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We fully investigate the symmetry-breaking patterns occurring upon creation of composite non-Abelian
strings: vortex strings in non-Abelian theories where different sets of colors have different amounts of flux.
After spontaneous symmetry breaking, there remains some internal color degrees of freedom attached to these
objects, which we argue must exist in a flag manifold, a more general kind of projective space than both CP (N )
and the Grassmannian manifold. These strings are expected to be Bogomol’nyi-Prasad-Sommerfeld since its
constituents are. We demonstrate that this is true and construct a low-energy effective action for the fluctuations
of the internal flag moduli, which we then rewrite in two different ways for the dynamics of these degrees of
freedom: a gauged linear sigma model with auxiliary fields and a nonlinear sigma model with an explicit target
space metric for the flag manifolds, both of which are N = (2, 2) supersymmetric. We finish by performing
some groundwork analysis of the resulting theory.
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I. INTRODUCTION

The CP (N ) nonlinear sigma model has undergone much
analysis in many contexts, in particular because it provides a
very tractable (in its simplest formulation, exactly solvable)
theory in which confinement occurs [1]. Being a Kähler
manifold, it is then particularly straightforward to study su-
persymmetric enhancements thereof, and leads to a rich study
of deformations by superpotentials and other very geometric
considerations.

They appear quite naturally when developing a world-
sheet action for non-Abelian vortex strings [2–5] (see [6–9]
for reviews) including its heterotic versions [10]. In four-
dimensional theories with a SU(N + 1) gauge group and a
scalar symmetry-breaking potential, solitonic vortex string
solutions can be constructed: certainly some exist that are
merely copies of the usual Abelian Abrikosov-Nielsen-Olesen
vortex, in which all of the non-Abelian gauge symmetry is
completely broken, but more elementary strings (of lower
tension) can be obtained by allowing some leftover invariance
of the original gauge group: the symmetry-breaking pattern
allows for motion in the space

SU(N + 1)

SU(N ) × U (1)
= CP (N ). (1)

The string is then endowed with an internal degree of freedom,
orientational moduli that capture this phenomenon. The low-
energy effective action of the string world sheet then sees
these moduli promoted to a dynamical field and produces the
CP (N ) nonlinear sigma model.
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The above construction can be generalized in the fullest
extent, in that the symmetry-breaking pattern of the string
solution can be adjusted to produce the flag manifold:

U (N )

U (N0) × . . .U (Np)
= F{N0,...,Np}, N =

p∑
i=0

Ni. (2)

As a special case of this construction, the Grassmannian
manifold can be reached by setting p = 1:

U (N + M )

U (N ) × U (M )
= G(N, M ) (3)

The Grassmannian composite string is considerably more
tractable than the generic flag manifold string, and has un-
dergone some analysis already (see [11] and a recent review
[12]). In many ways, this text is a direct continuation of the
ideas of the latter paper.

We must proceed with the following caveat. So long as
the components of these composite objects all remain aligned
along the same axis, the picture we outline remains valid. It is
known that the full world-sheet theory for composite strings
also encompasses degrees of freedom due to elementary string
separation and relative spatial orientation, as can be verified
via a four-dimensional (4D) topological index computation
and a brane construction [2]: the index found is larger than
the one we will obtain in this paper.

Attempts to take this phenomenon into account directly
from field theory lead to a vastly more challenging setup
[13]. Such analysis is, however, essential in order to explain
the value of the 4D Witten index in this sector. An approach
toward the computation of the full moduli space can be found
in Refs. [7,14].

The position of the common center of all component vor-
tices (in the case where they do all overlap) always persists as
a moduli, of course, but as always this degree of freedom de-
couples from color dynamics in sufficiently supersymmetric
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theories. Starting from an N = 2 four-dimensional theory,
we expect to find a worldsheet bearing (2,2) supersymmetry,
in which this decoupling occurs. In world-sheet theories of
fewer supersymmetries, for instance, heterotic (0,2) strings,
instances are known where the fermionic components of
the positional and color zero modes mix and interact [15].
Because the models we are studying are Kähler manifolds,
the study of (1,1)-supersymmetric manifolds is trivial: the
complex structure for these spaces automatically provides a
supersymmetry (SUSY) enhancement to (2,2).

