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Observation of spin-orbit-dependent electron scattering using long-range Rydberg molecules
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We present experimental evidence for spin-orbit interaction of an electron as it scatters from a neutral atom.
The scattering process takes place within a Rb2 ultralong-range Rydberg molecule, consisting of a Rydberg
atomic core, a Rydberg electron, and a ground state atom. The spin-orbit interaction leads to characteristic
level splittings of vibrational molecular lines which we directly observe via photoassociation spectroscopy. We
benefit from the fact that molecular states dominated by resonant p-wave interaction are particularly sensitive to
the spin-orbit interaction. Our work paves the way for studying novel spin dynamics in ultralong-range Rydberg
molecules. Furthermore, it shows that the molecular setup can serve as a microlaboratory to perform precise
scattering experiments in the low-energy regime of a few meV.
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I. INTRODUCTION

Since their prediction almost 20 years ago [1] and
boosted by their first observation [2], ultralong-range Rydberg
molecules have become a research area of major interest (for
reviews, see, e.g., [3–5]). Nevertheless, the spin substructure
of these molecules is not fully understood yet. In particular,
one fundamental unresolved question concerns the coupling
between the total electronic spin �S and the relative orbital
angular momentum �Lp of the Rydberg electron with respect
to the ground state perturber atom. The role of this �Lp · �S
type spin-orbit interaction for the molecular system was pre-
dicted almost 20 years ago [6] and has remained a topic
of active research until now [7,8]. From the experimental
side, some preliminary indication for �Lp · �S coupling has
been found recently [9]; however, clear evidence has been
lacking. It has escaped discovery although a variety of spec-
troscopic studies with impressive resolution were carried out,
investigating Rydberg molecules for various atomic species
(Rb, Cs, Sr) and different Rydberg orbitals (S, P, or D)
[2,10–23].

Very recently, in parallel with our work reported here,
indirect evidence for �Lp · �S coupling has been found in the
observation of specific pendular states in Rb2 ultralong-range
Rydberg molecules [24], an effect predicted shortly before in
[25]. Here, we complete the evidence for �Lp · �S interaction, as
we spectroscopically directly observe the Rydberg molecular
level splitting caused by it; in fact, we resolve the full fine
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structure multiplet. For this, we investigate ultralong-range
87Rb2 Rydberg molecules consisting of a 5S1/2 ground state
atom and a 16P3/2 Rydberg atom. The molecular bound states
of interest are located in the second outermost well of the
Born-Oppenheimer potential energy curve (PEC), which is
significantly influenced by the p-wave shape resonance. The
resonant p-wave interactions strongly increase the �Lp · �S-
induced level splittings of spin states so that they can be
well resolved experimentally. For the molecular level spec-
troscopy, we carry out photoassociation in ultracold clouds
of Rb ground state atoms, which can be prepared in different
spin polarizations. We observe three vibrational ladders of the
molecular Rydberg states. Each ladder has a characteristic
line-multiplet substructure, which allows for unambiguous
assignment of all spin states. Using model calculations on
the basis of a pseudopotential Hamiltonian and including
spin-spin and spin-orbit interactions [7], we are able to fully
explain the observed spectra.

II. MOLECULAR SYSTEM AND POTENTIAL
ENERGY CURVES

The molecular system is sketched in Fig. 1. A ground state
atom is located at position �R relative to the ionic core of a Ry-
dberg atom. The Rydberg electron at position �r has spin �s1 and
orbital angular momentum �l relative to the ionic core. Its total
angular momentum is described by �j = �l + �s1. The ground
state atom possesses electronic spin �s2 and nuclear spin �I
which are coupled by hyperfine interaction to form the total
angular momentum �F = �I + �s2 [19–23,26]. In the reference
frame of the ground state atom the Rydberg electron is located
at position �X = �r − �R and has orbital angular momentum �Lp.
Actually, we will be mainly interested in �Lp · �S spin-orbit
coupling, where �S is the total electronic spin �S = �s1 + �s2.
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FIG. 1. Composition of the molecular system (see text).

Figure 2 shows the relevant PECs for our experiments. The
ultralong-range Rydberg molecular states we investigate are
bound in the second outermost wells at an internuclear dis-
tance of about 260 a0. Here, a0 is the Bohr radius. Figure 2(b)
is a zoom onto these wells. On the left-hand side of the
wells steep butterfly PECs [13,27,28] cross through that arise
because of a p-wave shape resonance, where the Rydberg
electron with angular momentum Lp = 1 resonantly interacts
with the Rb ground state atom. This resonance occurs at a
collision energy E avg

r = 26.6 meV [24,29]. Due to the vicinity
to the p-wave shape resonance the ultralong-range Rydberg
molecular states in the second outermost wells experience
strong p-wave interaction and are thus very sensitive to �Lp · �S
coupling.

For large distances R, the P state PECs have four asymp-
totes, corresponding to the combinations of the atomic Ry-
dberg states 16P3/2 and 16P1/2 with hyperfine states F = 1
and F = 2 of the Rb ground state atom. The color coding in
Fig. 2 shows the F content of the states (see also Fig. 8 of the
Appendix for the electronic spin S content). As can be seen
clearly in Fig. 2(b) some of the PECs exhibit F mixing. As
we will discuss in more detail in Sec. IV this is especially due
to the spin dependence of the p-wave interaction.

In order to formally label the PECs, it is convenient to use
the quantum number N corresponding to the angular momen-
tum �N = �S + �I . The spin-orbit interaction �Lp · �S splits up each
PEC characterized by N , according to its multiplicity N (N +
1) into different � = −N,−N + 1, . . . , N states. Here, � =
mI + mS + ml is the magnetic quantum number of the total
angular momentum, and we have chosen the internuclear axis

as the quantization axis. In Fig. 2(b) only the splitting of the
N = 3/2 PEC into |�| = 1/2 and |�| = 3/2 is clearly visible.
Because of rotational symmetry about the internuclear axis,
the PECs for each pair of ±� are generally energetically
degenerate. Therefore, for each N , energy splittings only arise
between the (2N + 1)/2 different |�| components.

III. EXPERIMENTS AND SPECTROSCOPIC RESULTS

The experiments are carried out in a hybrid atom-ion setup
[30] consisting of a crossed optical dipole trap for an ultracold
cloud of 87Rb ground state atoms and a linear Paul trap
which we use in the detection of Rydberg molecules. The
dipole trap operates at a wavelength of 1065 nm and has a
potential depth of about 20 μK × kB. The atomic sample is
prepared either in the hyperfine state F = 1, mF = −1 or in
the state F = 2, mF = +2. It has a temperature of ≈ 1 μK,
and typically consists of about 4 × 106 atoms. The cloud is
Gaussian-shaped with a size of σx,y,z ≈ (70, 10, 10) μm along
the three directions of space.

