ε +
mc2). Such modification of the matrix spinor necessarily leads
to the addition in the Dirac equation of the following vector
potential as can be derived from Eq. (3):

eA0 = 0, eAk = − h̄

2

v0s3

ρ
εkl3 ∂

∂xl
ρ, (12)

with v0 = −s3 = 1 since

ρv/ = �γ0�̃ = e− eBG(x,y)
2ch̄ N 2(ε + mc2)2γ0,

ρs/ = �γ3�̃ = −e− eBG(x,y)
2ch̄ N 2(ε + mc2)2γ3. (13)

Hence, this confirms our claim that the particular spinor
parametrization (11) will always lead to some type of mag-
netic field along the ẑ axis. In the case that G(x, y) = c(x2 +
y2), we recover the first Landau level for an electron in the
constant and homogeneous magnetic field eB = {0, 0,−eB}.
Other choices for the free function G will generally lead to
inhomogeneous magnetic fields.

The goal is to translate the electron along an arbitrary
trajectory in the x-y plane. In order to do so, we apply to the
matrix spinor (11) a boost with velocity f ′(t ) along x and g′(t )
along y

�b = B(v)�, v =
{
γ

f ′(t )

c
, γ

g′(t )

c
, 0

}
, (14)

where

γ = c√
c2 − f ′(t )2 − g′(t )2

,

along with the following transformations also performed on
the initial state �:

x′ = x − f (t ), y′ = y − g(t ), ρ ′ = ρ(x′, y′)/γ .

The boosted Dirac spinor ψb extract from �b is then

ψb =
√

ρ ′

2

⎛
⎜⎜⎜⎜⎝

0√
1 + γ

γ ( f ′(t )−ig′(t ))
c
√

1+γ

0

⎞
⎟⎟⎟⎟⎠,

√
ρ ′ = c3/2m 4

√
c2 − ( f ′(t )2 + g′(t )2) e− eBG(x′,y′ )

4ch̄

× N (ε + mc2). (15)
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The electron velocity becomes

v/ = γ

(
γ0 + γ1

f ′(t )

c
+ γ2

g′(t )

c

)
, (16)

Note that the spin vector continue to have the form (13).
From Eq. (3), we get the following components of the vector
potential:

eA0 = h̄

2

[(
1 − γ

c

)
d

dt
arctan

(
g′(t )

f ′(t )

)
+ (s × v) · �∇ ln ρ

]

− mcγ ,

eA1 = − h̄

2ρ

(
γ

∂ρ

∂y
+ ∂

c∂t
(ρv2)

)
− mcv1,

eA2 = h̄

2ρ

(
γ

∂ρ

∂x
+ ∂

c∂t
(ρv1)

)
− mcv2, eA3 = 0. (17)

The solution we found is a generalization of the 2D solutions
found in Ref. [1]. The electron trajectory is given by the free
real functions f (t ) and g(t ). In the Appendix we prove that the
spinor (15) exactly satisfies the Dirac equation with the vector
potential (17).

Before proceeding, let us give a more intuitive explanation
of the spinor parametrization (14). In general, the matrix
spinor � is an active Lorentz transformation describing the
motion of the electron as seen by an observer in the laboratory
frame. Thus the local Lorentz boost B in Eq. (14) simply
means that the observer in the laboratory frame sees the
electron moving with a varying velocity. The observer thus
concludes that the electron is being acted on by a force. Since
what we can measure are trajectories and not fields, we infer
from the spinor parametrization the electromagnetic fields
causing the observed motion of the electron. This feature is
at the core of RDI, thus being a crucial property of all the
solutions discussed in this work.

Gaussian tracing out an ellipse without dispersion

As an illustration of the newly found solution, we now
consider an electromagnetic field that moves a Gaussian wave
packet along an ellipse in the x-y plane without distortion. We
choose the following functions:

f (t ) = a1 cos(ωt ), g(t ) = a2 sin(ωt ),

G(x, y) = c(x2 + y2),

where a1, a2 are the semiaxes of the ellipse. The vector
potential is calculated from Eqs. (17) for the given functions.

According to RDI, the electromagnetic fields generating
the dynamics consists of a time dependent homogeneous
magnetic field B perpendicular to a planar electric field which
co-rotates in the x-y plane with the electron.

