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Interstitial flows regulate collective cell migration heterogeneity through adhesion
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The migration behaviors of cancer cells are known to be heterogeneous. However, the interplay between the
adhesion interactions, dynamical shape changes, and fluid flow in regulating cell migration heterogeneity and
plasticity during cancer metastasis is still elusive. To further quantitative understanding of cell motility and
morphology, we develop a theory using a stochastic quantization method that describes the role of biophysical
cues in regulating diverse cell motility. We show that the cumulative effect of time-dependent adhesion
interactions that determine the structural rearrangements and self-generated force due to actin remodeling
dictate the superdiffusive motion of mesenchymal phenotype in the absence of flow. Interstitial flows regulate
cell motility phenotype and promote the amoeboid over mesenchymal motility through adhesion interactions.
Cells exhibit a dynamical slowing down of collective migration, with a decreasing degree of superdiffusion.
Mesenchymal cells are more persistent and diffusive compared to amoeboid cells. Our findings suggest a
mechanism of interstitial flow-induced directed motion of cancer cells through adhesion and provide the
much-needed insight into a recent experimental observation concerning the diverse motility of breast cancer
cells.
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I. INTRODUCTION

Collective cancer cell invasion, followed by local and dis-
tant metastasis, is a hallmark of cancer [1]. Cancer metastasis
is a multistep process, where tumor cells detach from the
primary tumor, invade through the interstitial extracellular
matrix, intravasation of tumor cells into vascular vessels, ex-
travasation of circulating tumor cells to peripheral tissues, and
establish a secondary tumor at a distant organ [2–11]. Dynam-
ics associated with invasion and metastasis involve the collec-
tive cell migration regulated by biomechanical (e.g., cytokines
secreted by cells and nutrients) and biophysical cues (e.g.,
fluid flows and extracellular matrix) [12–16]. Tumor cells
reside in an extracellular matrix (ECM) containing interstitial
fluid that transports nutrients and signaling molecules. The
interstitial flow has been shown to affect the morphology and
migration of cells such as fibroblasts, cancer cells, endothelial
cells, and mesenchymal stem cells [17]. Interstitial flows are
particularly important for tumor cell invasion because it is
elevated in the tumor microenvironment due to the heightened
interstitial fluid pressure as well as the abnormal angiogenic,
lymphangiogenic blood and lymphatic vessels [13–16,18–
21]. The flow speed associated with interstitial flows are in
the order of a few micrometers per second in normal tissue
[12,22–24]. Two types of motility (e.g., amoeboid and mes-
enchymal) have been broadly categorized in cell migration
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in three-dimensional (3D) architecture [25,26]. Cells with
an aspect ratio smaller than 2.0 are considered rounded or
amoeboid and cells with an aspect ratio greater than 2.0 are
considered elongated or mesenchymal (see Fig. 1) [27–29].

Recent experiment has demonstrated that interstitial flows
regulate the cancer cell migration heterogeneity within a
three-dimensional biomatrix. Using a microfluidic model, au-
thors show that breast cancer cells (MDA-MB-231) embedded
in a collagen matrix exhibit both amoeboid and mesenchymal
motility phenotype and interstitial flows promote amoeboid
over mesenchymal motility of breast cancer cells [30].

How interstitial flows promote cancer cell invasion is
largely unknown. The understanding of this process could
help to develop drugs that inhibit the process and prevent can-
cer from metastasizing. How the biophysical forces modulate
tumor cell migration heterogeneity and plasticity and create
a complex spatiotemporal dynamical property during cancer
metastasis is still elusive.

In this paper, we develop a theory to describe how bio-
physical cues regulate the diverse collective cell motility. The
cumulative effect arising from the nonequilibrium description
of living cells using a time-dependent mechanical interaction,
and flows, lead to complex dynamics, which may have far-
reaching implications in our understanding of cancer metasta-
sis. One of the major difficulties in the study of collective be-
havior of the cells far from equilibrium is the breakdown of a
fluctuation-dissipation theorem (FDT), hence, independent di-
agrammatic expansions for the response function and the cor-
relation function. The equilibrium distribution is not known
and averages can be computed only for the statistical noise.

We study the relevant continuum description of the col-
lective behavior of a colony of cells in the physical time
scale, using the stochastic quantization technique, origi-
nally proposed by Parisi and Wu [31]. We show that the
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FIG. 1. In the absence of flow cells exhibit the mesenchymal
motility phenotype and interstitial flow promotes amoeboid motility
phenotype.

time-dependent adhesion interactions that determine the struc-
tural rearrangements, the long-range hydrodynamic interac-
tions among living cells, and self-generated force due to actin
remodeling dictate the complex collective behavior, when a
continuum description of the cellular colony is invoked, in the
physical time scale. We find that cells exhibit both amoeboid
and mesenchymal motility characterized by superdiffusive
motion. The mean-square displacement (MSD) of the cells
for the mesenchymal motility behaves as tα , with α = 1.43.
The interstitial flows impair the collective migration with a
gradually decreasing degree of superdiffusion and promote
the amoeboid motility phenotype over mesenchymal motility.
In the case of flow, the MSD exponent α = 1.2, which reflects
the dynamical slowing down of the spatiotemporal collective
migration. The mesenchymal cell migration is more persistent
than the amoeboid motility phenotype.