In this context we will show how flag manifolds arise on
the world sheet of generic, highly composite non-Abelian
vortex strings. In Sec. II we will construct an ansatz for
the fields of a particular 4D gauge theory which breaks
color symmetry in a pattern that ought to let flag degrees of
freedom appear. Then, by letting these internal degrees of
freedom depend on world-sheet coordinates, we reduce the
4D action to a two-dimensional (2D) one, corresponding to
low-lying excitations of the string world sheet. It has a very
particular structure which implies gauge invariance without
the existence of any tree-level dynamical gauge fields, and
the structure of the coupling constants shows how different
models of the same type are related to one another by a
“block-merging” phenomenon. In Sec. III we take this world-
sheet Lagrangian and rewrite it in two different ways. One is a
gauged linear sigma model, in which all constraints on fields
are written into the action thanks to Lagrange multipliers
(rather than assumed in the path integral) and gauge invariance
is materialized by the introduction of an auxiliary gauge field
with no kinematics of its own, obtaining a theory in which all
fields are in linear representations of the symmetry groups,
resembling an ordinary gauge theory. The other is a direct
parametrization of all the constraints at hand in order to
obtain a true nonlinear sigma model, in which the degrees of
freedom exist as points on a curved manifold, i.e., a direct
parametrization of the flag space.

These presentations of the flag manifold sigma model
have very recently gone under some investigation ([16,17]
respectively), but do not make any contact with the vortex
strings which bear them and, due to this, do not bear the
coupling structure derived in this work, a direct consequence
of the structure of magnetic flux distribution in four dimen-
sions, and an important tool to observe the “block-merging”
phenomenon on the world sheet.

II. FROM FOUR TO TWO DIMENSIONS, THE
STRUCTURE OF COMPOSITE STRINGS

A. General composite strings, flag manifolds

We start off in four-dimensional N = 2 U (N ) SQCD, with
Nf = N flavors. We introduce a Fayet-Iliopoulos D term in
the theory, then the gauge symmetry becomes dynamically
broken by the Higgs mechanism. The bosonic field content
that interests us reduces to two gauge fields Aμ and Aa

μ (one
Abelian and the other not) as well as N flavors of squarks in
the fundamental representation of the gauge group φk

A, where
k and A are, respectively, the color and flavor indices. All other
fields can be set to zero at no cost, producing a purely bosonic
theory at the Bogomoln’yi point.

The reduced Lagrangian then can be written

L = 1

4g2

(
F a

μν

)2 + 1

4g2
(Fμν )2 + |Dφ|2 + 1

2
Tr(φ†T aφ)2

+ 1

8
[Tr(φ†φ) − Nξ ]2. (4)

The scalar equations of motion show that the field φ gains
a diagonal vacuum expectation value (VEV), enforcing a
color-flavor locked phase: the action is invariant under leftover
combined color-flavor transformations U (N )diag:(

φk
A

)∣∣
vac =

√
ξ1k

A, U (N ) × U (N ) → U (N )diag. (5)

This pattern of symmetry breaking generates distinct topolog-
ical sectors due to the following nontrivial homotopy struc-
ture:

π1

(
U (N ) × U (N )

U (N )

)
∼ π1(U(N )) = Z. (6)

The integer that labels the equivalence classes of this homo-
topy is the overall winding number of a vortex. However,
without breaking center symmetry, we can only prepare vor-
tices in which all flavors have the same winding number, i.e.,
the string object has one unit of magnetic flux in all color
flavors. This object has tension

T = 2πNξ . (7)

While this example is simple, it seems nonminimal: the
appearance of N in the string tension may leave to wonder
whether a object of lower tension exists, potentially by wind-
ing fewer of the gauge fields. This can be done by breaking the
center symmetry ZN of SU(N ): of the N scalar fields that exist
in the model, we will assume that one of them has a topologi-
cal phase factor, i.e., its phase winds around the infinite plane,
while N − 1 of them do not. This latter property implies that,
unlike in the multi-Abelian string, some scalar fields remain
invariant under large gauge transformations under combined
motion in U (1) and the center of SU(N ).

There are N equivalent ways of choosing this field which
experiences winding, and this produces an additional selec-
tion rule due to the following nontrivial homotopy structure:
dividing through by the center group

π1

(
U (1) × SU(N )

ZN

)
= ZN . (8)

The objects that this construction produces, the ZN string, has
minimal tension [18]

T = 2πξ. (9)

Because center symmetry is now broken, the flux of each
individual color flavor is now distinguishable: strings with
magnetic flux in different color flavors are physically iden-
tifiable, so long as we disallow residual diagonal U (N ) trans-
formations. If they are allowed, they can transform one unit
of flux from one color to another. Total winding number,
the topological index due to color-flavor locking, is still
conserved.

These U (N ) transformations are effectively new degrees
of freedom for the string, specifically, moduli. By observing
equivalences between these residual transformations, we can
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show that these moduli live in the CP (N ) projective space,
and by enabling fluctuations of the string, this will produce
the famous CP (N ) 2D nonlinear sigma model.