The general procedure of our experiment is as follows (see
also the illustration in Fig. 3). We measure photoassociation
spectra by scanning the frequency of a narrow-linewidth
laser in a steplike fashion at a wavelength of about 302 nm
(for technical details on the photoassociation laser setup, see
Appendix A 2). For each laser frequency we produce a cold
cloud of Rb atoms and expose it for a well-defined time of
typically a few hundred ms to the laser light. If the laser
frequency is on resonance, photoassociation of 5S1/2 − 16P3/2

Rb2 Rydberg molecules takes place [see (i) Fig. 3]. We detect
this production of dimers as follows. Because of various
processes, such as photoionization, collisions, and ionization
due to molecular relaxation, some of the Rydberg molecules
decay into ions (ii). These ions are subsequently confined in
the linear Paul trap which has a trap depth of about 1 eV.
The Paul trap is centered on the optical dipole trap so that
the ions are immersed in the atom cloud. The ions inflict
loss on the atom cloud (iii) [31,32], which we measure via
absorption imaging. Thus, by detecting atom loss, we infer the
production of Rydberg molecules. In brief, the losses are due
to micromotion-driven elastic collisions between atoms and
ions, which expel atoms out of the shallow dipole trap. Even a

FIG. 2. (a) The molecular PECs correlated to the 5S1/2 + 16Pj atomic asymptotes for j ∈ {1/2, 3/2} and different hyperfine states F ∈
{1, 2} of the 5S1/2 atom. The color code represents the expectation value of the quantum number F . Calculations of PECs are described in
Sec. IV A. (b) Zoom into the dashed rectangle in (a) indicating the region of interest for the present work. N and |�| are quantum numbers
which label the PECs. The N = 5/2, 3/2, 1/2 branches are composed of a triplet, doublet, and singlet substructure of |�| states, respectively.
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FIG. 3. Illustration of the experimental setup and scheme. The
orange solid line indicates the dipole trap potential for the ultracold
neutral atoms while the dark-green solid line represents the Paul
trap potential for ions. (i) Inside the atom cloud (indicated by the
gray shaded area) Rb2 Rydberg molecules are produced by means
of the UV photoassociation laser (blue dashed lines and blue arrow).
(ii) The molecules can decay into ions, where processes leading to
Rb+ and Rb+

2 are possible (see, e.g., [33,34]). A resulting ion is cap-
tured by the Paul trap. (iii) The micromotion-driven ion elastically
collides with Rb atoms leading to atom loss from the dipole trap.

single ion can lead to a significant loss signal. In general, the
number of remaining atoms decreases with increasing number
of ions.

In Fig. 4 two photoassociation spectra in the vicinity of
the atomic 16P Rydberg state are presented. We plot the
normalized atom loss L = 1 − Ñ/Ñ0 as a function of the
photoassociation laser frequency. Here, Ñ and Ñ0 are the
remaining number of atoms after an experimental run when
the photoassociation laser was turned on and off, respectively.
The loss-signal strengths in Fig. 4 have a strongly nonlinear
dependence on the number of trapped ions. While the largest
loss signals correspond to hundreds of ions the smallest loss
peaks are the result of only a few ions. For the measurements
of Fig. 4 the frequency ν of the photoassociation laser was
scanned in steps of 20 MHz, and each data point represents
a single run of the experiment. Scan (a) (blue data points)
shows data for atoms prepared in the hyperfine state F =
1, mF = −1, while scan (b) (red data points) was obtained
for atoms prepared in F = 2, mF = +2. For convenience, the
two spectra are horizontally shifted relative to each other by
twice the hyperfine splitting of the electronic ground state of
87Rb, i.e., 2 × νhfs = 2 × 6.835 GHz [35,36], to account for
the frequency spacing of the F = 1 + F = 1 and F = 2 +
F = 2 atomic asymptotes there. Then, signals for identical
molecular levels line up in both data sets of Fig. 4. Besides
the photoassociation resonances the spectra also include the
16P3/2 and 16P1/2 atomic Rydberg lines which are marked
with arrows. A discussion of the atomic lines is given in
Appendix A 3. In the following, we focus on the frequency
range of 10 GHz < �ν < 40 GHz, where we expect our
molecular Rydberg states of interest [cf. Fig. 2(b)].

An analysis of our measured spectra shows that we observe
three different vibrational ladders. The frequency spacings
between vibrational lines for each ladder are approximately
equidistant, typically ranging between 1.4 and 1.8 GHz. The
first of the three ladders appears in spectrum (a), the second
ladder appears in spectrum (b), and lines of the third ladder

FIG. 4. Spectra measured for atomic samples initially prepared
in the hyperfine state F = 1 (a) and F = 2 (b), respectively. Shown
is the atom loss L as a function of the frequency ν of the UV spec-
troscopy laser light. The frequency ν is given in terms of �ν = ν −
ν0 (a) and �ν̃ = ν − ν0 + 2 × νhfs (b), where ν0 = 991.55264 THz
is the resonance frequency for the 16P1/2 atomic Rydberg line when
starting with F = 1 atoms. The data of (a) are obtained for a pulse
duration of 125 ms of the spectroscopy light while for (b) 200 ms are
used (the light intensities, micromotion energies, and ion-atom cloud
interaction times are about the same for both scans). Horizontal and
vertical black arrows mark resonances assigned to atomic transitions.
The black solid lines with denotations (i), (ii), and (iii) point to line
multiplets which are investigated in Fig. 6 with higher resolution.
Vertical red solid (dashed) lines in (a) illustrate the frequency po-
sitions of observed strong (weak) three-line multiplets for F = 2,
while vertical blue solid (dashed) lines in (b) mark strong (weak)
single-line peaks for F = 1.