In Fig. 1, the crossed circles represent the time dependent
homogeneous magnetic field perpendicular to the plane, and
the electric field at times ωt = 0 [Fig. 1(a)] and ωt = 3.3
[Fig. 1(b)] are displayed as blue arrows in the x-y plane. The
dashed blue and dot-dashed red curves are the trajectories of
classical point particles, initially localized at different points
within the electron wave function, calculated by numerically
solving the Lorentz force equation with the driving fields

FIG. 1. Dispersionless motion. Time snapshot of the state evo-
lution (15) (A) at the beginning of the translation t = 0ns and
(B) at t = 6.6ns. The black diffused circle represents the electron
probability density moving along the full grey curve with frequency
ω without changing its shape. The dashed blue and dot-dashed red
curves are the trajectories of classical point particles calculated by
numerically solving the Lorentz force equation with the driving fields
given by Eqs. (D7), (D19), and (D20). This dynamics is achieved
by a combination of a rotating electric field (blue arrows) given by
Eqs. (D2) and (D3) and a time-dependent homogeneous magnetic
field B perpendicular to the plane of the figure (crossed red circles)
given by Eq. (D7). The values of the parameters are ε = mc2, B =
0.35 T, a1 = 1 μm, a2 = 2 μm, and ω = 0.5 ns−1.

given by Eqs. (D7), (D19), and (D20) in order to show that
the derived electromagnetic fields indeed lead to no spreading.
As shown in Appendix D, these electromagnetic fields satisfy
Maxwell’s equations with an electric current but without
free charges. The black diffused circle (initially at x = 1 μm
and y = 0) depicts the Gaussian state ψ

†
b ψb whose shape is

preserved during its motion along the full grey curve.
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It is important to investigate two different energy regimes
of our solutions: The Galilean regime c 
 aiω and the highly
relativistic regime aiω ≈ c, where ai are the semimajor axis
of the elliptical trajectory. Note that if aiω > c, γ becomes
complex.

The Galilean limit c → ∞ of the driving fields
given by Eqs. (D2), (D3), and (D7) consist of the
constant and homogeneous magnetic field B along
the z direction and the time dependent electric field:
eE = ω{(a2eB − a1mω) cos ωt, (a1eB − a2mω) sin ωt, 0},
eB = {0, 0,−eB}. This setup can be shown to preserve the
Gaussian shape within the Schrödinger equation. Note that
this dynamics can be observed at experimentally available
values of B = 0.35 T and |E| ∼ 0.3 V/m employed in Fig. 1.
In such a regime, the radiation energy loss per cycle is
infinitesimally (i.e., 11 orders of magnitude) smaller than the
electron kinetic energy. Therefore the obtained solutions fall
within the range of applicability of the Dirac equation.

The highly relativistic limit γ 
 1 of the driving fields is
given by Eqs. (D18) and (D17). Contrary to the nonrelativistic
case, the magnetic field becomes time dependent while the
electric field is dependent on both space and time. In the
intermediary regime shown in Fig. 1, the electric field has
a weak dependent on both x and y proportional to ω3(a2

1 +
a2

2)eB/(2c2).

IV. A GENERAL SOLUTION FOR AN ELECTRON
INTERACTING WITH THE COMBINATION OF A PLANE

ELECTROMAGNETIC WAVE WITH ELECTRIC
AND MAGNETIC FIELDS

The starting point for the construction of the desired so-
lution is the matrix spinor (11). The matrix spinor is con-
structed by applying to (11) the following combination of
local Lorentz transformations:

�T = e
c k/∧A/

2ω(p0−pz ) Bz�eγ2γ1�, (18)

where the terms applied to the left of � consist of the
following boost along the z direction:

Bz = B(vz ), (19)

with vz = {0, 0, v3(ξ )}, p0 = mcv0, pz(ξ ) = mcv3(ξ ), and
ξ = ωt − ωz/c followed by a combination of boosts and
rotations given by

k/ ∧ A/ = f ′
1(ξ )(α1 + iα2) + f ′

2(ξ )(α2 − iα1), (20)

while the term applied to the right is a rotation about the γ2γ1

axis leading to a gauge transformation given by the free func-
tion �. The ω and kμ = ω

c (1, 0, 0, 1) are the laser frequency
and wave vector, respectively. Moreover, the application of

the successive Lorentz transformations e
c k/∧A/

2ω(p0−pz ) Bz induce the
following change of coordinates:

x′ = x +
∫ ξ

0
dφ

(pz(φ) + p0) f ′
1(φ)

m2ω2
,

y′ = y +
∫ ξ

0
dφ

(pz(φ) + p0) f ′
2(φ)

m2ω2
.

