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Existence of robust edge currents in Sierpiński fractals
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We investigate the Hall conductivity in a Sierpiński carpet, a fractal of Hausdorff dimension df =
ln(8)/ ln(3) ≈ 1.893, subject to a perpendicular magnetic field. We compute the Hall conductivity using linear
response and the recursive Green function method. Our main finding is that edge modes, corresponding to
a maximum Hall conductivity of at least σxy = ± e2

h , seem to be generically present for arbitrary finite field
strength, no matter how one approaches the thermodynamic limit of the fractal. We discuss a simple counting
rule to determine the maximal number of edge modes in terms of paths through the system with a fixed width.
This quantized edge conductance, as in the case of the conventional Hofstadter problem, is stable with respect to
disorder and thus a robust feature of the system.
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Topological insulators and their properties, such as exotic
surface states, have been at the forefront of condensed matter
research during the last decade [1]. Under the most generic
circumstances they have been classified in ‘the tenfold way’
[2,3] or, the ‘periodic table of topological insulators’ [4]. The
key insight is that given the nonspatial symmetries, such as
chirality, time-reversal symmetry, and parity, one can deduce
the possible existence or nonexistence of states with nontrivial
bulk topological order.

Numerous extensions of this classification scheme have
been discussed: imposing lattice symmetries leading to crys-
talline topological insulators [5], dissipation in non-Hermitian
Hamiltonians [6], driven nonequilibrium systems [7], or the so
called higher order topological insulators [8,9].

We explore an alternative path which is to modify dimen-
sion. We are especially interested in knowing to which extent
one can employ the classifications of the integer dimensions
above and below, when considering a fractional dimension.
It has been known for a long time that fractal structures
possess noninteger Hausdorff dimension d f [10]. Recently,
lattices with fractal structure have been manufactured in the
laboratory in a number of ways. This includes the use of
molecular assembly [11–17], templating, and co-assembly
methods [18,19]. Furthermore, electronic fractal lattices were
created by scanning tunneling microscope techniques [20].
Theoretically, this sparked interest in electronic [21] and
optical conductivity [22] as well as plasmon dispersion rela-
tions [23]. Recent works explored Anderson localization and
critical points on fractals [24] as well as level statistics [25].
The prospect of topological order in fractals was investigated
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in Refs. [26,27] and recently revived in Ref. [28] and we
compare our results to this latter work.

Structure of paper and main results. We concentrate on
the Sierpiński carpet (SC) with a Hausdorff dimension d f =
ln(8)/ ln(3) ≈ 1.893 [10]. We start from a two-dimensional
Chern insulator, the Hofstadter model, and then convert it
into the SC by diluting the lattice. Subsequently, we employ
the recursive Green function method to investigate the Hall
resistance and relate it to the number of existing edge modes.
The findings are compared to Chern number calculations.
Our principal finding is that, regardless of the protocol for
constructing the fractal, one generically finds Hall conduc-
tances of at least σxy = ±e2/h surviving the extrapolation
to the thermodynamic limit. We back this up using several
extrapolations schemes. Furthermore, we show that as in the
case of more conventional quantum Hall systems, this mode
is stable upon introducing disorder.

Constructing the fractals. We distinguish fractal generation
g, related to the linear size of the system as L = 3g, and fractal
depth f , counting the number of times the cutting procedure
has been iterated, see Fig. 1. Both numbers are summarized
in a fractal index F = (g, f ). The number of sites in a fractal
F is given by N = L2(8/9) f = 9g− f 8 f . The relevant linear
sizes, Hilbert space sizes, and volume fractions can be found
in Table I.

Model and setup. We consider a tight-binding Hamiltonian
for spinless fermions

HL = −t
∑

〈i, j〉∈L
(a†

i a je
ıAi j + H.c.), (1)

subject to a perpendicular magnetic field implemented via
Ai j = ∫ r j

ri
�A · d�l [we choose the Landau gauge �A = B(y, 0)].