From this very simple example, there are many ways by
which we can make the construction more general. The first
main generalization of this process comes when one takes
more than one scalar field to possess winding at infinity:
we interpret this as taking several non-Abelian strings all
of different colors and fusing them together. Because the
objects are Bogomol’nyi-Prasad-Sommerfeld (BPS), that is,
protected not only topologically but by the conservation of
certain supercharges, they exert no net force on each other, so
the resulting object is stable. Assuming L colors, each bear
one unit of magnetic flux or winding of its constituent fields,
the string dynamics involve the following group quotient:

U (N )

U (L)U (M )
, L + M = N (10)

which is called the Grassmannian space. Many of its proper-
ties are entirely analogous to CP (N ): it is a BPS-protected
object, it has finite string tension, and the number of its
vacua is explicitly known to be the binomial coefficient ( N

L )
which can be checked by a variety of means. In addition,
many important properties of the object are invariant under
interchange of the numbers L ←→ M.

But, this is not the most generic pattern of symmetry break-
ing which can create these non-Abelian vortices. A further
refinement involves giving different sets of colors different
values of winding: we lift the requirement that the elementary
non-Abelian strings we use in the process of creating our
composite string all have different colors of magnetic flux.
Here is a low-dimensional example of this kind of process at
work: on a large circle at infinity, the scalar fields approach
the following solution:

� =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 eiθ 0 0 0 0
0 0 eiθ 0 0 0
0 0 0 e2iθ 0 0
0 0 0 0 e2iθ 0
0 0 0 0 0 e2iθ

⎞
⎟⎟⎟⎟⎟⎠. (11)

The solution breaks up into three blocks. One block of size
1 is unwound at infinity. One block of size 2 is wound once,
one block of size 3 is wound twice. If the latter two had the
same winding, there would be no reason to consider them
distinct blocks, so this extra step is necessary. This example
will, following the procedure we will explain, lead to the flag
manifold

F{1,2,3} = U (6)

U (1) × U (2) × U (3)
. (12)

In general, let us create p + 1 sets of colors: we partition the
total number of colors N into p + 1 integers

N = N0 + · · · + Np (13)

to create collections of colors of sizes N0 . . . Np. The scalar
fields, inside each of these groups, will experience winding at
infinity with winding numbers q0 . . . qp, i.e., units of magnetic
flux, all of which are different from each other. In addition, by
convention we will take q0 = 0. This is necessary to have a
true non-Abelian string: much like simpler cases, the absence
of winding in one direction enables some combined U (1)
and diagonal SU(N ) transformations to leave the solution
invariant. Physically, a string where every color experiences
winding is simply an Abrikosov-Nielsen-Olesen (ANO) (i.e.,
Abelian) string, we could imagine the resulting object being
able to be split into an ANO string and a string of the type we
have described, that is, the object we construct is “irreducible”
in that sense.

At infinity, the scalar fields in the theory tend to the
following limits on a large circle:

φk
A =

⎛
⎜⎝
1N0 0 0 0
0 eiq1θ1N1 0 0
0 0 . . . 0
0 0 0 eiqpθ1Np

⎞
⎟⎠. (14)

If the windings of the colors have this structure at infinity, we
will show that strings can be constructed that respect it and
that leftover U (N )diag. degrees of freedom active on the world
sheet of these strings exist in the following group quotient, the
flag manifold:

F{N0,...,Np} = U (N )

U (N0) × . . .U (Np)
. (15)

We will now perform the construction of the string via the
fields that compose it.

B. Setting up the radial ansatz

We propose the following ansatz for the scalar and gauge
fields. Let us label which set or collection of colors we are
discussing by a generic index α: this is not a spinorial index
nor is it related to any group transformation, it is purely
generational. Thus, we can discuss the winding or flux number
of each collection qα or their sizes Nα .

We introduce the total flux of the object

Q =
p∑

α=0

qαNα (16)

with the convention that q0 = 0.
We prepare the fields in the following way: we will make

use of the singular gauge description of the object, in which
the winding of the scalar fields is absorbed by a change of
gauge resulting in a singularity in the gauge fields themselves
at the origin. To this effect we write

φk
A = U

⎛
⎜⎝

φ0(r)1N0 0 0 0
0 φ1(r)1N1 0 0
0 0 . . . 0
0 0 0 φp(r)1Np

⎞
⎟⎠U †, (17)
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Aa
i=1,2T a = 1

N
U

⎛
⎜⎝
(∑p

α=0 qα fαNα − q0 f0N
)
1N0 0 0

0 . . . 0

0 0
(∑p

α=0 qα fαNα − qp fpN
)
1Np

⎞
⎟⎠U † ∂iθ, (18)

Ai=1,2 = −Q

N
∂iθ f (r), (19)

where U is an arbitrary U (N )diag. matrix and φα , fα , f are a collection of scalar profiles for which we specify the boundary
conditions

φα (0) = 0, fα (0) = 1, f (0) = 1, (20)

φα (∞) =
√

ξ, fα (∞) = 0, f (∞) = 0. (21)

With these conditions we see that the gauge fields are indeed singular at the origin since they become proportional to ∂θ but they
decay to 0 at infinity. A regular gauge would require the gauge potential to be well defined at 0 but to decay as 1

r at infinity to
cancel the phase rotation due to winding of the scalar fields, in which we would see that the scalar fields do indeed tend to the
limit of Eq. (14).