The anomalous diffusion has been observed in many con-
texts from single to collective motions of particles [32–36].
Sancho et al. [32] show the anomalous diffusion of particles
on a solid surface controlled by the friction coefficient. In
the present model, we focus on the dynamics of cells in the
low Reynolds number regime, where mechanical interactions
exhibit collective phenomena characterized by the superdif-
fusive behavior of cells. We identify the interactions based
on the experiment [30] that exhibit collective behavior for
the different motility phenotype. According to the experiment,
the mesenchymal cells develop long-lived adhesion; we model
the adhesion interaction time dependent with a time scale of
attachment λ−1. We show how the time scale of attachment is
reduced by flow-induced sweeping away the fibronectin (FN)
molecules and cells exhibit amoeboid motility phenotype.
We write down the density field equation for the cells. We
are interested in the dynamics of cells, for example, the
mean-square displacement (MSD) of a cell which is given
by the relation MSD ∼ t2/z, with the dynamic exponent z.
The dynamics are out of equilibrium due to the self-motility
of cells and time-dependent interactions. We are interested
in finite-time behavior. We use the Stochastic quantization
technique to obtain the dynamic exponent, in which the cor-
relation function is obtained in fictitious time τ . The real-time
correlation is obtained by taking the asymptotic limit in the
fictitious time direction. The scaling exponent is obtained by
simple power counting analysis.

Mesenchymal migration is characterized by an elongated
fibroblastlike morphology, highly condensed cell-matrix ad-
hesions, and formation of contractile actomyosin bundles

[37]. The elongated cells demonstrated a mesenchymal phe-
notype where the actin filaments formed a highly polarized
bundle. It is known that mesenchymal cells form long-lived
adhesions with the ECM fiber bundles, which trigger the
downstream signaling that activates actin remodeling and
climbed along the fibers, and thus cell migration. Fibronectin
(FN) is an important adhesion molecule in mediating mam-
malian cell migration. Cell-secreted FNs assemble into a
fibrillar form and bind to collagen, which promotes a mes-
enchymal cell phenotype [30]. In the mesenchymal mode,
cells wider than the matrix pore size extend protrusions at the
leading edge to probe the surrounding ECM fibers, forming
stable adhesions at the poles of the elongated cell. Further po-
larization and strengthening of adhesions is accompanied by
a rise in actomyosin contractility exerting traction force and
proteolytic degradation of ECM fibers at cell-ECM junctions,
and rupture the adhesions at the trailing edge of the cell, thus
migrating in a path-generating manner [30,37].

Amoeboid migration is characterized by a rounded mor-
phology, formation of bleblike protrusions, restriction of ac-
tomyosin contractility to the cell cortex, and transient, short-
lived adhesions with the ECM, and squeezing through the ma-
trix pore when finding a suitable path [30,37]. The inhibition
of proteolysis or integrin-dependent adhesion can be compen-
sated by a weak or nonadhesive amoeboid mode of migration
in which the cell adopts a rounded morphology and changes
its shape by generating hydrostatic pressure at the cell cortex,
thus forcibly extruding processes through available spaces in
the porous matrix and eventually deforming the cell body.
In the case of flow, the interstitial-flow-induced amoeboid
cell motility was likely caused by the lack of assembled en-
dogenous adhesion molecules such as FN. More specifically,
the flows carried away the cell-secreted adhesion molecules
before they were assembled into fibrils and anchored to the
collagen fibers [30].

II. THEORY

In the absence of flow, cells exhibit mesenchymal motility
phenotype in a 3D collagen matrix. Cells secreted fibronectin
molecules into a fibrillar form, and form long-lived adhesions
with the collagen fibers, which trigger the downstream sig-
naling that activates actin-network expansion and thus exhibit
cell migration [30]. We consider the dynamics of a colony
of cells in a dissipative environment where inertial effects
are negligible. Each cell experiences systematic forces arising
from mechanical interactions, and a Gaussian random force
with a white-noise spectrum. The equation of motion for a sin-
gle mesenchymal cell i is ∂ri

∂t = −∑N
j=1 ∇U [ri(t ) − r j (t )] +

ηi(t ) + f0ξi(t ), where U contains repulsive interactions with
range λ1, adhesion interactions with collagen matrix with
range σ1, and favorable attractive interactions between cells
with range σ , and with strengths v, g, and κ respectively. We
use Gaussian potentials (see Appendix A 1 for details) in order
to obtain analytical solutions. Needless to say, the conclusions
would be valid for any short-ranged U . The highly deformable
cells with flexible cell boundaries are connected through cell-
cell junctions, which can be ruptured and reconnected. Cell
structural rearrangement for changing nearest-neighbor cells
has been seen during the migration of cells in movie S1 in
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Ref. [30]. Therefore we model the cell-cell interaction as
the time-dependent potential. We assume that the adhesion
strength is changing during the topological rearrangement
via a f + (ai − a f )e−λt [38]. ai and a f are initial and final
interaction strengths (a stands for g and κ) and the time scale
for changing the receptor-ligand interaction is given by λ−1.
In addition to short-range interactions, the cells that are well
separated interact with each other via the matrix. The cells
in the collagen matrix can be modeled as force concentration
dipoles. The cells interact via long-ranged elastic interaction
potentials (∼1/r3 with distance r) [39–41]. The interaction
potentials depend on elastic constants, geometry, and cellular
orientations. For simplicity of the calculation, we consider
that the interaction is isotropic and repulsive. The potential
Uelastic = (2+
)2P2