The Dirac spinor is then

ψT = N (ε + mc2)

√
pz(ξ )

mc
+ p0

mc
e−i�− eB

4h̄c G(x′,y′ )

×

⎛
⎜⎜⎜⎜⎜⎜⎝

− c( f ′
1(ξ )−i f ′

2(ξ ))(cm−pz (ξ )+p0 )

2
√

2ω
√

cm(cm+p0 )(p0−pz (ξ ))√
cm(cm+p0 )√

2cm

− c( f ′
1(ξ )−i f ′

2 (ξ ))(cm−pz (ξ )+p0 )

2
√

2ω
√

cm(cm+p0 )(p0−pz (ξ ))

− pz (ξ )√
2
√

cm(cm+p0 )

⎞
⎟⎟⎟⎟⎟⎟⎠

. (21)

The components of the vector potential given by Eq. (3)
are

eA0 = ωh̄�(1,0,0)(ξ, x, y)

c
− (pz(ξ ) + p0)( f ′

1(ξ )2 + f ′
2(ξ )2)

2m2ω2

− p0 − (pz(ξ ) + p0)

4m2c2ω
f ′
1(ξ )eBG(0,1)(x′, y′)

+ (pz(ξ ) + p0)

4m2c2ω
f ′
2(ξ )eBG(1,0)(x′, y′),

eA1 = 1

2
h̄

(
eB

2h̄c
G(0,1)(x′, y′) − 2�(0,1,0)(ξ, x, y)

)
+ c f ′

1(ξ )

ω
,

eA2 = − 1

2
h̄

(
eB

2h̄c
G(1,0)(x′, y′)+2�(0,0,1)(ξ, x, y)

)
+c f ′

2(ξ )

ω
,

eA3 = eA0 − pz(ξ ) + p0. (22)

Note that the free function � can be chosen such that eA0 = 0.
Thus it amounts to a gauge transformation.

The corresponding electromagnetic fields are

eB = − eB(pz(ξ ) + p0)∇′2G(x′, y′)
4c2m2ω

{ f ′
1(ξ ), f ′

2(ξ ), 0}

+
{

f ′′
2 (ξ ),− f ′′

1 (ξ ),−eB

4c
∇′2G(x′, y′)

}
, (23)

eE =
{

ceBy,−ceBx, ωp′
z(ξ )

(
1 − pz(ξ )

p0

)}
, (24)

where ∇′2 = ∂2/∂x′2 + ∂2/∂y′2. The found solutions are writ-
ten in terms of the free functions G, f1, f2, pz and �, being
therefore very general.

It is now important to better explain the significance of the

local Lorentz transformation e
c k/∧A/

2ω(p0−pz ) and why does it leads to
plane wave fields. First of all, it should be noted that k/ ∧ A/
corresponds to a null bivector, which means that (k/ ∧ A/)2 =
0. This property implies that

e
c k/∧A/

2ω(p0−pz ) = 1 + c k/ ∧ A/
2ω(p0 − pz )

.

Thus, if we make the substitutions Bz� → Ui and

� = −pμxμ/h̄ −
∫ ξ

0
dφ

(
eAμ pμ

kμ pμ

− e2A2

2kμ pμ

)
,

in Eq. (18) we recover the well known Wolkow states [5].
Therefore replacing Ui in the Wolkow states by the more
general local Lorentz transformation Bz� leads to the addition
of extra electromagnetic fields to the plane wave field from the
original Wolkow spinor. In the Appendix, we prove that the
spinor (21) exactly satisfies the Dirac equation with the vector
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potential (22). It is noteworthy that the bivector k/ ∧ A/ consists
of the boost vector { f ′

1(ξ ), f ′
2(ξ ), 0} and the rotation vector

{− f ′
2(ξ ), f ′

1(ξ ), 0} which are mutually orthogonal. From the
expression for the electromagnetic fields (23) we see that in
the terms corresponding to the plane wave field inherited from
the Wolkow spinor (i.e., terms that do not depend on neither
∇′2G nor pz(ξ )), the electric and magnetic fields components
are given by − d

dξ
{ f ′

1(ξ ), f ′
2(ξ ), 0} and − d

dξ
{− f ′

2(ξ ), f ′
1(ξ ), 0},

respectively. Moreover, the z component of the electric field is
a consequence of the local Lorentz boost Bz.

It is instructive to consider what kind of sources will
generate the electromagnetic fields (23). From Maxwell’s
equations, we get

ρe = 1

4cω

(
4c2m2ω3 p′

z(ξ )2

p3
0

− 4ω3 p′′
z (ξ )

×
(

1 − pz(ξ )

p0

)
+ eB(p0 + pz(ξ ))

m2

×
[

f ′
1(ξ )

∂

∂y′ − f ′
2(ξ )

∂

∂x′

]
∇′2G(x′, y′)

)
,

μ0J =
{
−eB

4c

∂

∂y′ ∇′2G(x′, y′),
eB

4c

∂

∂x′ ∇′2G(x′, y′),
ρe

c

}
.

(25)

Hence, unless ∇′2G(x′, y′) is constant, which happens only if
G(x′, y′) = c(x′2 + y′2) or if G(x′, y′) is a harmonic function,
the magnetic fields from our solutions will be inhomogeneous.