If any two winding numbers qα, qβ are equal, two of the blocks above merge. It is therefore important that all the windings
are different from each other so that the block decomposition we perform is sensible. The fact that the block decomposition
changes at special points of parameter space will need to be kept in mind: it is a physical phenomenon which should be seen on
the world sheet of these strings.

The non-Abelian part of the gauge potential is traceless as required, a fact that can be seen instantly by writing its trace as
p∑

α,β=0

(qα fα − qβ fβ )NαNβ. (22)

The summand is antisymmetric in α, β, which leads to vanishing trace. In addition, it is clear that setting p = 1 and q1 = 1
reproduces the Grassmannian case.

Unlike the CP (N ) and Grassmannian cases, the non-Abelian gauge field is now composed of several scalar functions, and
we introduce p + 1 gauge profiles fα though p of them are actually relevant. Indeed, the profile f0 is fictitious and introduced
for elegance since it always comes multiplied by the flux number q0 = 0. Some intuition is helpful at this stage to motivate
choosing to include a separate scalar profile for every block: setting all the fα to be identical does not change the tracelessness
of the matrix. However, there is no a priori reason to do so since there is no symmetry principle that enforces these profiles to
be equal: the α index is purely generational, and there is not even an explicit discrete symmetry between each block. Thus, the
most generic parametrization should be used, and this will be helpful later.

With this parametrization, the solution can be shown to preserve some supersymmetry so long as Bogomoln’yi-Prasad-
Sommerfeld (BPS) first-order equations of motion are satisfied, which dictate the dynamics of the profile functions we
introduced. In producing these equations, particular care needs to be taken when computing the 4D D-term potential, projecting
it in much the same way we did the gauge scalar profiles:

Di j = D
1

N
1N +

⎛
⎜⎝
(∑p

α=0 qαDαNα − q0D0N
)
1N0 0 0

0 · · · 0

0 0
(∑p

α=0 qαDαNα − qpDpN
)
1Np

⎞
⎟⎠. (23)

Again, D0 is fictitious, it always comes multiplied by q0 = 0.
The peculiar shape of the A and D matrices is not accidental:
they are the result of constructively splitting a diagonal ma-
trix into independent trace and traceless component with the
particular block-diagonal shape that we require.

When applying this decomposition to the scalar potential,
the Fayet-Iliopoulos term only affects the Abelian part of the
D field. D flatness imposes

D = |φ|2 − ξ 2. (24)

Once this decomposition is done, the BPS equations produce
the following first-order equations of motions for the profiles

we introduced:

dφβ

dr
− 1

Nr

(
Q f (r) −

p∑
α=0

[qα fα (r) − qβ fβ (r)]Nα

)
φβ = 0,

(25)

−1

r

df (r)

dr
+ g2

4

(
p∑

α=0

Nαφ2
α − Nξ

)
= 0, (26)

−1

r

dfα (r)

dr
+ g2

2qα

(
φ2

α − φ2
0

) = 0. (27)

This guarantees that the soliton is in a minimal action state:
the energy density (energy per unit length) of the resulting
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object is then

T = −ξ

∫∫
F12d2x = −2πQξ

∫ r

0
f ′(r)dr,

T = 2πQξ . (28)

This lends weight to the notion that these strings are com-
posite objects: like in the Grassmannian string, we can view
the flag string as being the fusion of multiple elementary
non-Abelian strings [8], the magnetic fluxes of which some-
times align and sometimes not, as prescribed by the structure
of the block sizes and relevant windings. Higher winding
numbers mean more fluxes aligned with each other. Since
these objects are BPS, there should be no binding energy
to tie them together, and indeed we observe that the tension
of the object is simply the sum of the tensions of all of its
constituents.

In order to further investigate the properties of these ob-
jects, we will require the low-energy effective action for the
fluctuations of the color degrees of freedom along this string.