appear in both spectra (a) and (b). The positions of signals
of the first and second ladder are marked in Fig. 4 as a
progression of vertical solid and dashed lines, which indicate
strong and weak transition lines, respectively. We note that
not all of the experimentally observed lines are resolved in
the two shown spectra (a) and (b). More refined scans over
several small frequency ranges of interest revealed additional
resonances (for more information on the methodology see
Appendix A 4). A list of all observed lines can be found in
Table II of the Appendix. Signals of the third ladder are in
general comparatively weak and some of these are barely or
not visible in Fig. 4. The signal marked with (ii) in (a) and (b)
is an example of a line from the third ladder. The selectivity
of each vibrational ladder for being observed exclusively in
the spectra (a) or (b) (or in both) can be explained by the
total angular momentum �F content of the PECs in Fig. 2(b).
According to selection rules for electric dipole transitions,
photoassociation does not intrinsically change the F quantum
number of the Rb atom that stays in the ground state. For
example, when starting from an ensemble of F = 1 atoms
only vibrational states in the potential wells with N = 1/2 and
N = 3/2 can be reached because they exhibit some F = 1
content. Specifically, the N = 1/2 potential well is of pure
F = 1 character and the N = 3/2 potential well is of mixed
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FIG. 5. Comparison of measured molecular term energies (purple horizontal lines) and calculated molecular term energies for N = 1/2
(a), N = 3/2 (b), and N = 5/2 (c). The theoretical results for the different |�| states are indicated by the line color and line style as given
in the legend. Here, the predicted term energies and the PECs are shifted by 1.94 GHz × h to higher energies as compared to Table II of the
Appendix and Fig. 2(b), respectively, for better comparison to the experimental data. Then, the calculated position for the vibrational ground
state of N = 1/2 (which has even symmetry) coincides with the lowest observed singlet line at 16.30 GHz × h (which is a strong signal). Such
a shift is well within the uncertainty of a few GHz × h of absolute energy determinations in the perturbative electronic structure calculations
[7,37].

F = 1 and F = 2 character. The vibrational ladder in the N =
5/2 potential well, however, cannot be reached, because it has
pure F = 2 character. Similarly, with an ensemble of F = 2
atoms only N = 3/2 and N = 5/2 vibrational states can be
addressed due to their F = 2 content, but not vibrational
states of N = 1/2. Therefore, we can now assign the first
ladder [F = 1 ensemble, blue vertical lines in Fig. 4(a)] to the
N = 1/2 potential well, the second ladder [F = 2 ensemble,
red vertical lines in Fig. 4(b)] to the N = 5/2 potential well,
and the third ladder to the N = 3/2 potential well. In Fig. 5
we show each measured vibrational ladder for its respective
N state together with calculated molecular level energies (see
Table II of the Appendix). The potential wells are the same
as in Fig. 2(b), apart from a shift of 1.94 GHz × h toward
higher energies. The agreement between the measured and
calculated vibrational ladders is quite good. The alternation
of signal strength is observed for each vibrational ladder and
can be explained by the Franck-Condon overlaps, which are
in general larger for vibrational wave functions with even
symmetry as compared to those with odd symmetry [15].

Figure 5 reveals that both in the experimental data as well
as in the calculations, the vibrational ladders for N = 3/2 and
N = 5/2 exhibit a substructure. For N = 3/2 each vibrational
level consists of a doublet and for N = 5/2 each vibrational
level consists of a triplet. In Fig. 6 we show measurements
of these multiplets, which are obtained from high-resolution
scans. Here, also a singlet line for N = 1/2 is presented. The
frequency position of each line multiplet [i.e., (i), (ii), and
(iii)] is also indicated in the two overview spectra of Fig. 4.
The lines in Fig. 6 are approximately Gaussian shaped and
have typical linewidths (FWHM) of a few tens of MHz (see
also Appendix A 5).

The splitting of the vibrational levels into the multiplets
is mainly due to the spin-orbit interaction �Lp · �S. More pre-
cisely, each N = 5/2 vibrational level splits up into three
spin components |�| = {1/2, 3/2, 5/2}, and each N = 3/2
vibrational level into a doublet corresponding to |�| =

FIG. 6. Line multiplets observed for atomic samples initially
prepared in the hyperfine state F = 1 [blue data points for (i) and
(ii)] and F = 2 [red data points for (ii) and (iii)], respectively. The
individual lines are labeled with the |�| quantum number of the
corresponding assigned molecular state (see also Fig. 5). In the left
panel for the magenta data points the Paul trap was off during the
spectroscopy pulse, and no loss signal is visible. Here, the pulse
duration of the spectroscopy light was 200 ms for the F = 1 data
and 300 ms for the F = 2 data. For better visibility the magenta data
points and also the red data points in the center panel are shifted in
the vertical direction by 0.3. The error bars represent the statistical
uncertainty. Dashed blue and red lines are the results of Gaussian fits.
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{1/2, 3/2}. Since the N = 1/2 levels only have |�| = 1/2
they do not split up. These multiplicities agree precisely with
our experimental observations and confirm our assignment
of the lines.

We now investigate the multiplet splittings in more de-
tail. For the triplets of N = 5/2, the observed separation
between adjacent lines is typically on the order of about 100
to 200 MHz. Overall, this is in good agreement with the
predictions (see Table II of the Appendix); however there
is a systematic increase of the discrepancy for increasing
vibrational excitation. Furthermore, the ratio of the energy
splittings between the |�| = 1/2 and 3/2 components and
the |�| = 3/2 and 5/2 components is about 2 : 3 on average
for the vibrational states, for both experiments and theory.
Regarding the line doublets of N = 3/2 we typically find
splittings of a few hundred MHz. Also here, the discrepancy
between measured and calculated splittings increases with
vibrational excitation, up to about a factor of 2. In addition,
we find that the spectroscopy signals for the N = 3/2 ladder
are in general weaker when working with an F = 2 atomic
ensemble as compared to an F = 1 ensemble (except for
the structure at �ν ∼ 18.7 GHz). In fact, some of the line
doublets could only be detected for F = 1.

IV. THEORY

A. Potential energy curves

We determine the molecular PECs by using the electronic
Hamiltonian

H = HRyd + Hg + V. (1)

HRyd describes the interaction of the Rydberg electron in the
potential of the ionic Rb+ core, and has eigenstates φnl jmj (�r)
with energies Enl j . The energies Enl j are taken from spec-
troscopic measurements [38,39] and are utilized as input to
analytically determine the long-range behavior (larger than
several Bohr radii a0) of φnl jmj (�r) in terms of appropriately
phase-shifted Coulomb wave functions. Knowledge of the
wave functions for smaller distances is not necessary for our
purpose. Hg = A �I · �s2 represents the Hamiltonian of hyperfine
interaction in the ground state atom with eigenstates |FmF 〉,
where A = 3.417 GHz × h/h̄2 [36]. The term V describes the
interaction between the Rydberg electron and the ground state
atom which is largely determined by the orbital angular mo-
mentum �Lp of the Rydberg electron in the reference frame of

the ground state atom. For Lp = 0 there is s-wave interaction,
while p-wave interaction is given for Lp = 1. We employ a
generalized Fermi pseudopotential [7,40]

V =
∑

β

(2Lp + 1)2

2
a(Lp, S, J, k)

δ(X )

X 2(Lp+1)
|β〉〈β| (2)

(using atomic units). However, for convenience, we also show
in Appendix A 8 how conventional representations of spin-
spin and spin-orbit interactions can be derived from this ap-
proach, in general. Here, X = |�r − �R| is the absolute distance
between the Rydberg electron and the ground state atom (see
Fig. 1). The quantum number J corresponds to the angular
momentum �J = �Lp + �S, for which the associated magnetic
quantum number is denoted by MJ . Furthermore, β is a multi-
index that defines projectors onto the different scattering chan-
nels |β〉 = |LpSJMJ〉. The interaction strength in each channel
depends on the scattering lengths or volumes a(Lp, S, J, k) =
−k−(2Lp+1) tan δ(Lp, S, J, k), where δ(Lp, S, J, k) are phase
shifts of an electron with wave number k that scatters off
a 87Rb ground state atom. As a basis for our simulations
we employ phase shift data from [24]. The wave number is

calculated via the semiclassical relation k =
√

2/R − 1/n2
eff.