In what follows, we will consider some particular cases of
our general solution (21).

A. Solution to the Dirac equation for a particle with a plane
electromagnetic wave and a homogeneous magnetic field

As a rule the free functions of our solutions are chosen such
that the source of the given electromagnetic fields (25) have a
simple form, the simplest being source free fields in vacuum.
For instance, by choosing G(x, y) = c(x2 + y2) and pz = 0,
the vector potential becomes

eA0 = − c( f ′
1(ξ )2 + f ′

2(ξ )2)

2mω2
+ ωh̄�(1,0,0)(ξ, x, y)

c
− cm

− eB(y′ f ′
1(ξ ) − x′ f ′

2(ξ ))

2mω
,

eA1 = 1

2

(
−2h̄�(0,1,0)(ξ, x, y) + 2c f ′

1(ξ )

ω
+ eBy′

)
,

eA2 = − h̄�(0,0,1)(ξ, x, y) + c f ′
2(ξ )

ω
− eBx′

2
,

eA3 = eA0 + mc,

while the electromagnetic fields are

eB =
{−eB f ′

1(ξ )

mω
+ f ′′

2 (ξ ),
−eB f ′

2(ξ )

mω
− f ′′

1 (ξ ),−eB

}
,

eE = {ceBy,−ceBx, 0}. (26)

It is straightforward to show that the electromagnetic
fields (26) obey the source-free Maxwell’s equations, as
desired. This solution is a particular case of the well

FIG. 2. Dispersionless motion in a directed plane wave field. The
diffuse tube represents the state (21). This dynamics is achieved by
a combination of circularly polarized 800-nm laser field propagat-
ing along x− = t − z/c of intensity 1021 W/cm2 with electric and
magnetic field components represented by the blue full curve and
the red dashed curve, respectively and a constant and homogeneous
magnetic field B perpendicular to the x-y plane. The values of the
parameters are ε = mc2, a0 = 3.24 T, B = 0.13 T, and ω = eB/m =
2.35 fs−1.

known Redmond solution [6] provided that limξ→−∞ f ′
i (ξ ) =

limξ→−∞ f ′′
i (ξ ) = 0, i = 1, 2 and that the asymptotic spinor

corresponds to the ground state of the homogeneous magnetic
field.

Gaussian tracing out a circle without dispersion in the presence
of a plane wave field and a homogeneous

and constant magnetic field

For this example, we choose the following functions:

f1(ξ ) = a0(cos(ξ ) − 1), f2(ξ ) = −a0 sin(ξ ).

In Fig. 2, the blue full curve represents the electric field
while the red dashed curve represents the magnetic field
components of a circularly polarized directed plane wave
propagating along the x− = ct − z direction with polarization
on the x-y plane. It is easy to see that these electromagnetic
fields satisfy the source free Maxwell’s equations. The dif-
fuse tube depicts the Gaussian state ψ

†
T ψT whose shape is

preserved during its circular motion on the x-y plane. As seen
from the explicit expression of the Dirac spinor (see Appendix
E) the wave packet is unbounded along the z axis.

B. Solution to the Dirac equation for a particle in a plane
electromagnetic wave and a combination of a homogeneous

magnetic field and an electric field

For this example, we also choose G(x, y) = c(x2 + y2)
but keep pz(ξ ) arbitrary. The electromagnetic fields then
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become

eB = −
{

eB(pz(ξ ) + p0) f ′
1(ξ )

m2cω
,

eB f ′
2(ξ )(pz(ξ ) + p0)

cm2ω
, eB

}

+ { f ′′
2 (ξ ),− f ′′

1 (ξ ), 0}, (27)

eE =
{

ceBy,−ceBx, ωp′
z(ξ )

(
1 − pz(ξ )

p0

)}
. (28)

Thus we recover the generalization of the Redmond solution
[6] first given by Bagrov et al. in Ref. [7].

V. OUTLOOK

We have applied RDI, a new framework for analytically
constructing electromagnetic fields controlling the dynamics
of the Dirac equation, to the case of dispersioneless translation
along an arbitrary trajectory in the x-y plane. Illustrations are
given for a Gaussian wave packet moving along an ellipse and
a circle in the x-y plane.