Here a†
i creates a fermion on lattice site i and L is the set of

nearest neighbors with support on the lattice.
The starting point of our construction is a square lattice

with lattice spacing a. We parametrize the strength of the
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FIG. 1. (a) Iterative construction of the fractals. We have g �
f � 0; (b) schematic of the four terminal Hall bar setup. It allows
us to measure the resistance between lead 1 and lead 2, ρxx = Vxx/I ,
and the Hall resistance ρxy = Vxy/I between lead 3 and lead 4.

magnetic field as B = 2π�/a2, where � is the magnetic flux
piercing every plaquette (�0 = h/e is the elementary flux).

Transport calculation. Instead of studying the open bound-
ary spectrum or topological indices, we directly probe trans-
port properties. We compute transport through a Hall bar,
see Fig. 1(b), using linear response and the recursive Green
function method which gives us access to larger system
sizes [29]. In a two-terminal setup extended bulk states also
contribute to the longitudinal transport, making it difficult
to isolate boundary modes. Consequently, we implement a
four-terminal setup giving direct access to the boundaries.
We calculate two transport quantities, ρxy = Vxy/I and ρxx =
Vxx/I (ρxx is measured between lead 1 and lead 2 and not
along the boundary, like in a six terminal setup). The metallic
leads are semi-infinite and described by the Hamiltonian
−t

∑
〈i, j〉 a†

i a j + H.c describing nearest-neighbor hopping on
a square lattice. The top and bottom leads are 5–10 lattice
sites wide. We use a recursive scheme to calculate the Green
function, allowing us to target larger g and f .

The thermodynamic limit. We are interested in transport
through the fractal in the thermodynamic limit. There are
many different ways to approach the thermodynamic limit.
For instance, all the sequences F = limg→∞(g, g − δ), with
δ finite, have the same Hausdorff dimension, and thus in the
thermodynamic limit all constitute lattice realizations of the
Sierpiński carpet, albeit with different UV cutoffs.

In the following, we concentrate on two extreme cases:
(i) starting from a large g and following the sequence F =
(g, 0) → (g, 1) → (g, 2) → · · · → (g, g); (ii) starting from a
small F = (0, 0) fractal and recursively building larger frac-
tals, i.e. , following the sequence F = (0, 0) → (1, 1) →
(2, 2) → · · · → (g, g). We found heuristically that sequence
(ii) is the one with the lowest number of stable edge states. We

TABLE I. Table of linear system sizes, Hilbert space sizes, and
volume fraction of the Sierpiński lattice (g, g).

g 0 1 2 3 4 5 6

L = 3g 1 3 9 27 81 243 729
Dim(H ) = 8g 1 8 64 512 4 096 32 768 262 144
Vol%= (8/9)g 1 89% 79% 70% 62% 55% 49%

show that irrespective of the UV regularization we choose, at
least one edge mode survives.

Hall resistance. We start with sequence (i), see Fig. 2,
computing the Hall resistance for three systems of the same
fractal generation g = 4 and ascending fractal depth (g, f ) =
(4, 2), (4, 3), (4, 4). The case of (4, 2) shares many features
with the usual Hofstadter model, including gaps with higher
Hall conductivity, corresponding to four or five edge modes.
To quantify the edge mode counting we present a histogram of
1/|ρxy| in Fig. 2(d). We note that increasing the fractal depth
gaps edge modes. The intuition is that new ‘holes’ introduce
states inside the structure that hybridize with the actual edge
states and gap them. For the full depth fractal, we find that
maximally one mode remains. To see whether the butterfly
(4, 4) in Fig. 2 is a faithful representation of the thermody-
namic limit, we zoom in on a smaller region 0.35 < �/�0 <

0.45, −1 < E < 0 and image it with the same energy and
magnetic field resolution for three consecutive system sizes
(4, 4), (5, 5), and (6, 6), see Fig. 3. The main finding is
that all the prominent features remain intact. Specifically, we
see that the part of parameter space that hosted stable edge
modes is basically unaltered in all the three plots. We thus
conclude that the maximum number of stable edge modes in a
thermodynamic (g, g) system appears to be 1. Furthermore we
note that the (g, g − 1) and (g,−2) systems hosted more than
one edge mode, leading us to conjecture that at least one edge
mode will always be present, irrespective of UV regularization
scheme.