To compute the PECs we use the effective principle quantum
number neff = 13.3447. Please note that neither �F nor �j are
conserved quantities, since V neither commutes with HRyd nor
with Hg.

In general, for our calculations the Hilbert space is re-
stricted to a subset of Rydberg states in the spectral region
of interest, as described in Appendix A 6. The PECs obtained
by taking into account both s-wave and p-wave interactions
in Eq. (1) are shown in Fig. 2. The relevant curves are
characterized in Fig. 2(b) by N and |�|. N provides the
correct multiplicity; however, strictly speaking, N is not a
good quantum number. Instead, � represents a good quantum
number, and it is appropriate to further discriminate the PECs.
Please note that � is not the projection quantum number of N .

B. Comparison of spin-spin and spin-orbit interactions

In the following, we investigate in detail the reasons for
the splitting of the PECs with a given N quantum number
into the various |�| components. It will turn out that the
�Lp · �S interaction is by far the dominant mechanism. For our
investigation, we introduce two control parameters λ1 and λ2.

TABLE I. Overview of the scattering lengths or volumes a(Lp, S, J, k) that are modified via control parameters λ1 and λ2 in order to study
the splitting mechanisms in Fig. 7. The scattering channels are given in terms of the quantum numbers Lp (Lp = 0 : s-wave scattering; Lp = 1 :
p-wave scattering), S (S = 0 : singlet scattering; S = 1 : triplet scattering), and J = {0, 1, 2}.

Scattering channel

Lp S J Parameter Mapping

0 0 0 λ1 a(0, 0, 0, k) �→ λ1a(0, 0, 0, k) + (1 − λ1)a(0, 1, 1, k)

0 1 1 a(0, 1, 1, k) �→ a(0, 1, 1, k)
1 0 1 λ1 a(1, 0, 1, k) �→ λ1a(1, 0, 1, k) + (1 − λ1)a(1, 1, Javg, k)
1 1 0 λ2 a(1, 1, 0, k) �→ λ2a(1, 1, 0, k) + (1 − λ2)a(1, 1, Javg, k)
1 1 1 λ2 a(1, 1, 1, k) �→ λ2a(1, 1, 1, k) + (1 − λ2)a(1, 1, Javg, k)
1 1 2 λ2 a(1, 1, 2, k) �→ λ2a(1, 1, 2, k) + (1 − λ2)a(1, 1, Javg, k)
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FIG. 7. Values of the molecular PECs at an internuclear distance
R = 265 a0 as a function of the interaction control parameters λ1 and
λ2 (see also Table I). On the left, where λ1 = λ2 = 0, interaction is
identical for singlet and triplet states. s-wave and p-wave interactions
are, however, not identical. When going to the right λ1 and λ2 are
subsequently turned on. Parameter λ1 modifies the singlet s-wave
and p-wave scattering and introduces a splitting of the lines in two
respects. First, branches of mixed F character separate from branches
of pure F character. Second, the |�| components within these
branches slightly split off from each other. Parameter λ2 introduces
a �Lp · �S type of interaction. This enhances the |�| splittings by about
two orders of magnitude.

These allow for relative tuning of different scattering channels
by modifying the scattering lengths or volumes a(Lp, S, J, k),
which helps us to gain insight about the role of relevant
interactions. The mapping is summarized in Table I. We
analyze the impact of the individual control parameters on the
PECs for an internuclear distance of 265 a0, which roughly
corresponds to the locations of the minima of the potential
wells in Fig. 2(b). This choice is motivated by the positions of
the barycenters of the vibrational wave functions. The results
are shown in Fig. 7.

When λ1 = λ2 = 0, the electron-atom interaction V is
insensitive to the total electronic spin �S and the interaction
can be simplified to [1,27,41]

V = 2πas(k)δ( �R − �r) + 6πap(k)
←−∇ �r · δ( �R − �r)

−→∇ �r (3)

with as(k) = a(0, 1, 1, k), ap(k) = a(1, 1, Javg, k), and �R =
Rêz. The phase shift for Javg corresponds to the situation in
which the �Lp · �S coupling is neglected. For the resonance
energy E avg

r associated with this phase shift we use the value
E avg

r = 26.6 meV taken from [24]. Figure 7 shows that for this
case there is no splitting of the PECs for both the F = 1 and
the F = 2 branch.

We now let λ1 > 0, while keeping λ2 = 0. The parameter
λ1 introduces a difference in the singlet and triplet scattering
lengths or volumes. As a consequence, typically, a splitting
of each of the F = 1, 2 branches occurs; i.e., a separation of
states with mixed F character from those with pure F = 1, 2
character is obtained. The energy differences between pure
and mixed F states change as a function of the internuclear
distance (see Fig. 10 of the Appendix). For the specific choice

of R = 265 a0 these are on the order of several GHz × h
for λ1 = 1 in Fig. 7. Additionally, the parameter λ1 lifts
the energetic degeneracy of the different |�| components for
the individual F branches. However, the introduced splittings
of the |�| states are below 1 MHz × h for R = 265 a0, and
therefore very small. Further information on the separation of
F branches and the impact of λ1 on |�| components is given
in Appendix A 7.

For the regime λ1 = 1, λ2 > 0 the full interaction intro-
duced in Eq. (2) is realized by including the J dependency
of the p-wave triplet scattering. The physical origin of the J
dependency is �Lp · �S spin-orbit coupling. Each J channel (J =
{0, 1, 2}) is associated with a characteristic energy EJ

r where
the p-wave shape resonance occurs. For our scattering phase
shifts these values are EJ=(0,1,2)

r = (24.4, 25.5, 27.7) meV,
respectively [24]. We note that the energies EJ

r follow the
Landé interval rule. Thus, electronic triplet states of differ-
ent J experience different interaction strength for any given
internuclear separation. Figure 7 shows that this leads to
additional, strikingly large splittings of the |�| components,
on the order of tens of MHz × h for the F = 2 branch and up
to about 100 MHz × h for the lower mixed F branch. This
is by about 2 orders of magnitude larger than the splitting
due to λ1 spin-spin interaction. Therefore, we conclude that
the shapes of the observed multiplet substructures are almost
entirely determined by �Lp · �S spin-orbit interaction.