Additionally, we found solutions for a Dirac electron
driven by the combination of a plane electromagnetic wave
with both axial electric and magnetic fields with non ho-
mogeneous perpendicular profiles. In the process of finding
these new solutions, RDI provided a glimpse of what might
come by further exploration of the full freedom contained
in the spinor factorization (4). Moreover, our illustrations of
RDI also hints on a deep connection between the electron
motion in external fields described by the Dirac equation and
the underlying geometry of the Lorentz group, the symmetry
group of quantum relativistic dynamics

Having illustrated the potential of RDI, the challenges
presented upon us are twofold. First, is the task of find-
ing square-integrable solutions to the Dirac equation for an
electron interacting with realistic laser fields (e.q., Gaussian
beams). Second is whether or not RDI can be used as means to
construct the complete set of eigenvalues and eigenfunctions
for bound state problems. The key to such understanding
lies in elucidating the physical and geometrical meanings of
each term in the Dirac and Dirac-Hestenes spinors for the
solutions to the Dirac equation. It is also noteworthy that
another interesting research direction would be the application
of RDI to the Dirac equation in curved spacetime within
the formalism developed by Luca Fabbri (for instance, see
Refs. [36,37] and references therein).
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APPENDIX A: PROOF THAT eA/ SATISFY
MAXWELL’S EQUATIONS

The importance of finding a real A/ through the inversion
procedure is the following. First, let us recall the form of
Maxwell’s equations

ρe = �∇ · E, �∇ · B = 0, μ0J = �∇ × B − ∂

c2∂t
E,

�∇ × E = − ∂

c∂t
B. (A1)

Giving any real function A0(t, x, y, z) and any real vector field
A = (A1(t, x, y, z), A2(t, x, y, z), A3(t, x, y, z))T , set

B = �∇ × A, (A2)

E = −�∇(A0) − ∂

c∂t
A. (A3)

By also setting

ρe = �∇ · E, μ0J = �∇ × B − ∂

c2∂t
E, (A4)

we get solutions to (A1). That this is the case can be easily
seem from Eqs. (A2) and (A3) as follows. Since B is the curl
of a vector field, then �∇ · B = 0. Moreover, by taking the curl
of E, we get from (A3)

�∇ × E = − ∂

c∂t
�∇ × A → �∇ × E = − ∂

c∂t
B. (A5)

Therefore the vector potential derived from the RDI method
is guaranteed to obey Maxwell’s equations.

APPENDIX B: CONDITIONS FOR ATTAINABILITY
OF THE PROPOSED DYNAMICS

From products of γ matrices one can form the 16 linearly
independent matrices �n which form a basis for the space of
traceless 4 × 4 complex matrices. They are explicitly given by

�1 = 1, �2 = γ 0, �3 = γ 1, �4 = γ 2, �5 = γ 3,

�6 = α1, �7 = α2, �8 = α3, �9 = γ 2γ 3,

�10 = γ 3γ 1, �11 = γ 1γ 2, �12 = γ 1γ 2γ 3,

�13 = γ 0γ 2γ 3, �14 = γ 0γ 3γ 1,

�15 = γ 0γ 1γ 2, �16 = γ 5.

Since the vector potential must be a vector, Eq. (3) is required
to obey the following constraints:

Tr [eA/�1]/4 = 0 and Tr [eA/�n]/4 = 0, for 6 � n � 16.

(B1)

The above conditions will be refined in a forthcoming paper.

APPENDIX C: PROOF THAT THE CALCULATED VECTOR POTENTIALS REALLY SATISFIES
THE DIRAC EQUATION FOR THE GIVEN SPINORS

We begin by expanding the Dirac equation given in Eq. (1) of the main text

ich̄(
1

c
∂tγ

0 + ∂xγ
1 + ∂yγ

2 + ∂zγ
3)ψ − (ceA0γ0 + ceA1γ1 + ceA2γ2 + ceA3γ3 + mc2)ψ = 0. (C1)
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For the spinor (15) of the main text, the first term on the right-hand side of Eq. (C1) becomes

ich̄(
1

c
∂tγ

0 + ∂xγ
1 + ∂yγ

2 + ∂zγ
3)ψb = ψ̄, ψ̄ =

⎛
⎜⎜⎜⎝

0

ψ̄2

ψ̄3

0

⎞
⎟⎟⎟⎠,

where

ψ̄2 =
i
√

γ

γ+1N (c2m + ε)e− eBG(x′ ,y′ )
4ch̄

4
√

2c2

{
c(−eB f ′(t )G(1,0)(x′, y′) − eBg′(t )G(0,1)(x′, y′))

γ

+ 2γ h̄( f ′(t ) f ′′(t ) + g′(t )g′′(t )) + iceB( f ′(t )G(0,1)(x′, y′) − g′(t )G(1,0)(x′, y′))
}
,

ψ̄3 = −
√

γ

γ+1N (c2m + ε)e− eBG(x′ ,y′ )
4ch̄

4
√

2c2

{
2cγ eBG(0,1)(x′, y′)

(
c + γ g′(t )(−g′(t )−i f ′(t ))

c(γ+1)

)
γ + 1

− 8cγ h̄(g′′(t ) + i f ′′(t ))

+
2icγ eBG(1,0)(x′, y′)

(
c − γ f ′(t )( f ′(t )−ig′(t ))

c(γ+1)

)
γ + 1

+ 4γ 2h̄(g′(t ) + i f ′(t ))((1 + 2i) f ′′(t )g′(t ) + f ′(t )( f ′′(t ) − 2ig′′(t )))

c(γ + 1)

}
,

γ = c√
c2 − f ′(t )2 − g′(t )2

.