C. Varying the gauge moduli

We have an arbitrary U (N ) degree of freedom in the string
solution, the N × N matrix U ∈ U (N ). However, not all such
matrices actually affect the solution. Indeed, any matrix of the
form

U =

⎛
⎜⎜⎝

U0 0 0 0
0 U1 0 0
0 0 · · · 0
0 0 0 Up

⎞
⎟⎟⎠, Uα ∈ U (Nα ) (29)

does not affect the ansatz at all, therefore, we expect that the
fluctuations of this parameter exist in the following quotient
space:

U (N )

U (N0) × . . .U (Np)
= F{N0, ... ,Np}. (30)

This is the group-theoretic definition of the flag manifold.
Let us try to make explicit the degrees of freedom that

should live in this flag manifold on the string. For this purpose,
we break down U into columns

U = (X (0)| . . . |X (p) ), X (α) = (X (α) )A=1...N
i=1...Nα

. (31)

Each X (α) is a rectangular N × Nα matrix, a collection of
columns from the square matrix U . The unitarity of U implies
the following relations among the X :

(X (α)†)iA(X (β ) )A j = δi jδ
αβ,

p∑
α=0

X (α)
Ai X (α)†

iB = 1AB. (32)

The α index is kept in brackets to remind ourselves no
symmetry acts on it; it is purely a label or generational index.
The i indices range from 1 to Nα , strictly speaking, their range
is α dependent. Capital indices such as A will range from 1
to N .

In this notation, the non-Abelian gauge field (in the singu-
lar gauge) can be written as

Aa
μ=1,2T a

AB =
[

1

N

(
p∑

α=0

qαNα fα (r)

)
1AB

−
p∑

α=1

qαX (α)
Ai X (α)†

iB fα (r)

]
∂μθ. (33)

Note that X (0) drops out of the ansatz.
The flag manifold F{Nα} as defined in Eq. (30) is a finite-

dimensional space of dimension

d = N2 −
p∑

α=0

N2
α . (34)

Now, the X variables form a unitary matrix, but not all unitary
matrices acting on the string solution produce a physically
different string as explained previously. This means that of
the N2 real degrees of freedom captured by X , only

N2 −
p∑

α=0

N2
α (35)

are truly physical: this is the size of the quotient in Eq. (30).
We can therefore already suspect that there exists, on the
world sheet of these strings, some mechanism to remove ex-
traneous degrees of freedom, potentially some kind of gauge
invariance. However, to prove this would require producing a
low-energy effective action for the world-sheet dynamics.

While we will shortly do exactly that, there is another
perspective to this question which allows us to confirm our
guess that the phenomenon of gauge invariance is at hand.
First, it occurs in the simpler cases previously studied, but
in any case, intuition as to why we should expect gauge
invariance to occur here comes from the linear algebraic
definition of the flag manifold: a point on this manifold, a
flag,1 is a sequence of progressively larger hyperplanes inside
CN :

{0} ⊂ V1 ⊂ V2 · · · ⊂ Vp ⊂ CN . (36)

We specify the dimensions of these planes to be

|V1| = N1, |V2| = N1 + N2, . . . |Vp|
= N1 + N2 + . . . Np = N − N0. (37)

Equivalently, the flag manifold can be written as a set of mutu-
ally orthogonal (rather than progressively larger) hyperplanes

U1 = V1, U2 = V2\ V1, . . .Up = Vp\(V1 ∪ V2 · · · ∪ Vp−1),

|Uα| = Nα. (38)

When we fully specify a set of values for the X (α) variables,
we are essentially specifying an orthonormal basis for these

1A flag is thus called by analogy with a “real world” flag, attached
to its flagpole, itself attached to the ground. It is then also, broadly
speaking, a point, contained in a line, contained in a surface, con-
tained in a volume.
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mutually orthogonal hyperplanes Uα . Progressively combin-
ing sets of these basis vectors together then obviously forms
bases for the Vα hyperplanes, and therefore a good way of
algebraically parametrizing the entire space:

span(X (1) ) = V1,

span(X (1), X (2) ) = V2 . . . ,

span(X (1), . . . , X (p) ) = Vp,

span(X (1), . . . , X (p), X (0) ) = CN . (39)

However, this mapping is not one to one: many different
orthonormal bases can span the same space Uα . Two equiva-
lent bases (spanning the same space) are related to each other
by a unitary matrix inside U (Nα ). This is a classic example
of an over-representation; physically, it should translate as
a notion of gauge invariance. We therefore expect to see
U (N1) × U (N2) · · · × U (Np) gauge invariance on the world
sheet, acting on the lowercase indices of the X degrees of
freedom, their column space.