4πc(1+
) (1/r3), where P is the magnitude of the
force dipole, 
 = λ/μ, and c = 2μ + λ, where μ and λ are
the Lamé coefficients of the isotropic elastic medium [41].
The Gaussian white noise satisfies 〈ηi(t )η j (t ′)〉 = 2Dδi jδ(t −
t ′). The mesenchymal cells are subject to a self-generated
force of actin-network remodeling. The cells are thus in addi-
tion subject to a random self-generated force with amplitude
f0. The randomness is modeled by an athermal noise ξ (t ),
which is exponentially correlated over a time scale τp. The
statistics of the ξ (t ) is given by 〈ξ (t )〉 = 0, 〈η(t )ξ (t ′)〉 = 0
and ξ (t )ξ (t ′) = b exp[−|t − t ′|/τp]. Where b is the dimen-
sionless constant. The athermal noise in general does not obey
the FDT.

For the mesenchymal phenotype, the cells form long-lived
adhesion with the matrix and exhibit matrix mediated long-
range elastic interactions when they are well separated. On the
other hand, the amoeboid cells form short-lived adhesion with
the matrix and migrate squeezing through the pore. Therefore,
we assume amoeboid cells do not feel long-range elastic
interactions in the long-time limit.

In the absence of flow, cell-secreted FNs assemble into a
fibrillar form and bind to collagen, which promotes a mes-
enchymal cell phenotype. In the case of flow, the interstitial-
flow carried away the cell-secreted adhesion molecules before
they were assembled into fibrils and anchored to the collagen
fibers and thus amoeboid cell motility was likely caused by
the lack of assembled endogenous adhesion molecules such
as FN. Therefore, in the case of flow cells form short-lived
adhesion with matrix and form rounded morphology and thus
amoeboid motility [30]. The experiment in [30] investigates
the role of exogenous FNs in cell morphology and motility
in the absence/presence of the flows. In the presence of flow
the time scale of adhesion is reduced by sweeping away
the cell-secreted adhesion molecules and therefore the cells
exhibit amoeboid motility, which can be understood in the
following way. We write the concentration equation for the
FN molecules which is advected by the flow, ∂C

∂t + ∇ · (Cv) =
−λC, where λ is the rate of FN molecules assembled into
fibrilar form and the fluid velocity follows η∇2v = ∇ · f ,
with Gaussian random noise f . Assume the strength a de-
pends on the concentration of FN molecules. We write a(C) =
a1 + a2

δC
C0

+ a3(δC/C0)2. From the concentration equation for
FN molecules and velocity equation, we obtain the average
adhesion strength 〈a〉 = a1 + a3(1 − exp[−2λt]). The aver-
age adhesion strength can be written in the form a f + (a0 −

a f ) exp[λ′t], where a1 = a0 and a3 = a1 + a f . Now the time
scale of adhesion, i.e., (λ′)−1 = 1

2λ
, is reduced by a factor of

2. The cell becomes short lived and exhibits ameboid motility
phenotype. In the presence of flow we use the time scale of ad-
hesion (λ′)−1. The amoeboid cells migrate through squeezing
the matrix pore when finding a suitable path. Therefore we
consider the long-range hydrodynamic interactions between
amoeboid cells leading to collective behavior of cell motility.
We begin by considering the dynamics of a colony of cells in
the presence of flow in a dissipative environment where iner-
tial effects are negligible. Each cell experiences mechanical
forces, such as adhesion, excluded volume interactions due
to neighbors, and a random force characterized by Gaussian
white noise. The equation of motion for a single cell i is [42]

∂ri

∂t
= kBT

N∑
j=1

μi j∇r jU (ri(t ), r j (t )) + ηi(t ) + f0ξi(t ).

(1)
The first term on the right-hand side of Eq. (1) is the effect
of force acting on cell j which creates a hydrodynamic flow
field in the fluid, thereby entraining cell i, where U contains
repulsive interactions with range λ1, adhesion interactions
with collagen matrix with range σ1, and favorable attractive
interactions between cells with range σ , and with strengths v,
g, and κ respectively (see Appendix A for details).

ηi is assumed to be Gaussian random vectors exhibiting hy-
drodynamic correlations according to fluctuation-dissipation
theorem (FDT), 〈ηi(t )η j (t ′)〉 = 2kBT D ←→μ i jδ(t − t ′). The dy-
namics of the cell is described by ∂r

∂t = u(r), where r is the
position of the cell. The flow velocity of the fluid at r is
determined by the solution of the Stokes equation, η∇2u(r) =
∇P + F , where, F = ∑N

i f δ(r). We assume that the fluid
is incompressible, i.e., ∇ · u = 0. From these sets of equa-
tions, the Stokes equation is readily solved to obtain a fluid
velocity at the center of the cell at r for a point force f as,
u(r) = kBT

∑N
j=1 μi j f j , where μi j = 1

8πηr (δi j + rir j

r2 ) is the
mobility matrix with the relative coordinate between cell i
and j, r = ri − r j . The long-ranged nature of hydrodynamic
interaction apparent from u(r) suggests that a collection of
cells that dynamically exert forces on the fluid medium they
are immersed in could influence each other very strongly,
leading to the possibility of collective behaviors.