It is then straightforward to show that upon substituting the vector potential given in Eq. (17) of the main text on the second term
on the right-hand side of (C1), we get

(ceA0γ0 + ceA1γ1 + ceA2γ2 + ceA3γ3 + mc2)ψb = ψ̄.

Thus the Dirac equation (C1) is exactly satisfied.
For the spinor (21) of the main text, the first term on the right-hand side of Eq. (C1) becomes

ich̄(
1

c
∂tγ

0 + ∂xγ
1 + ∂yγ

2 + ∂zγ
3)ψT = φ, φ =

⎛
⎜⎜⎝

φ1

φ2

φ3

φ4

⎞
⎟⎟⎠,

where

φ1 = − √
ρe−i� ch̄pz(ξ )

2
√

2
√

cm(cm + p0)

{(
eBG(0,1)(x′, y′)

2ch̄
+ ieBG(1,0)(x′, y′)

2ch̄

)
+ i(2�(0,0,1)(ξ, x, y) + 2i�(0,1,0)(ξ, x, y))

}
,

φ2 = (cm + p0 − pz(ξ ))
√

ρe−i�

4
√

2ω
√

cm(cm + p0)(p0 − pz(ξ ))

{(
1

2
iceB( f ′

1(ξ ) + i f ′
2(ξ ))G(1,0)(x′, y′) + 1

2
c( f ′

1(ξ ) + i f ′
2(ξ ))eBG(0,1)(x′, y′)

)

+ 2
(
c2 h̄( f ′

2(ξ ) + i f ′
1(ξ ))�(0,0,1)(ξ, x, y) + c2h̄( f ′

1(ξ ) − i f ′
2(ξ ))�(0,1,0)(ξ, x, y) − 2ω2h̄(p0 − pz(ξ ))�(1,0,0)(ξ, x, y)

)}
,

φ3 = − √
ρe−i� h̄

√
mc(mc + p0)

2
√

2m

{(
eBG(0,1)(x′, y′)

2ch̄
+ ieBG(1,0)(x′, y′)

2ch̄

)
+ i(2�(0,0,1)(ξ, x, y) + 2i�(0,1,0)(ξ, x, y))

}
,

φ4 = (cm + p0 − pz(ξ ))
√

ρe−i�

4
√

2ω
√

cm(cm + p0)(p0 − pz(ξ ))

{
1

2
ceB( f ′

2(ξ ) − i f ′
1(ξ ))G(1,0)(x′, y′) − 1

2
ceB( f ′

1(ξ ) + i f ′
2(ξ ))G(0,1)(x′, y′)

+ 2[−ic2 h̄( f ′
1(ξ ) − i f ′

2(ξ ))�(0,0,1)(ξ, x, y) − c2h̄( f ′
1(ξ ) − i f ′

2(ξ ))�(0,1,0)(ξ, x, y)

+ 2ω2h̄(
√

c2m2 + pz(ξ )2 − pz(ξ ))�(1,0,0)(ξ, x, y)]

}
,

√
ρ = N (ε + mc2)

√
pz(ξ )

mc
+ p0

mc
e− eB

4h̄c G(x′,y′ ).
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It is then straightforward to show that upon substituting the vector potential given in Eq. (22) of the main text on the second term
on the right-hand side of (C1) we get

(ceA0γ0 + ceA1γ1 + ceA2γ2 + ceA3γ3 + mc2)ψT = φ.

Thus the Dirac equation (C1) is exactly satisfied.

APPENDIX D: DISPERSIONLESS MOTION ALONG AN ELLIPTICAL PATH: GAUSSIAN STATE IN 2D

For this particular case, the Dirac spinor ψb is

ψb =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

N cm 4

√
c2−ω2

(
a2

1 sin2(tω)+a2
2 cos2(tω)

)√
c2√

c2−ω2 (a2
1 sin2 (tω)+a2

2 cos2 (tω))
+c exp(− B((x−a1 cos(tω))2+(y−a2 sin(tω))2 )

4h̄ )

√
2

N c2mω(−a1 sin(tω)+ia2 cos(tω)) exp(− B((x−a1 cos(tω))2+(y−a2 sin(tω))2 )
4h̄ )