We note that in general, the |�| splittings depend on
the internuclear distance R due to the energy dependence
of the scattering lengths or volumes a(Lp, S, J, k) as well as
the spatial variation of the Rydberg electron wave function.
This can be seen, e.g., in the PECs of Fig. 2(b). For example,
when considering the N = 3/2 doublet, within the potential
wells, for smaller values of R (i.e., closer to the p-wave shape
resonance) the |�| = 1/2 and |�| = 3/2 states are farther
energetically separated from each other than for higher values
of R. This is due to the fact that resonant p-wave interactions
amplify the effect of �Lp · �S coupling. In order to check for
consistency we have varied the internuclear separation around
the value of R = 265 a0 used for Fig. 7. A corresponding
analysis reveals that the ratios of |�| splittings introduced by
parameters λ1 and λ2 are robust; i.e., over the whole potential
wells of Fig. 2(b) �Lp · �S coupling still remains the dominant
interaction that energetically separates the |�| components.
Only when going to the left of the barriers very close to the
p-wave shape resonance (e.g., at an internuclear distance of
about 220 a0) does the relative impact of the parameter λ1

increase significantly.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we find evidence for spin-orbit dependent-
scattering of an electron from a neutral atom. The scatter-
ing takes place within an ultralong-range Rydberg molecule
which represents a microlaboratory for low-energy scattering
experiments. We observe the spin-orbit interaction directly
and quantitatively in terms of bound state level splittings of
the ultralong-range Rydberg molecule. These level splittings
are particularly large in the chosen parameter regime close to
a p-wave shape resonance which enhances the effect of spin-
orbit coupling on the molecular structure. Model calculations
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agree well with our experimental data and allow for assigning
all relevant spin states to observed levels.

Having obtained a good understanding of the complex spin
couplings and level structures of the ultralong-range Rydberg
molecules, it is now possible to study interesting spin and
wave packet dynamics in these systems. In fact, for Rb2

molecules having principal quantum numbers in the vicinity
of n = 16, our calculations predict that the level crossings
of the butterfly state with the P state curves will give rise
to nontrivially coupled potential energy landscapes where,
e.g., nonadiabaticity effects (such as the breakdown of the
Born-Oppenheimer approximation) and interesting tunneling
effects can be studied. The ultralong-range Rydberg molecule
will then become an even more versatile microlaboratory for
fundamental quantum dynamics aspects [42,43].

In addition, the presented observation and interpretation of
spin structures sets a basis for further high-precision Rydberg
spectroscopic studies. These will allow for testing the limits
of the theoretical understanding and modeling of the Rydberg
system, in general. In fact, it might turn out that the effective
pseudopotential approach is not adequate to fully describe
all relevant interactions, as it suffers from limited accuracy
due to convergence issues [7,37]. Precision spectroscopy data
will therefore spark increased efforts, e.g., in the development
of appropriate R-matrix methods [44] or the inclusion of
spin interactions in Green’s function approaches, to obtain a
consistent theoretical treatment.

Finally, our results on spin-spin and spin-orbit coupling are
helpful for current research activities regarding polyatomic
many-body systems (see, e.g., [45–49]) due to the fundamen-
tal importance of pairwise interactions between two atoms.
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APPENDIX

1. Electronic spin character of the potential energy curves

Figure 8 shows the same PECs as Fig. 2 of the main text;
however, the color coding gives the expectation value of the
total spin S. Interestingly, the PECs differ quite substantially
in their S spin character despite the fact that the hyperfine
character F is nearly constant for a given set of curves that
belong to the same N .

We note that the cusps in the outer wells of the PECs
around R = 360 a0, which are visible, e.g., in Figs. 8 and 10,
occur due to the nonanalytic behavior of the wave number k
close to the classical turning point, where k becomes zero.

FIG. 8. The molecular PECs correlated to the 5S1/2 + 16Pj

atomic asymptotes for j ∈ {1/2, 3/2} and different hyperfine states
F ∈ {1, 2} of the 5S1/2 atom. Here, the color code represents the
expectation value of the quantum number S of the total electronic
spin.

2. Photoassociation setup

The photoassociation laser operates at wavelengths of
around 302 nm. The laser light is generated by a frequency-
doubled cw dye laser with a narrow short-time linewidth of
a few hundred kilohertz. The laser is frequency-stabilized to
a wavelength meter (High Finesse WS7) which is repeatedly
calibrated to an atomic 87Rb reference signal at a wavelength
of 780 nm in intervals of hours. We achieve a shot-to-shot
frequency stability of below ±10 MHz for the 302 nm light.

A multimode optical fiber is used to transfer the UV light
to the experimental table. At the location of the atoms the
spectroscopy beam has a waist (1/e2 radius) of about 1.5 mm
and the power is typically in the range of 4 to 10 mW. The
light pulse has a rectangular shape and the atoms are exposed
to the laser radiation for a duration on the order of 0.1 to 1 s.

3. Atomic lines

The strong resonance lines marked with horizontal black
arrows in the spectra (a) and (b) of Fig. 4 correspond to the
atomic transitions toward 16P1/2 and 16P3/2. Here, the atom
loss of the atomic cloud is close to 100%. The 16P1/2 line
is located at �ν = 0 in (a) and at �ν̃ ≈ νhfs = 6.835 GHz in
(b) which corresponds to the ground state hyperfine splitting.
For the excited Rydberg P state the hyperfine splitting can
be neglected. The asymmetric tail on the red side of each
atomic resonance line arises from the Stark effect due to
the electric fields of both the Paul trap and the trapped ions
(see also [50–52]). The strong resonance lines marked with
vertical black arrows in the spectra (a) and (b) of Fig. 4 also
correspond to transitions toward the atomic 16P1/2 and 16P3/2

states. These lines are shifted by about ±νhfs relative to the
atomic resonance lines marked with horizontal black arrows.
Apparently, each of the prepared F = 1 (F = 2) samples
is not 100% pure but contains a fraction of atoms in the
other spin state F = 2 (F = 1), respectively. Although these
admixed fractions are possibly on the percent level or less they
still can give rise to large signals due to the nonlinear behavior
of the atomic loss, as discussed in the main text.
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FIG. 9. Measured series of line multiplets for atomic samples
initially prepared in the hyperfine state F = 1 (a) and F = 2 (b). The
blue and red data curves in (a) and (b), respectively, are the same as
in Fig. 4. All other spectra are obtained for individually optimized
experimental parameters to locally increase the signal-to-noise ratio.
For better visibility, light blue (cyan) data in (a) are shifted in the
vertical direction by 0.5 (1.0), as well as the magenta (purple) data
in (b). Blue and orange (red and orange) vertical lines at the bottom
of plot (a) [at the top of plot (b)] indicate the frequency positions
of measured resonances belonging to line singlets and line doublets
(line triplets and line doublets) in (a) and (b), respectively. Orange
color corresponds to light gray in gray-scale versions. The alternating
signal strength behavior for each multiplet series is illustrated by the
line style, where solid (dashed) lines represent strong (weak) signals.