The protrusive flowing of the anterior actin network of
the cell and squeezing actomyosin contractions of the trailing
edge are modeled as the cells are subjected to a self-generated
force with amplitude f0 during their pathfinding motion in the
collagen matrix. The statistics of the ξ (t ) is the same as for
mesenchymal motility.

We consider the evolution of the density function for a
single cell φi(r, t ) = δ[r − ri(t)]. A closed-form Langevin
equation for the density, φ(r, t ) = ∑

i δ[r − ri(t)], can be
obtained using a standard approach [43]. The time evolution
of φ(r, t ) is given by

∂φ(r, t )

∂t
= ∇ ·

(
φ(r, t )

∫
dr′φ(r′, t )←→μ ∇U (r − r′)

)

+D∇2←→μ φ(r, t ) + ∇ · [(η + ξ )φ1/2(r, t )].

(2)
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Note that the density equation contains the same informa-
tion as N-body stochastic Langevin equations. This is an
out-of-equilibrium problem characterized by the absence of
fluctuation-dissipation theorem due to a long-range hydrody-
namic term and self-generated force due to actin remodel-
ing. Equation (2) can be studied analytically by treating the
nonlinear terms using a perturbative approach, based on the
stochastic quantization scheme [31,44,45].

Stochastic quantization approach

To understand the dynamics of collections of cells, we use
the stochastic quantization method developed by Parisi-Wu in
another context. The collective migration of cells described by
Eq. (2) is an out-of-equilibrium problem characterized by the
absence of FDT, which relates the correlation and response
function in momentum space as C = 1

w
ImG. For the usual

analytic route to get the scaling solution of this problem, one
can introduce a response field φ̃. We need to calculate both
the response function (G = 〈φφ̃〉) and correlation function
(C = 〈φφ〉) because of the absence of a fluctuation-dissipation
relation. The key advantage of the present method is that we
do not need to calculate both the correlation and response
functions. The FDT is constructed in fictitious time introduced
in the problem. The FDT relation enables us to obtain the
scaling of the correlation function, once the scaling of the
response function is known. By taking the infinite limit in
fictitious time, one can obtain the correlation function in real
time. The scaling solution of the problem can be obtained
by power counting analysis instead of doing renormalization-
group calculation.

We now exploit the Parisi-Wu stochastic quantization
scheme [31], and introduce a fictitious time “τ f ,” and consider
all variables to be functions of τ f in addition to k and w. A
Langevin equation in τ f space is

∂φ1(k,w, τ f )

∂τ f
= − δS

δφ1(−k,−w, τ f )
+ fφ1 (k,w, τ f ), (3)

with 〈 fφ1 fφ1〉 = 2δ(k + k′)δ(w + w′)δ(τ f − τ ′
f ). This ensures

that as τ f → ∞, the distribution function will be given by
the action S(k,w), because in the τ f space a fluctuation
dissipation theorem (FDT) is preserved. The action S(k,w)
can be obtained by writing down the probability distribution

P( fφ1 ) ∝ exp

[
−

∫
k,w

(
1

2
{
Dk2μ(k)φ0 + [

f 2
0 k2ξ (ω)

]
φ0

}
)

× fφ1 (k,w) fφ1 (−k,−w)

]
= exp[−S]

corresponding to the noise term fφ1 , and the action S(k,w)
in terms of φ1(k,w) with the help of Eq. (2), where μ(k) =

1
8πη

( δi j

k2 − kik j

k4 ). The expression for the S is in Appendix C.
We follow the procedure of obtaining scaling laws of

the problem, which has been demonstrated in earlier works
[44–47]. The dynamics of Eq. (3) requires only the calcula-
tion of response functions; the correlation functions in this
dynamics are related to the response function through the FDT
relation, i.e., in Fourier space, C = 1

ωτ
ImG. We can obtain the

scaling laws in real space and time in a straightforward fashion
from the solution in the fictitious time ′τ ′ space.

FIG. 2. Dashed line indicates the correlation function (G0G∗
0 )

and solid line indicates the response function (G0). Self-energy term
(�) is obtained by contracting the two φ1 fields. First term is the two
loop contribution from the first-order term (contains two φ1 fields) in
the fictitious time equation. Second one is the one loop contribution
from second-order term (contains three φ1 fields).

We obtain the following self-consistent equation for the
self-energy from the calculation of response function using
Eq. (3):

�ν = D0

2ν
�(k, ω, ωτ f ), (4)

where ν = Dμ(k)k2 + φ0k2μ(k)g(ω)U (k), D0 =
2{Dk2μ(k)φ0 + [ f 2

0 k2ξ (ω)]φ0}, and � is the self-energy
term; a two-loop contribution from the first-order term
(containing two φ1 fields) in Eq. (3) (first term in Fig. 2) will
contribute in the scaling laws for the cell in the finite time. We
use Eq. (D5) for getting the scaling laws of both the amoeboid
and mesenchymal cells phenotype.