√
2 4
√

c2−ω2(a2
1 sin2(tω)+a2

2 cos2(tω))
√

c2√
c2−ω2 (a2

1 sin2 (tω)+a2
2 cos2 (tω))

+c

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D1)

The corresponding electric field is

eE1 = cos(tω)

2c2γ

(
ω2

(
c2 − a2

2ω
2
)(

a2ω
(
a2

1eB − h̄
) − 2a1c2m

)
c2γ 2

+ a2eBγ 2ω

(
a2

2ω
2

γ 2
+ 2c2

))

−
a1a2eBxω

(
c2γ 2 − (c2−a2

1ω
2 )(c2−a2

2ω
2 )

c2γ 2

)
2c2γ

(
a2

1 − a2
2

) − 1

4c2γ
eByω3 sin(2tω)

(
a2

1

(
c2 − a2

2ω
2
)

c2γ 2
+ a2

2

)
, (D2)

eE2 = sin(tω)

2c2γ

(
a1eBω

(
a2

1ω
2 + 2c2γ 2

) − ω2
(
c2 − a2

1ω
2
)(

2a2c2m − a1ω
(
a2

2eB − h̄
))

c2γ 2

)

+
a1a2eByω

(
c2γ 2 − (c2−a2

1ω
2 )(c2−a2

2ω
2 )

γ 2c2

)
2c2γ

(
a2

1 − a2
2

) − 1

4c2γ
eBxω3 sin(2tω)

(
a2

2

(
c2 − a2

1ω
2
)

c2γ 2
+ a2

1

)
, (D3)

eE3 = 0. (D4)

The magnetic field is

eB1 = 0, (D5)

eB2 = 0, (D6)

eB3 = − eB
(
2c2 − ω2

(
a2

1 sin2(tω) + a2
2 cos2(tω)

))
2c

√
c2 − ω2

(
a2

1 sin2(tω) + a2
2 cos2(tω)

) = −eB

2

(
γ + 1

γ

)
. (D7)

The obtained electromagnetic field obeys Maxwell’s equations

∇ · E = 0, (D8)

∇ · B = 0, (D9)

∇ × E + ∂

∂t
B = 0, (D10)

∇ × B − 1

c2

∂

∂t
E = μ0J, (D11)

with the current J

μ0eJ1 = − ∂

c2∂t
eE1, (D12)

μ0eJ2 = − ∂

c2∂t
eE2, (D13)

μ0eJ3 =0. (D14)
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The nonrelativistic limit of the electromagnetic field (D2)–(D7) is

eEnr = {ω cos(tω)(eBa2 − a1mω), ω sin(tω)(eBa1 − a2mω), 0}, (D15)

eBnr = {0, 0,−eB}. (D16)

It is noteworthy that the time dependence of the magnetic field as well as the space dependence of the electric field are more
pronounced in the high energy regime, in which ωai ≈ c, where ai is the semimajor axis of the ellipse. In this regime γ 
 1 and
the electric and magnetic fields becomes

eBr ≈ −
{

0, 0,
γ eB

2

}
, (D17)

eEr ≈ γ eBω

{
a2 cos ωt − a2a1x

2
(
a2

1 − a2
2

) , a1 sin ωt + a1a2y

2
(
a2

1 − a2
2

) , 0

}
. (D18)

In the classical limit h̄ → 0, the magnetic field (D7) remains unchanged while the electric field becomes

eẼ1 = cos(tω)

2c2γ

(
ω2

(
c2 − a2

2ω
2
)(

a2ωa2
1eB − 2a1c2m

)
c2γ 2

+ a2eBγ 2ω

(
a2

2ω
2

γ 2
+ 2c2

))

−
a1a2eBxω

(
c2γ 2 − (c2−a2

1ω
2 )(c2−a2

2ω
2 )

c2γ 2

)
2c2γ

(
a2

1 − a2
2

) − 1

4c2γ
eByω3 sin(2tω)

(
a2

1

(
c2 − a2

2ω
2
)

c2γ 2
+ a2

2

)
, (D19)

eẼ2 = sin(tω)

2c2γ

(
a1eBω

(
a2

1ω
2 + 2c2γ 2

) − ω2
(
c2 − a2

1ω
2
)(

2a2c2m − a1ωa2
2eB

)
c2γ 2

)

+
a1a2eByω

(
c2γ 2 − (c2−a2

1ω
2 )(c2−a2

2ω
2 )

γ 2c2

)
2c2γ

(
a2

1 − a2
2

) − 1

4c2γ
eBxω3 sin(2tω)

(
a2

2

(
c2 − a2

1ω
2
)

c2γ 2
+ a2

1

)
. (D20)

The current constructed from the Dirac spinors is JD = �γ0�̃, whose components Jμ
D = Tr(�γ0�̃γμ)/4 are