‘Smoothly’ approaching the fractal. We have established
that upon increasing fractal depth, edge modes are annihilated
with a minimum number of 1 remaining. To monitor the
annihilation of edge modes between fractals of increasing
depth we use a scheme that interpolates from a shallow fractal
F1 = (g, f1) to a deeper fractal F2 = (g, f2), f2 > f1. For this
purpose, we split the Hamiltonian into two pieces

HF1→F2 = (1 − λ)HF1 + λHF2 = HF1 − λHF1\F2 .

The term HF1\F2 contains all the hopping terms that are
present in the shallower Hamiltonian HF1 , but not in the
deeper HF2 and 0 � λ � 1 tunes between the two. We con-
sider the two-terminal transmission through the fractal for
fixed � and study the breakdown of edge modes as a function
of λ. In all the plots we interpolate between the Hofstadter
model and the full-depth fractal, see Fig. 4.

We consider the situation where the number of edge modes
changes as 2 → 0 (�/�0 = 0.24, E = 0.1), 3 → 0 (�/�0 =
0.05, E = 2.35 and �/�0 = 0.078, E = 1.8), and 3 → 1
(�/�0 = 0.14, E = 0.3). We see that the edge modes can
withstand some amount of hopping depletion before the clean
edge mode is lost, but the amount of depletion depends on
the parameters E and �/�0. The intuition is again that new
‘holes’ are introduced in the structure leading to new ‘edge
states’ that hybridize with the actual edge states and gap them
out. We also see that the transition from edge to bulk modes
is not smooth but shows high frequency oscillations in the
conductance. The frequency of the oscillations do increase
with system size, but the values of λ at which the oscillations
occur, and where there is reduction of transmission, are the
same irrespective of the system sizes. This is in agreement
with the intuition that the bulk modes will have a fractal
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FIG. 2. Hall butterfly: The main panels show the Hall resistance ρxy = Vxy

I measured between lead 3 and lead 4, if a current is driven from
lead 1 to lead 2, see Fig. 1. The color scheme is truncated at −2 < ρxy < 2, and gray areas have total transmission coefficient lower than 0.1.
The right panels show the histogram of 1

|ρxy | over the whole parameter space. For (4,2) we can see several peaks of 1/|ρxy| corresponding to
multiple edge modes. For (4,3) many of these peaks are quenched, and only 1/|ρxy| = 1, 2 and possibly 1/|ρxy| = 3 have peaks. Finally, at
(4,4), only the |ρxy| = 1 peak is preserved. The black square shows a region that is studied in further detail in Fig. 3.

dispersion [30–32] and thus that the bulk contribution to the
conductivity should mimic this fractal pattern [21,33,34].

Resilience to impurities. We now investigate to which
extent these edge modes are stable to disorder. We consider
on-site disorder HI = ∑

i εia
†
i ai, where εi is uniformly dis-

tributed in the range [−W,W ]. We choose �/�0 = 0.25
and E = −1.1 where we earlier established the existence
of edge modes. We then track ρxy at four different system
sizes (g, g), g = 4, 5, 6, 7, see Fig. 5. While we found that
making the fractal cuts deeper generically decreases the num-
ber of edge modes, the remaining single edge mode regions

become increasingly stable with increasing system size. Con-
sequently, we conclude that the edge modes are stable with
respect to disorder, like in a conventional quantum Hall
setup.

Relation to Chern numbers. We make a full scan of the
Chern numbers, see Fig. 6. Chern numbers were computed
in Ref. [28] for a fixed magnetic field �/�0 = 0.25. For
completeness, we here use the same method [35] to compute
Chern numbers for the entire �/�0 and E parameter space.
We compare the calculated numbers with the Hall resistances
that were obtained in Fig. 2. For (4, 2) and (4, 3), the Chern

FIG. 3. Zoom in on the Hall resistance for three consecutive generations (4,4), (5,5), and (6,6). The large scale structure of the edge modes
is already present in generation (4,4). The difference between the various panels is the amount of high frequency variations as seen in the two
cuts at fixed �/�0 in the lower panel. The color scheme is the same as in Fig. 2.
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FIG. 4. Longitudinal conductance σxx = I/Vxx when interpolat-
ing between Chern insulator and full depth fractal.

numbers coincide with ρxy obtained through the transport
calculations.