III. RESULTS

A. Mesenchymal motility

The mesenchymal cell phenotype forms long-lived
integrin-based adhesions with the collagen matrix and mi-
grates via either remodeling of the actin network or degrading
the matrix. The nonlinear term, i.e., the adhesion interaction,
plays an important role in the complex dynamics of collective
migration of mesenchymal cell phenotype. In a self-consistent
mode-coupling theory, we now replace ν by �ν in the self-
energy term �(0, ω, ωτ f ) in the first term in Fig. 2, use G ∼
ω−1

τ f
as from Eq. (3), and C, which follows from the FDT.

In the absence of flow, μ = 1. According to scale transfor-
mation, we know that ω ∼ kz, ωτ ∼ k4z−2, G ∼ k−4z+2, C ∼
k−8z+4, and the vertex factor V ∼ k2z. The self-energy term in
Fig. 2 can be written as �(0, ω, ωτ f ) ∼ ∫

dd k′
(2π )d

dω′
2π

dω′
τ

2π
VV GC.

By carrying out the momentum count of �(0, ω, ωτ f ), and
using �ν ∼ kz, we find that �(k, ω, ωτ f ) ∼ kd+4−3z. Using
Eq. (D5) and ν/D0 ∼ kz, we have k2z ∼ kd+4−3z, which leads
to z = d+4

5 . The MSD exponent α = 2/z = 10/(d + 4). In
three dimensions, α = 1.43, i.e., the mesenchymal cells un-
dergo superdiffusion. The nonlinear term arising from cell-
cell adhesion that determines the dynamical shape change dur-
ing cell motion and self-generated force produces superdif-
fusive motion. The theoretical result is in good agreement
with the recent experimental result (1.46 ± 0.013) using the
microfluidic model [30]. If we wait longer than experimental
observation time, the cells become apart from each other. The
short-range interactions do not play any role in cell motility.
The long-range elastic interactions dictate the dynamics of
the mesenchymal phenotype. The similar scaling analysis
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shows the superdiffusive behavior of cells characterized by the
single-cell MSD exponent α = 1.15. The degree of superdif-
fusion decreases in the long time where long-range elastic
interactions play a role in cell motility.

B. Interstitial flow induced amoeboid motility

In the presence of interstitial flow, cells exhibit amoeboid
motility. The amoeboid cells form short-lived adhesion with
the collagen matrix. The time scale λ′−1 is small compared
to the mesenchymal motility phenotype. In the case of flow,
the cells exhibit long-range hydrodynamic interactions that
determine the complex spatiotemporal dynamics of amoeboid
cell phenotype. The self-generating force of actin remodeling
helps to propel it in a pathfinding fashion through the collagen
matrix. In self-consistent mode-coupling theory, we now re-
place ν by �ν in the self-energy term �(0, ω, ωτ f ) in the first
term in Fig. 2, and use G ∼ ω−1

τ f
as from Eq. (3) and C, which

follows from the FDT. According to scale transformation,
we know that ω ∼ kz, ωτ ∼ k4z−2, G ∼ k−4z+2, C ∼ k−8z+4,
and the vertex factor V ∼ k4z−2. The self-energy term in
Fig. 2 can be written as �(0, ω, ωτ f ) ∼ ∫

dd k′
(2π )d

dω′
2π

dω′
τ

2π
VV GC.

By carrying out the momentum count of �(0, ω, ωτ f ), and
using �ν ∼ kz, we find that �(k, ω, ωτ f ) ∼ kd+z. Using
Eq. (D5) and ν/D0 ∼ k3z−2, we have k4z−2 ∼ kd+z, which
leads to z = d+2

3 . The MSD exponent α = 2/z = 6/(d + 2).
In three dimensions, α = 1.2, i.e., the amoeboid cells undergo
superdiffusion. The nonlinear term due to long-range hydro-
dynamic interactions among cells besides self-generated force
produce superdiffusive motion for amoeboid cell phenotype.
The decrease of the MSD exponent determines the dynamical
slowing down of initial collective migration of the mes-
enchymal cell phenotype. Therefore, interstitial flows impair
the cell’s ability to spread by sweeping away the adhesion
molecules with the flow and making the cells as amoeboid
phenotype with short-lived adhesion with the collagen fiber
[30]. The cells migrate via squeezing through the pore of the
collagen fiber when finding a suitable path [37]. The theoret-
ical result is in good agreement with the recent experimental
result (α = 1.27 ± 0.013) using the microfluidic model [30].
If we wait longer than experimental observation time, the cells
become apart from each other. The short-range interactions do
not play any role in cell motility. The cells undergo normal
diffusion for the amoeboid motility phenotype characterized
by the single-cell MSD exponent α = 1.0.