4. Mining of experimental data

In general, we have various parameters available to tune
signal strengths for the detection of ultralong-range Rydberg
molecules. These are the intensity and pulse duration of the
spectroscopy light, but also the ionic micromotion energy
and the time for interaction between trapped ions and neutral
atoms. Figure 9 shows qualitatively how signals change when
we vary these parameters, as indicated by different line colors
and scan ranges. The dark blue data in (a) and the red data in
(b) are zooms into Figs. 4(a) and 4(b), respectively. Additional
resonance lines which are not visible in these two spectra can
be revealed after individual parameter optimization. The blue,
orange, and red vertical lines represent the center frequency
positions of the measured resonances of line singlets, line
doublets, and line triplets. Solid and dashed vertical lines mark
strong and weak signals, respectively. They alternate between
adjacent vibrational states for each of the three observed
ladders. Within the given frequency range we observe almost
the complete series of expected resonances for each multiplet
structure. Only the weak line doublets for F = 2 are missing
in Fig. 9(b) (see purple data scan at around �ν̃ = 27 GHz).
An overview of all observed (and calculated) molecular level
positions is provided in Table II.

5. Linewidths of molecular signals

The measured linewidths of several tens of MHz are more
than 1 order of magnitude larger than expected from the

natural lifetimes of the molecular states. These natural life-
times should be on the order of that of the atomic 16P3/2

Rydberg state, for which a value of about 4 μs is predicted
[53]. The observed large linewidths of the molecular lines
might be explained by the uncertainty of the UV photoasso-
ciation laser of about ±10 MHz and due to the Stark effect.
In our experimental scheme an ion trap is used and therefore
dc and ac position-dependent electric fields are present. A
detailed analysis of electric dipole moments and a simulation
of the impact of the Stark effect on linewidths of molecular
signals needs to be done in future work. Finally, we note that
also limitations in the lifetime arising from the ionization of
molecules subsequent to their formation can play a role.

6. Restricting the Hilbert space for numerical calculations

The Hamiltonian H is constructed in a finite basis set
that includes the 15S, 16S, 17S, 14P, 15P, 16P, 13D, 14D,
and 15D states, and the hydrogenic states with higher orbital
angular momenta l � 3 with principle quantum numbers n =
12, n = 13, and n = 14. All these states are considered with
all possible total angular momenta j, while the projections mj

are truncated to include |mj | � 3/2. According to the choice
of the molecular axis lying on the z axis, states with |mj | >

3/2 do not interact with the ground state atom. Additionally,
the nuclear and electronic spins of the ground state atom
are taken into account completely (mI = {±1/2,±3/2} and
ms2 = ±1/2). Note that placing the perturber onto the z axis
significantly reduces the basis set. Since the scattering inter-
action V vastly exceeds the Zeeman energy for any magnetic
fields occurring due to the experimental setup, the atomic
orbitals align along the internuclear axis. This is different,
however, when the interaction with an external field is com-
parable to or larger than the scattering interaction [14]. Alter-
native approaches to derive the PECs that circumvent a finite
basis set are Green’s function methods employed for exam-
ple in [6,28]. However, these approaches do not incorporate
spin interactions that are crucial for the interpretation of our
results. Nevertheless, we used a Green’s function approach
and a reduced spin model which neglects fine and hyperfine
structure to find the optimal basis size. The corresponding
basis was then employed for the full model calculations.

7. Discussion of splitting mechanisms

In order to recall the molecular setup, the inset of Fig. 10
shows the electronic 16P orbital of the Rydberg atom, which
overlaps with the ground state atom at distance R. To a first ap-
proximation the interaction between the ground state atom and
the Rydberg electron can be modeled by a short-range, s-wave
Fermi-type pseudopotential. In Fig. 10 the Born-Oppenheimer
PECs are shown, when the p-wave interaction is neglected
in Eq. (1), i.e., a(Lp = 1, S, J, k) = 0. Using this simplified
situation aids convenient discussion in the following.

The oscillatory behavior of the PECs in Fig. 10 reflects the
radial wave function of the Rydberg electron. Here, the sepa-
ration of states with mixed F character from those with pure
F = 1, 2 character as a function of the internuclear distance R
can directly be seen for R � 370 a0. Each asymptote breaks up
into two oscillatory PECs, marked with A and B. There is an
additional, nonoscillatory PEC, marked with C, for each P3/2
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TABLE II. Measured and calculated molecular energy level positions. The subscripts e and t denote experimental and theoretical results,
respectively. �νe and �ν̃e are measured resonance frequencies, while �νt corresponds to computed term frequencies (referenced to the
calculated 5S1/2 + 16P1/2 dissociation threshold). The subscript s indicates splittings between |�| states within individual multiplet structures
and the subscript v is used to mark vibrational splittings for a given |�| quantum number. Signal strengths of measured and calculated resonance
lines are classified as weak (w) or strong (s). Not-observed lines are labeled with “n.o.” Values of �νe and �ν̃e indicated by (∗) characterize
experimental signals which might come from different molecular states than considered here. These signals are not taken into account for
Fig. 5. The resonance at �ν̃e = 31.86 GHz marked with (∗∗) is rather broad and expected to consist of an N = 5/2 and an N = 3/2 molecular
line which cannot be resolved. Therefore, we give this frequency for the corresponding lines of the double as well as the triple line pattern.