In order to exhibit it manifestly, we must produce dynamics
for the X fields, and observe that global transformations can
be made local. Let us assume these orientational moduli
have a μ = 0, 3 dependence. Consequently, additional gauge
components need to be activated in order to preserve gauge
invariance, namely, A0,3. This means additional scalar profiles
for their transverse behavior. The gauge potential needs to be
complicated enough that it respects no more symmetry than
the required U (N1) × U (N2) · · · × U (Np) gauge invariance,
but simple enough that the scalar profiles we introduce all
end up independent of each other, such that no cross terms
are generated, in order to be able to solve their equations of
motion.

In order to accelerate the computation of various world-
sheet components, it is convenient to use some notational
shorthand for regularly used groups of symbols. First, by
insisting on the row and column nature of the objects X (α)

Ai and
X (α)†

iA , keeping these lower indices in this particular ordering

allows products of these objects to never be ambiguous, in-
dices contract in a neighbor-to-neighbor fashion. In addition,
we will be writing many different bilinears composed of X
variables, products thereof have particular properties that all
depend on the nature of X (α)X †(α) as a projector operator:

X (α)X †(α)X (β )X †(β ) = X (α)X †(α)δαβ. (40)

These matrices project vectors onto the orthonormal basis ele-
ments. Let us give them and their derivatives some shorthand:

Pα = X (α)X †(α),

Rα = X (α)∂X †(α),

Lα = ∂X (α)X †(α),

�α = ∂X (α)∂X †(α). (41)

We avoid at all costs writing expressions where R0, L0 appear,
although they will implicitly turn up in sums where their
prefactor is zero, canceling their effective contribution.

In this notation, the scalar and gauge fields can be ex-
pressed neatly

� =
p∑

α=0

φαPα, ∂aφ =
p∑

α=1

(φα − φ0)(Rα + Lα ), (42)

Ai = 1

N
∂θ

p∑
β=0

[(
p∑

α=0

qα fαNα

)
− qβ fβN

]
Pβ

= 1

N
∂θ

p∑
β=0

AβPβ, (43)

∂aAi = 1

N
∂θ

p∑
β=0

Aβ (Rβ + Lβ ). (44)

By computing world-sheet terms that exist independently
of any extra gauge component A0,3 we can intuit the form for
the latter, as they should match in structure. For instance,

Tr(∂a�
†∂a�) =

p∑
α=1

p∑
β=1

(φα − φ0)(φβ − φ0)Tr[(Rα + Lα )(Rβ + Lβ )]

= 2
p∑

α=1

(φα − φ0)2Tr(�α ) − 2
p∑

α=1

p∑
β=1

(φα − φ0)(φβ − φ0)Tr(�αPβ ). (45)

We bring it to a more symmetric form

=2
p∑

α=1

(φα − φ0)2Tr(�α ) − 2
p∑

α=1

p∑
β=1

(φα − φ0)2Tr(�αPβ ) − 2
p∑

α=1

p∑
β=1

(φα − φ0)(φβ − φα )Tr(�αPβ )

=2
p∑

α=1

(φα − φ0)2Tr(P0�α ) −
p∑

α=1

p∑
β=1

(φα − φβ )(φβ − φα )Tr(�αPβ ) = 2
p∑

α=1

α−1∑
β=0

(φα − φβ )2Tr(�αPβ ), (46)

where we have used the completeness of the projection operators and the symmetry of Tr(�αPβ ) to isolate the symmetric part
of its coefficient, and in the final expression reducing the summation range to collapse the terms in a single quantity.
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This summation convention as well as the symmetries of
the problem suggest we use the following prescription for A3:
introducing scalar profiles ραβ ,

A3 = i
p∑

α=1

α−1∑
β=0

(RαPβ − PβLα )ραβ (r), (47)

which can be rewritten by defining ραβ = ρβα and using
symmetries in a manifestly Hermitian form

A3 = i
p∑

α=1

(RβP0 − P0Lβ )ρ0β

+ 1

2
i

p∑
α,β=1

(RβPα − PαLβ )ραβ (r). (48)

This substitution has two advantages: one, it reduces to the
correct quantity when p = 1 and we have a Grassmannian
manifold; two, it is clear it does not accidentally respect a
larger symmetry group than needed. The existence of terms
RαPβ , PβLα forbid the α, β sectors from merging into a larger
block. The first definition, with a reduced summation range,
will be the one we employ the most as it can oftentimes
directly enforce cancellations that would otherwise take some
symmetry consideration to justify.