We calculate velocity autocorrelation function Cv (t ) =
1

2d
d2

dt2 〈δr2(t )〉 and time-dependent diffusion coefficient
D(t ) = 1

2d
d
dt 〈δr2(t )〉, where 〈δr2(t )〉 is the single cell MSD

(see Fig. 3). The blue line dictates the mesenchymal motility
and the red line shows the amoeboid motility. The slower
decay of the velocity correlation function shows that the
mesenchymal cells are more persistent than amoeboid cells.
Similarly, the time-dependent diffusion coefficient for a
mesenchymal cell is higher than the amoeboid cells, i.e.,
the mesenchymal cell is more diffusive than amoeboid
cells. The theoretical result is in agreement with the
experiment [30].

The MSD for a single cell in the experiment in [30] shows
the superdiffusion with the exponent α > 1 both with and

(a)

(b)

FIG. 3. (a) Velocity autocorrelation function, normalized to unity
at t/τ = 0.1, where τ = ν−1. (b) The blue and red lines dictate
the diffusivities [D(t )] for mesenchymal and amoeboid cell motility
respectively.

without the flow. The average for MSD calculation has been
taken over all cell trajectories (approximate over 60 motile
cells). The movies (S1 and S2) in Ref. [30] show that cells
are interacting through adhesion interactions that influence
each other very strongly leading to the possibility of collective
behaviors. That implies that the superdiffusion arises due
to the collective motion of interacting cells both with and
without flow. Although it is a single-cell measurement, the
superdiffusive motion of a cell arises due to the collective
migration of interacting cells.

In theory, the flow effect that we model through long-
range hydrodynamic interactions among cells induces the
superdiffusion for motile amoeboid cells. On the other hand,
the time-dependent short-range interactions with the coupling
with self-motility produce superdiffusive motion in mes-
enchymal cells. The single-cell MSD shows superdiffusion.
The time-dependent short-range interactions and long-range
hydrodynamic interactions between cells influence each other
very strongly and produce nonlinear terms in the density
equations, leading to the possibility of novel collective be-
haviors. Therefore the superdiffusion effect is a collective
phenomenon.
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IV. CONCLUSION

In the present contribution, using a theoretical framework,
we provide insight into the dynamics of a colony of cancer
cells driven by biophysical cues. The theory reveals that the
interstitial flows regulate cancer cell morphology and motility
phenotypes, emphasizing the role of fluid flows in regulating
cancer cell migration heterogeneity. The conventional practice
in dealing with this out-of-equilibrium problem is to use a set
of fictitious fields called response fields, which provide a field-
theoretic prescription for the response function. In contrast,
we propose the introduction of a fictitious time in which an
FDT is valid, and thereby only correlation functions need to
be calculated. Our approach greatly simplifies the evaluation
of scaling exponents. We find that the nonlinear term in the
density evolution equation arising from mechanical interac-
tions along with self-generating force due to actin remodeling
determines the scaling behavior for the collective migration
of cells. In the absence of flow, cells exhibit collective mi-
gration of mesenchymal motility phenotype induced by time-
dependent interaction potentials that determine the structural
rearrangement during their path generating migration through
the collagen matrix. In contrast, the cells exhibit the amoeboid
motility in the presence of flow and exhibit a dynamical
slowing down of directed migration, with a gradually decreas-
ing degree of superdiffusion. The long-range hydrodynamic
interactions among cells in the presence of interstitial flow
determine the collective migration of cells through the matrix
pore in a pathfinding fashion. The mesenchymal cells are
more persistent and diffusive compared to amoeboid cells.
The theoretical framework introduced here provides evidence
of interstitial flow directed collective motion heterogeneity
and could explain the invasion of cancer cells under interstitial
flow, observed in a recent experiment [30]. The theory intro-
duced here could help us understand how cancer cells spread
by invading adjacent tissues involved in metastasis [48].
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APPENDIX A: SHORT-RANGE INTERACTION

To obtain the dynamics of an evolving collection of cells,
we use the following simplified form for cell-cell interaction:

U [r(i) − r( j)] = v(
2πλ2

1

)3/2 e−[r(i)−r( j)]2/2λ2
1

− κ

(2πσ 2)3/2
e−[r(i)−r( j)]2/2σ 2

, (A1)

where v and κ are the strengths of excluded volume and
attractive interactions, respectively.

In addition, the cell surface–ECM interactions Us deter-
mine the configuration-dependent forces experienced by the
cells: Us = − g

(2πσ 2
1 )3/2 e−(ri−r0 )2/2σ 2

1 . The potential term Us de-
scribes the cell surface–collagen interactions as a function of
r0, the average distance between cell and collagen. Cells in-
teract with the collagen through receptor-ligand interactions,
described by short-range potential. Mesenchymal cells form
long-lived adhesion with collagen. We assume the adhesion
strength is changing during the topological rearrangement via
a f + (ai − a f )e−λt . ai and a f are initial and final interaction
strengths and the time scale of changing the receptor-ligand
interaction is given by λ−1, where a stands for g and κ . In
contrast, amoeboid cells form short-lived adhesion with the
collagen, i.e., the time scale for the adhesive interaction λ−1

is small compared to mesenchymal cells.