Experiment (F = 1) Experiment (F = 2) Theory

�νe δνs,e δνv,e Signal strength �ν̃e δν̃s,e δν̃v,e Signal strength |�| �νt δνs,t δνv,t Signal strength
(GHz) (GHz) (GHz) (GHz) (GHz) (GHz) (GHz) (GHz) (GHz)

Vibrational ladder of single lines (N = 1/2, pure triplet)
16.30 s 0.5 14.36 s
17.82 1.52 w 0.5 15.73 1.37 w

19.60 1.78 s 0.5 17.25 1.52 s
21.27 1.67 w 0.5 18.91 1.66 w

23.06 1.79 s 0.5 20.67 1.76 s
24.83 1.77 w 0.5 22.53 1.86 w

26.63 1.80 s 0.5 24.43 1.90 s
28.34 1.71 w 0.5 26.36 1.93 w

29.95 1.61 s 0.5 28.27 1.91 s
31.38∗ 1.43 w 0.5 30.11 1.84 w

32.34∗ 0.96 s 0.5 31.84 1.73 s
Double-line pattern (N = 3/2, mixed singlet-triplet)

18.68 s 18.64 s 1.5 16.86 s
18.84 0.16 s 18.80 0.16 s 0.5 17.01 0.15 s
20.08 1.40 w 20.12 1.48 w 1.5 18.17 1.31 w

20.28 0.20 1.44 w 20.32 0.20 1.52 w 0.5 18.41 0.24 1.40 w

21.74 1.66 s 21.76 1.64 s 1.5 19.63 1.46 s
21.96 0.22 1.68 s 22.00 0.24 1.68 s 0.5 19.95 0.32 1.54 s
23.38 1.64 w n.o. 1.5 21.22 1.59 w

23.65 0.27 1.69 w n.o. 0.5 21.61 0.39 1.66 w

25.15 1.77 s 25.15 s 1.5 22.93 1.71 s
25.43 0.28 1.78 s 25.44 0.29 s 0.5 23.37 0.44 1.76 s
26.87 1.72 w n.o. 1.5 24.72 1.79 w

27.16 0.29 1.73 w n.o. 0.5 25.21 0.49 1.84 w

28.62 1.75 s 28.65 s 1.5 26.57 1.85 s
28.91 0.29 1.75 s 28.93 0.28 s 0.5 27.10 0.53 1.89 s
30.26 1.64 w n.o. 1.5 28.44 1.87 w

30.52 0.26 1.61 w n.o. 0.5 28.98 0.54 1.88 w

31.83 1.57 s 31.86∗∗ s 1.5 30.29 1.85 s
32.08 0.25 1.56 s 32.10 0.24 s 0.5 30.83 0.54 1.85 s

1.5 32.08 1.79 w

0.5 32.58 0.50 1.75 w

Triple-line pattern (N = 5/2, pure triplet)
21.36∗ w

21.43∗ 0.07 w

21.54∗ 0.11 w

23.08 1.72 s 0.5 21.12 s
23.15 0.07 1.72 s 1.5 21.18 0.06 s
23.25 0.10 1.71 s 2.5 21.29 0.11 s
24.59 1.51 w 0.5 22.47 1.35 w

24.68 0.09 1.53 w 1.5 22.56 0.09 1.38 w

24.81 0.13 1.56 w 2.5 22.71 0.15 1.42 w

26.30 1.71 s 0.5 23.99 1.52 s
26.39 0.09 1.71 s 1.5 24.10 0.11 1.54 s
26.54 0.15 1.73 s 2.5 24.28 0.18 1.57 s
28.01 1.71 w 0.5 25.65 1.66 w

28.11 0.10 1.72 w 1.5 25.78 0.13 1.68 w

28.27 0.16 1.73 w 2.5 25.98 0.20 1.70 w
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TABLE II. (Continued.)

Experiment (F = 1) Experiment (F = 2) Theory

�νe δνs,e δνv,e Signal strength �ν̃e δν̃s,e δν̃v,e Signal strength |�| �νt δνs,t δνv,t Signal strength
(GHz) (GHz) (GHz) (GHz) (GHz) (GHz) (GHz) (GHz) (GHz)

Triple-line pattern (N = 5/2, pure triplet)
29.83 1.82 s 0.5 27.42 1.77 s
29.94 0.11 1.83 s 1.5 27.57 0.15 1.79 s
30.11 0.17 1.84 s 2.5 27.79 0.22 1.81 s
31.61 1.78 w 0.5 29.28 1.86 w

31.72 0.11 1.78 w 1.5 29.44 0.16 1.87 w

31.86∗∗ 0.14 1.75 w 2.5 29.67 0.23 1.88 w

33.42 1.81 s 0.5 31.19 1.91 s
33.53 0.11 1.81 s 1.5 31.36 0.17 1.92 s
33.72 0.19 1.86 s 2.5 31.59 0.23 1.92 s
n.o. 0.5 33.11 1.92 w

n.o. 1.5 33.28 0.17 1.92 w

n.o. 2.5 33.51 0.23 1.92 w

36.74 s 0.5 35.00 1.89 s
36.85 0.11 s 1.5 35.16 0.16 1.88 s
37.00 0.15 s 2.5 35.37 0.21 1.86 s

0.5 36.83 1.83 w

1.5 36.96 0.13 1.80 w

2.5 37.14 0.18 1.77 w

asymptote. These C PECs correspond to Rydberg states with
mj = ±3/2 which do not undergo s-wave interaction, because
the ground state atom on the z axis is located at the node
of the |ml | = 1 electronic orbital. The remaining interaction
of the C PECs in Fig. 10 is then solely through the attractive
1/R4 polarization potential due to the Rb+ ionic core.

In the literature [19,20,23,26] each pair of oscillatory PECs
is subclassified into a “deeper” curve (A) and a “shallower”
curve (B) which are sometimes also labeled “triplet” and
“mixed,” respectively. However, the deeper curves are not
pure triplet states due to Rydberg fine structure. We explain
how this is possible with the following example. We consider
the electronic state of a Rydberg atom in a P state with total
orbital angular momentum j = 1/2 and projection mj = 1/2
and a ground state atom in a polarized nuclear spin state F = 2
and mF = 2,

(
ψml =0,↑(�r)
ψml =1,↓(�r)

)
⊗ |F = 2, mF = 2〉. (A1)

In first-order perturbation theory (with respect to weak s- and
p-wave interactions) this state must be an eigenstate of the
Hamiltonian, as it is the only possible realization of an � =
5/2 state in the Hilbert subspace considered here. The spin-up
component has ml = 0 and the spin-down component has
ml = 1. Together with the spin-stretched ground state atom,
the spin-up component forms a pure spin triplet. Therefore,
this component does not interact in the s-wave singlet channel.
The spin-down component is a mixed singlet-triplet state.
However, it still does not interact in the s-wave singlet channel
because ml = 1 and hence the ground state atom is located at
the node of the electronic wave function. Thus, despite the
fact that the state of Eq. (A1) has a singlet component, it is
insensitive to s-wave singlet interaction.