J0
D = N 2c4m2 exp

(
−B((x − a1 cos(tω))2 + (y − a2 sin(tω))2)

2h̄

)
, (D21)

J1
D = −N 2a1c3m2ω sin(tω) exp

(
−B((x − a1 cos(tω))2 + (y − a2 sin(tω))2)

2h̄

)
, (D22)

J2
D = N 2a2c3m2ω cos(tω) exp

(
−B((x − a1 cos(tω))2 + (y − a2 sin(tω))2)

2h̄

)
, (D23)

J3
D = 0. (D24)

The velocity associated with the current JD is obtained as vk = cJk
D/ρ

v1 = −a1ω sin(ωt ), (D25)

v2 = a2ω cos(ωt ), (D26)

with the magnitude given by |v| = ω
√

a2
1 cos(ωt )2 + a2

2 sin(ωt )2 . Thus superluminal propagation is avoided if aiω < c, i = 1, 2.
The current Je (D12)–(D14) entering Maxwell’s equations (D8)–(D11) is related to the current JD (D21)–(D24) constructed

from the Dirac spinor in the following way: The Maxwell current Je creates the electromagnetic field (D2)–(D7) steering the
Dirac wave packet (D1). Moving along an elliptical trajectory, a Dirac electron yields the current JD emitting radiation. If the
radiation losses are large, the proposed solutions may not work. Therefore the calculated electromagnetic fields are physically
meaningful if the electron kinetic energy is much larger than the energy emitted via radiation. The dispersionless rotation shown
in Fig. 1 of the main text obeys well this criterion because the radiative energy loss per period is ∝10−32J, whereas the electron
kinetic energy is ∝10−21J.
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APPENDIX E: GAUSSIAN TRACING OUT A CIRCLE WITHOUT DISPERSION IN THE POLARIZATION
PLANE OF A CIRCULARLY POLARIZED DIRECTED PLANE WAVE FIELD

For this particular case the Dirac spinor ψT is

ψT = e−i�− eB((a0c(cos(ξ )−1)+mxω2 )2+(−a0c sin(ξ )+myω2 )2

4m2ω4 h̄

⎛
⎜⎜⎜⎝

a0(sin(ξ )−i cos(ξ ))
2mω

1
a0(sin(ξ )−i cos(ξ ))

2mω

0

⎞
⎟⎟⎟⎠ (E1)

with

� = c
(
cξ

(
a2

0(eB + mω) + 2m3ω3
) + a0eB(mω2(x sin(ξ ) + y cos(ξ )) − a0c sin(ξ ))

)
2m2ω4h̄

.

The current constructed from the Dirac spinors is JD = �T γ0�̃T , whose components Jμ
D = Tr(�T γ0�̃T γμ)/4 are

J0
D = e− eB((a0c(cos(ξ )−1)+mxω2 )2+(−a0c sin(ξ )+myω2 )2

2m2ω4 h̄

(
1 + a2

0

2m2ω2

)
, (E2)

J1
D = e− eB((a0c(cos(ξ )−1)+mxω2 )2+(−a0c sin(ξ )+myω2 )2 )

2m2ω4 h̄

(
a0 sin (ξ )

mω

)
, (E3)

J2
D = e− eB((a0c(cos(ξ )−1)+mxω2 )2+(−a0c sin(ξ )+myω2 )2 )

2m2ω4 h̄

(
a0 cos (ξ )

mω

)
, (E4)

J3
D = e− eB((a0c(cos(ξ )−1)+mxω2 )2+(−a0c sin(ξ )+myω2 )2 )

2m2ω4 h̄

(
a2

0

2m2ω2

)
. (E5)

The spin density constructed from the Dirac spinors is ρs = �T γ3�̃T , whose components ρsμ = Tr(�T γ3�̃T γμ)/4 are

ρs0 = e− eB((a0c(cos(ξ )−1)+mxω2 )2+(−a0c sin(ξ )+myω2 )2 )

2m2ω4 h̄

(
a2

0

2m2ω2

)
, (E6)

ρs1 = e− eB((a0c(cos(ξ )−1)+mxω2 )2+(−a0c sin(ξ )+myω2 )2 )

2m2ω4 h̄

(
a0 sin (ξ )

mω

)
, (E7)

ρs2 = e− eB((a0c(cos(ξ )−1)+mxω2 )2+(−a0c sin(ξ )+myω2 )2 )

2m2ω4 h̄

(
a0 cos (ξ )

mω

)
, (E8)

ρs3 = e− eB((a0c(cos(ξ )−1)+mxω2 )2+(−a0c sin(ξ )+myω2 )2 )

2m2ω4 h̄

(
−1 + a2

0

2m2ω2

)
. (E9)
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