APPENDIX B: DENSITY EQUATION

To simplify the multiplicative noise term [last term in
Eq. (2) in the main text], we assume that the density fluctuates
around a constant value. Hence, we define the density using
φ(r, t ) = φ0 + φ1(r, t ), and expand Eq. (1) in the main text in
φ1

φ0
up to the lowest order in nonlinearity. In Fourier space, the

equation for the density fluctuation becomes

∂φ1(k, t )

∂t
= −{[Dk2 + φ0k2a(ω)U (k)]μ(k)}φ1(k)

+
∫

dq(−q · k)μ(q)U (q)a(ω)φ1(q)φ1(k − q)

+ fφ1 , (B1)

with 〈 fφ1 fφ1〉 = Dk2μ(k)φ0 + k2ξ (ω)φ0. Where, ξ (ω) =
2τp

1+τ 2
p ω2 . The Green’s function G is given by

[G]−1 = −iω + Dk2μ(k) + φ0k2a(ω)μ(k)U (k) + �(k, ω),
(B2)

where a(ω) = 1
λ+iω , and �(k, ω) is the self-energy term con-

tributed from nonlinear adhesion interactions.

APPENDIX C: STOCHASTIC QUANTIZATION
TECHNIQUE

We now exploit the Parisi-Wu stochastic quantization
scheme [31,44–46], and introduce a fictitious time τ f , and
consider all the variables to be functions of τ f . A Langevin
equation in τ f space is

∂φ1(k,w, τ f )

∂τ f
= − δS

δφ1(−k,−w, τ f )
+ fφ1 (k,w, τ f ),

(C1)
with 〈 fφ1 fφ1〉 = 2δ(k + k′)δ(w + w′)δ(τ f − τ ′

f ). Because
FDT is valid in the fictitious time it follows that as τ f → ∞,
the distribution function will be given by the action S(k,w).
The action S(k,w) can be obtained by writing down the
probability distribution

P( fφ1 ) ∝ exp

(
−

∫
dd k

(2π )d

dw

2π

1

2
{
Dk2μ(k)φ0 + [

f 2
0 k2ξ (ω)

]
φ0

} fφ1 (k,w) fφ1 (−k,−w)

)
= exp[−S]
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corresponding to the noise term fφ1 in Eq. (B1), and the action S(k,w) in terms of φ1(k,w) using Eq. (B1). The expression for
the action S obtained using Eq. (B1) is

S =
∫

dd k
(2π )d

dw

2π

1

2
{
Dk2μ(k)φ0 + [

f 2
0 k2ξ (ω)

]
φ0

}
×

{
− iω + [Dk2μ(k) + φ0k2a(ω)μ(k)U (k)]φ1(k) +

∫
dq(−q · k)μ(q)a(ω)U (q)φ1(q)φ1(k − q)

}

×
{

iω + [Dk2μ(−k) + φ0k2μ(−k)U (−k)]φ1(−k) +
∫

dq(−q · −k)μ(q)a(ω)U (q)φ1(q)φ1(−k − q)

}
.

APPENDIX D: GREEN’S FUNCTION FOR
DENSITY EQUATION

The correlation functions, calculated from Eq. (C1), lead to
the required correlation functions of the original theory, in the
τ f → ∞ limit. In order to obtain the scaling laws, it suffices
to work at arbitrary τ f . It is obvious from Eq. (C1) that in the
absence of the nonlinear terms, the Green’s function G(0) is
given by

[G(0)]−1 = −iωτ f + 1

2
{
Dk2μ(k)φ0 + [

f 2
0 k2ξ (ω)

]
φ0

}
× [ω2 + {Dμ(k)k2 + φ0k2μ(k)a(ω)U (k)}2],

(D1)

where ωτ f is the frequency corresponding to the fictitious
time τ f . As is customary, the effect of nonlinear terms can
be included perturbatively leading to Dyson’s’ equation

[G]−1 = [G(0)]−1 + �(k, ω, ωτ f ). (D2)

Here, we are concerned with the behavior of �(k, ω, ωτ f ),
which becomes nonlinear when expanded to second order. We
note that the contribution comes from two different sources:
(1) a one-loop contribution from the second-order term (con-
taining three φ1 fields) in Eq. (C1) (second term in Fig. 2),
and (2) a two-loop contribution from the first-order term
(containing two φ1 fields) in Eq. (C1) (first term in Fig. 2). The
contribution arising coming from the term containing three
φ1 fields in Eq. (C1) can be readily obtained by contracting
two of the φ1 fields. The second-order term coming from
the one-loop contribution in Eq. (C1) does not have any
new momentum dependence. Hence it is the second-order
contribution (first term in Fig. 2), coming from the two-loop
contribution in Eq. (C1), which is significant. The correlation
function is given by the FDT as C = 1

ωτ f
ImG. With these

observations, Eq. (D2) can be written as

[G]−1(k, ω, ωτ f ) = −iωτ f + 1

2(D0)
[ω2] + 1

2(D̄)

[
ν2

eff

]
,

(D3)
where D0 = 2{Dk2μ(k)φ0 + [ f 2

0 k2ξ (ω)]φ0}, and D̄ is defined
by

1

2(D̄)

[
ν2

eff

] = 1

2(D0)
(ν)2 + �(k, ω, ωτ f ) (D4)

with ν = Dμ(k)k2 + φ0k2μ(k)a(ω)U (k) + k2μ(k). Expand-
ing νeff, D̄ about ν and D0, respectively, and noting that the

renormalization of ν dominates, we get

νeff � ν + D0

2ν
�(0, ω, ωτ f ), or, �ν = D0

2ν
�(0, ω, ωτ f ).