The state of Eq. (A1) is just one example for the many
degenerate eigenstates associated with the deep PECs. The
degeneracy of the deep and shallow PECs can be obtained
with the help of the spin operator �N2, where �N = �S + �I =
�s1 + �F . We note that �N2 does not commute with HRyd due
to the Rydberg fine structure; however, it is still useful for
labeling the scattering channels, as we show in the following.
The basis states of a given F branch all have a form similar to
that of the state of Eq. (A1). Within the vector space spanned
by these basis states, we want to determine the dimension
of the subspace that is susceptible to singlet s-wave interac-
tion. Since the |ml | = 1 component of a basis state does not
contribute to s-wave interaction, we only consider its ml = 0
component, of which the spin can be up or down. Thus, the
problem can be reduced to determining the dimension of the
formed S = 1 subspace when coupling an electronic spin �s1

to the angular momentum F manifold where �F = �I + �s2. For
this, we divide up the resulting new manifold into subspaces
with good quantum number N . Since �N2 commutes with both
�S2 and �F 2, this will help us in sorting out the spin structure.
We note, however, that �S2 and �F 2 do not commute. For
F = 2, N can be N = 5/2 or N = 3/2. Since the N = 5/2
subspace must have S = 1 it belongs to branch A. With the
help of Wigner 6 j coefficients one can show that the N = 3/2
subspace, however, contains states with singlet and triplet
character and therefore belongs to branch B. Similarly, for
F = 1, we have the subspaces N = 3/2 and N = 1/2. Here,
N = 1/2 goes along with S = 1 and thus belongs to branch
A, whereas N = 3/2 includes both S characters and belongs
to branch B. As the difference in the singlet and triplet s-wave
interactions becomes larger, the two N = 3/2 manifolds of
the F = 1 and F = 2 branches start mixing. The degree of
F mixing depends on the relative strength of the differential
singlet-triplet s-wave interaction and the hyperfine interaction
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FIG. 10. The molecular Born-Oppenheimer potentials when s-
wave interactions between the electron and the ground state atom
are taken into account but p-wave interactions are neglected. The
colors of the curves indicate the expectation value of the F quantum
number of the ground state atom. From each atomic asymptote two
oscillatory potentials emerge. They have |mj | = 1/2 and feature the
nodes of the electronic wave function. The deeper PECs (marked
with A) are associated with pure triplet scattering and the shallower
PECs (marked with B) are associated with mixed singlet-triplet
scattering. The PECs labeled with C have |mj | > 1/2 and do not
show an oscillatory behavior. In the inset a sketch of an ultralong-
range Rydberg molecule is shown. It consists of a Rb+ ionic core,
an electronic Rydberg 16P state orbital, and a ground state Rb atom
which is located at position �R = Rêz relative to the ionic core. The
16P electronic orbital is given in a contour plot representation.

Hg. The F mixing due to the presence of a singlet s-wave
scattering channel is essential for the spin-flip effect observed
in [22]. N reproduces the multiplicities for the PECs, which
are visible in Figs. 2(b) and 7. For the F = 2 asymptote, the
deep curve corresponds to N = 5/2 and has six degenerate
states of pure F = 2 character. For the F = 1 asymptote, the
deep curve corresponds to N = 1/2 and has two degenerate
states of pure F = 1 character. The shallow curves of both
the F = 1 and the F = 2 asymptotes correspond to N = 3/2
and have four degenerate states of mixed F = 1 and F = 2
character each. While this regime of interactions is sufficient
to describe the PECs at the outer potential wells (in this
case for R > 300 a0), additional p-wave related interactions
become important for smaller internuclear separations, which
are also relevant in the parameter regime of λ1.

The difference between the singlet and triplet channels
introduced via parameter λ1 affects in particular the spinor
components with ml = ±1, which only probe the p-wave

interaction but not the s-wave interaction. Although the state
with � = 5/2 of Eq. (A1) is of pure triplet character in its
ml = 0 component, it is of mixed singlet-triplet character in its
ml = 1 component, as discussed before. As a consequence, it
will experience a first-order level shift. States with a different
|�| have different mixing ratios and will exhibit different
shifts. Therefore, the spin-selective p-wave interaction gen-
erally leads to a splitting of |�| states. This splitting, however,
arises only due to the Rydberg fine structure and is, hence, not
visible in S state ultralong-range Rydberg molecules recently
studied [25], since they do not exhibit such a kind of fine
structure related to |ml | = 1.

8. Alternative representation of spin-spin and spin-orbit
interaction

The pseudopotential that models the interaction between
the Rydberg electron and the ground state atom is given in
Eq. (2) of the main text. Our aim is now to rewrite the given
interaction potential in terms of operators such as �s1 · �s2 and
�Lp · �S, respectively.

First, we consider the example of pure s-wave scattering,
i.e., Lp = 0 and therefore J = S and MJ = MS . The corre-
sponding expression of Eq. (2) is compared to the ansatz

VLp=0 = [c11̂ + c2�s1 · �s2]
δ(X )

2X 2
|Lp = 0〉〈Lp = 0|. (A2)

For this, Eq. (A2) is represented as a 4 × 4 matrix in the
basis |S, MS〉. From the comparison we find that both expres-
sions are identical if c1 = [a(0, 0, 0, k) + 3a(0, 1, 1, k)]/4
and c2 = a(0, 1, 1, k) − a(0, 0, 0, k). As expected, there is
no spin-spin coupling, i.e., c2 = 0, when the s-wave singlet
and triplet scattering lengths or volumes a(0, 0, 0, k) and
a(0, 1, 1, k) are equal. Furthermore, c1 corresponds to the
averaged s-wave scattering length or volume.

Now, we turn to a treatment of spin-orbit coupling. Since
spin-orbit interaction only takes place in the p-wave triplet
channel only the subspace with Lp = 1 and S = 1 has to be
considered in Eq. (2). The resulting expression is compared to
the ansatz

VLp=S=1 = [c31̂ + c4 �Lp · �S + c5(�Lp · �S)2]

× 9δ(X )

2X 4
|Lp = 1, S = 1〉〈Lp = 1, S = 1|, (A3)

which includes second-order spin-orbit interaction. We obtain

c3 = −a(1, 1, 0, k) + 3a(1, 1, 1, k) + a(1, 1, 2, k)

3
,

c4 = −a(1, 1, 1, k) + a(1, 1, 2, k)

2
,

c5 = 2a(1, 1, 0, k) − 3a(1, 1, 1, k) + a(1, 1, 2, k)

6
. (A4)

The result implies that the �Lp · �S coupling vanishes, i.e., c4 =
c5 = 0, only if all scattering volumes are equal, which agrees
with our expectation. Our analysis shows that including the
second-order spin-orbit interaction is particularly important
for the description close to the p-wave shape resonance.
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