We add this extra gauge component to the Lagrangian and
compute all contributions to the world-sheet action due to the
slow fluctuations of the X variables. After some tedious effort
greatly hastened by our notation, the full details of which are
presented in Appendix A, we obtain the action

S =
∑
α>β

4π Iαβ

g2
2

∫
dt dz Tr(X (β )†∂iX

(α)∂iX
(α)†

X (β ) ) (49)

with a number of integration constants

Iαβ =
∫

dr dθ

(
ρ ′2

αβ + 1

r2
(qα fβ − qβ fβ )2(1 − ραβ )2

+ρ2
αβ

2

(
φ2

α + φ2
β

) + (1 − ραβ )(φα − φβ )2

)
. (50)

We see that the ansatz has achieved its objective of producing
a sum of surface integrals, each of which depending only on
one profile ραβ at a time: no term of the form∑

γ

ραγ ργβ (51)

occurs in our result. The vanishing of these products is directly
linked to the reduced number of components of the scalar
profiles ραβ : were it a full (p + 1) × (p + 1) object, such
terms would automatically appear and spoil the picture.

The structure of this generic integral in Eq. (50) forces
us to specify the boundary conditions for the ρ profiles: in
the singular gauge that we have chosen, fα functions do not
decay at zero, and since no two qα windings are identical,
1 − ραβ needs to vanish in order to cancel the singularity
in the integral. In addition, for the soliton to be considered
localized, we impose that ραβ decays at infinity. Thus,

ραβ (0) = 1, ραβ (∞) = 0. (52)

In this notation, the Grassmannian case corresponds to just
one single extra profile ρ10 in which case the above formulas
reduce correctly to previously established results, given the
conventions about zero-indexed objects.

In order to find a minimal action solution, we seek to
minimize the coefficients Iαβ in addition to the world-sheet
action. This produces second-order equations of motion for
each ραβ , which we will not write. The dynamics of ρ depend
strongly on those of φα and fα .

Quite surprisingly, for this highly supersymmetric theory,
we can write an explicit solution to the equations of motion
for ραβ in terms of φα,β alone. The BPS equations will then
imply the second-order extremization equations that ρ obeys.
This fact had already been noticed in the CP (N − 1) and
Grassmannian string analysis.

In the spirit of these previous endeavors, we find that the
following expression is a good solution to the equations of
motion, given that the BPS equations hold:

ραβ = φβ − φα

φβ

. (53)

This causes some tension with the boundary conditions re-
quired on the fields at hand. One case is straightforward:

ρα0 = 1 − φα

φ0
. (54)

Since φ0(0) = 1 and φα>0(0) = 0, this solution has the right
boundary condition at the origin. In the CP (N − 1) and
Grassmannian case, this is enough to proceed since there is
only one coefficient I10. In the flag case there is a subtle
issue to resolve: Iαβ is left undetermined when both α, β are
nonzero since both profiles in the quotient vanish at the origin.

We take the liberty of assuming the windings qα are
ordered in increasing value. Then, the sums over generational
indices over the world sheet always impose α > β in our
conventions. We linearize the BPS equations around 0: for
r 
 1,

φ′
α (r) = qα

r
φα (r) −→ φα (r) ∼ rqα . (55)

This fixes the behavior of the ρ profiles at the origin to
correspond to our requirements: φα

φβ
correctly goes to 0 at the

origin, which in turn fixes the regularity of the integral at the
origin.

With this choice, it can be shown that the integration
constants all simplify to the integral of a total derivative,
resulting in the following expressions thanks to our well-
chosen boundary conditions:

Iαβ = (qα − qβ ) > 0. (56)

This correctly generalizes the Grassmannian case, again, and
like these simpler instances does not depend on the sizes of
the blocks at hand, i.e., the total winding per block does not
intervene. Thus, finally, the world-sheet action for the low-
energy fluctuations of this composite object is

S = 4π

g2
2

∫
dt dz

p∑
α>β=0

(qα − qβ )Tr(X (β )†∂iX
(α)∂iX

(α)†
X (β ) ).

(57)
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At this point, it is worth making a number of observations
about this particular action for the sigma models we derive:

(i) Choosing the qα to be strictly increasing ensures that
the (Euclidean) world-sheet action is positive definite, in
particular, all kinetic terms have the same sign.

(ii) Consequently, this action is minimal when the fluctu-
ations ∂X (α) remain in the span of X (α): all classical solutions
of the equations of motion are, at every point on the world
sheet, still a parametrization of the flag manifold.

(iii) Generically, this flag manifold theory could have had
a multitude of unrelated couplings. The computation above
proves that, for the particular flag manifolds arising from
the low-energy fluctuations of generic supersymmetric non-
Abelian string world sheets, the coupling constants all lock in
at integer ratios of each other since the qα are all integers.

(iv) Furthermore, it is noteworthy that this quantity does
not depend on any of the Nα , only on the winding of an
individual color in the block in question. One could expect
that this coefficient would depend on the total amount of flux
for this block, qαNα , which it does not. This was also true
of the Grassmannian action, which had a unit normalization
unrelated to the sizes of the gauge groups.