In the case of the full depth fractal (4, 4), it seems that
there are larger regions with noninteger Chern number than
there are in the transmission plots. When comparing the two,
one should however keep in mind that even though the Chern
number calculation is well defined for any filling of the band,
it is not expected to give integers if the Fermi energy lies
within one of the bands. To be more precise, in the Hofstadter
model, narrow bands are separated by well defined band gaps.
In the fractal at finite magnetic field, many of these bands have
broken up into sub bands and the gaps between these are also
quite small. Thus interpreting what is a Chern number and
what is simply “in the band” is more complicated.

Conclusions and outlook. In this paper we studied
edge modes and associated Hall resistivity in a Hofstadter

FIG. 5. Hall resistance of disordered SC fractals. Increasing the
fractal size and depth makes the edge mode more stable with respect
to the disorder strength W . The error bars show the error of the mean
ρxy for 20 disorder realizations.

Sierpiński fractal. Our main finding is that increasing the
fractal depth destabilizes edge modes but that one may never
completely eliminate them.

We found that in the (g, g) fractals, for sufficiently large
g, there only are single edge modes, even in the presence
of strong disorder. Moreover, in the (g, g − 1) fractals, in-
stead, 1 and 2 modes were present. The reason for that is
that the widest path through the lattices (which occurs e.g.,
on the edge) is precisely one site wide. Paths with more
sites [which is already the case for (g, g − 1)] enable us to
see multiple edge modes. This is most easily rationalized
starting from the solutions to the Landau problem in the
continuum. In the Landau gauge, the generic wave func-
tions have the form ψk,n(x, y) ∝ e− 1

2 (y−y0(k))2
Hn(y − y0(k))eıkx

[y0(k) denotes where the wave function is centered for the
respective value of k and Hn(x) is the Hermite polynomial of
the nth order]. In the lowest Landau level (LL) n = 0 H0 = 1
and ψk,n is reduced to ψk,0 ∝ e− 1

2 (y−y0(k))2
eıkx. This has a

gaussian shape in the y direction and is a plane wave in the
x direction. A lattice version of this wave function can thus
exist with support on a one site wide row in the y direction. For
higher LLs, n > 0, the Hermite polynomial will have nodes,
and this will cause the wave functions to change sign as a
function of the distance to the edge. To mimic the nodes and
accompanying sign changes on the lattice level, one needs
at least one more site than the number of nodes in order to
support the wave function. Thus, since there is no path through
the (g, g) fractal that always is more than one site wide,
only single edge modes corresponding to the lowest LL are
allowed.

We stress that the existence of a one-site wide path through
the fractal at maximal depth may depend on how the fractal is
defined with respect to the underlying lattice. It is therefore
an interesting question to which extent edge states would
be supported on a “traditional” fractal, where there is no
microscopic lattice scale a, but rather the macroscopic scale
L is held fixed.

In relation of other fractal lattices in magnetic fields, we
speculate that the Hausdorff dimension and/or the connec-
tivity plays a role. We note for instance that the Sierpiński
Triangle/Gasket does not seem to host stable edge modes
[28]. This system has a lower dimension than the carpet,
but also the connectivity is finite, whereas in the carpet it is
extensive.

In the future, it would be interesting to see how other
fractal systems may support topologically ordered states, for
instance, by considering three-dimensional topological insu-
lators on 3D Sierpiński gaskets.

Note added. Recently, Ref. [36] appeared which treats
a similar problem using the Kubo-Bastin formula for
Hall conductivity. They obtain similar results as in our
paper.
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FIG. 6. Direct calculation of the Chern number. We observe that the Chern number for (4,2) and (4,3) is in good agreement with ρxy, see
Fig. 2. For (4,4) we see deviations from the Hall resistivity which is mostly rooted in less well defined bands. Here we use a base of 200 sites
to accurately capture higher Chern numbers.
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