(D5)

Collagen gels are used extensively for studying cell-
matrix mechanical interactions. The cells are interacting with
ECM. The Reynolds number is small (an estimate: den-
sity ρ = 2.7 Kg/m3, viscosity μ = 6.6 × 104Kg/m s, L =
10−5 m, velocity u = 10 μ m/h, the Reynolds number R =
ρLu
μ

= 10−18); an overdamped approximation is appropriate
implying that the neglect of the inertial term mr̈ ≈ 0 is jus-
tified. Since additional adhesive forces are also present, cell
movement is further damped. The friction is high (an esti-
mate: μ = 6.6 × 104 Kg/m s, radius R = 5 × 10−6 m, then
friction γ = 6πμR = 6.2 Kg/s), compared to water (γ =
8.38 × 10−8 Kg/s, for viscosity μ = 8.90 × 10−4 Kg/m s).
By changing the viscosity we can change the friction and
hence the diffusion coefficient (D = kBT/γ ). The cells are
self-motile. The estimate for the diffusion due to self-motility:
Dsp = 〈r2〉

2dτ
= 3 × 10−4 m2/s [where the values of 〈r2〉 =

10−8 m2/s and τ = 6 × 104 s are taken from Fig. 1(f) in [49]]
is high compared to Brownian diffusion DBr = kBT/γ =
6.67 × 10−20 m2/s in the matrix. The Brownian diffusion in
water is 5 × 10−14 m2/s. The viscosity of gel is greater than
that of water. Therefore the diffusion due to self-motility
of the cell is always greater than the Brownian diffusion.
The scaling is determined by Eq. (4). In the numerator,
D0 = 2{Dk2μ(k)φ0 + [ f 2

0 k2ξ (ω)]φ0} term is dominated by
the self-motility term [ f 2

0 k2ξ (ω)]φ0 by following the above
argument. The resulting superdiffusion exponents are reported
in the main text. The nonlinear contributions are included
in the self-energy term �. The nonlinear interactions deter-
mine the dynamical behavior. The time-dependent adhesion
interactions and long-range elastic interactions determine the
superdiffusive behavior for the mesenchymal phenotype. On
the other hand, long-range hydrodynamic interactions deter-
mine superdiffusive behavior. We can tune the strength of the
interactions that will change the magnitude of the coefficient
of the nonlinear term. The scaling of the nonlinear term
remains unchanged. Therefore the degree of superdiffusion is
unchanged.

APPENDIX E: SCALING EXPONENTS

In self-consistent mode-coupling theory, we now replace
ν by �ν in the self-energy term �(0, ω, ωτ f ) in the first
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term in Fig. 2, and use G ∼ ω−1
τ f

as from Eq. (D1) and
C, which follows from the FDT. According to scale trans-
formation, we know that ω ∼ kz, ωτ ∼ k4z−2, G ∼ k−4z+2,
C ∼ k−8z+4, and the vertex factor V ∼ k4z−2. The self-
energy term in Fig. 2 can be written as �(0, ω, ωτ f ) ∼∫

dd k′
(2π )d

dω′
2π

dω′
τ

2π
VV GC. By carrying out the momentum count of

�(0, ω, ωτ f ), and using �ν ∼ kz, we find that �(k, ω, ωτ f ) ∼

kd−z. Using Eq. (D5) and ν/D0 ∼ k3z−2, we have k4z−2 ∼
kd+z, which leads to z = d+2

3 , where ν ∼ a(ω) ≈ ω = kz

and use λ−1 is small because in the case of flow, cells
are amoeboid phenotype with short-lived adhesion with col-
lagen fiber. The MSD exponent α = 2/z = 6/(d + 2). In
three dimensions, α = 1.2, i.e., the amoeboid cells undergo
superdiffusion.

APPENDIX F: EXPRESSION FOR �(l, ω, ωτ f )

�(k, ω, ωτ f ) = 2

{Dk2μ(k)φ0 + [
f 2
0 k2ξ (ω)

]
φ0}

∫
k′,ω′,ω′

τ

V (k, ω, k′, ω′)V (k, ω, k − k′, ω − ω′)

× G(k′, ω′, ω′
τ )C(k − k′, ω − ω′, ωτ f − ω′

τ ), (F1)

where vertex term

V (k, ω, k′, ω′) = {iω + Dk2μ(k) + φ0k2μ(k)a(ω)U (k)}{(−k′ · k)μ(k′)a(ω)U (k′)} + {iω′ + Dk′2μ(k′)

+ φ0k′2μ(k′)U (k′) + k′2μ(k′)}{(−k′ · k)μ(k)a(ω)U (k)} + {iω′ + Dk′2μ(k′)

+ φ0k′2μ(k′)a(ω)U (k′)}{[−k′ · (k − k′)]μ(k − k′)a(ω)U (k − k′)}
.
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