(v) Finally, we may observe what happens when two
windings become equal: since the normalizations are propor-
tional to differences of winding numbers, more and more parts
of the action drop out completely. This is as one would expect
from the 4D theory: if two winding numbers become equal,
two blocks merge into one and a flag manifold with fewer
inclusions appears. This can be performed all the way down
to setting all the nonzero windings to be equal, in which case
one recovers the Grassmannian action. We will show below
the details of this phenomenon which we dub block merging.

Now that we have an action, we observe, as with the
Grassmannian case, that the action (57) has a hidden gauge
invariance. Let us act with a local symmetry transformation
on the fields X :

X (α)
Ai → X (α)

Ai + X (α)
A j α ji(x) + O(α2). (58)

Then, the generic world-sheet element transforms as

∂aX (α)
Ai ∂aX (α)†

iB X (β )
B j X (β )†

jA

→ ∂aX (α)
Ai ∂aX (α)†

iB X (β )
B j X (β )†

jA + X (α)
Ak αki(x)∂aX (α)†

iB X (β )
B j X (β )†

jA

+ ∂aX (α)
Ai α

†
il (x)X (α)†

lB X (β )
B j X (β )†

jA + O(α2). (59)

Thanks to the orthogonality relations (still assumed im-
posed at the level of the partition function), the α-dependent
terms vanish identically. This proves that we have at least the
gauge invariance that we require:

U (N1) × U (N2) × . . .U (Np). (60)

It is in fact the maximal symmetry group respected by the
action above. To see this, we look at the process by which
these blocks fuse. We have an enhanced symmetry if we can
rewrite the action in terms of a new variable whose columns
are composed of the columns inside two (or more) different X
variables:

Y = (X (α)|X (β ) ). (61)

This object now has a column index that ranges up to Nα +
Nβ . So long as the entire action can be rewritten in terms of
Y only, an identical proof as above will show that we have
enhanced the gauge invariance

U (Nα ) × U (Nβ ) → U (Nα + Nβ ). (62)

However, if a term of the form

|∂aX (α)X (β )†|2 (63)

exists in the action, it is not possible to write it in terms of
the merged variable. Only when this term is removed from the
action will the enhanced symmetry occur, which is precisely
controlled by the number

qα − qβ (64)

Thus, the winding number structure exactly controls the
symmetry-breaking pattern.

We can now come to a counting of the degrees of freedom
in this theory and check that the result is consistent. The flag
manifold has size∣∣∣∣ U (N )

U (N0) . . .U (Np)

∣∣∣∣ = N2 −
p∑

α=0

N2
α =

p∑
α �=β=0

NαNβ. (65)

On the other hand, each field X (α) on the world sheet con-
tributes 2NNα real degrees of freedom, of which N2

α get
removed by gauge invariance. Orthonormality of the entire set
of the X variables is representable as one large square matrix
of size (

∑p
α=1 Nα )2. Then,

Ntot =
p∑

α=1

2NNα −
p∑

α=1

N2
α −

(
p∑

α=1

Nα

)2

(66)

= 2N (N − N0) − (N − N0)2 −
p∑

α=1

N2
α

= (N + N0)(N − N0) −
p∑

α=1

N2
α

= N2 −
p∑

α=0

N2
α . (67)

All these relations are therefore crucial in the counting of
degrees of freedom.

We can check that this construction does correctly reduce
to the equivalent Grassmannian action as studied previously.
By setting p = 1 and q1 = 1 we obtain

SGrass = 4π

g2

∫
dt dz Tr|X (0)∂X (1)|2 (68)

as required.
While this form of the action is an efficient and clear way

of representing the action, it is unpleasant to deal with due
to path-integral constraints imposing orthonormality relations.
We seek to rewrite it in at least two different ways: the gauged
linear sigma model and the usual nonlinear sigma model
form. The former enforces gauge invariance via an auxiliary
gauge field, which, if eliminated, reduces to the model we
already have, the other aims to find variables which solve the
constraints at the cost of living on a curved manifold.
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III. FURTHER REPRESENTATIONS OF THE SIGMA MODEL

A. Gauged linear sigma model

First let us focus on gauging the symmetries of the Lagrangian. We remove X (0) from the expressions, via the following
replacement X (0)X (0)† = 1 − ∑p

α=1 X (α)X (α)†:

L =
∑
α>β

(qα − qβ )Tr(∂iX
(α)∂iX

(α)†
X (β )X (β )†

)

=
p∑

α=1

qαTr

⎛
⎝1 −

p∑
β=1

(X (β )X (β )†
)∂iX

(α)∂iX
(α)†

⎞
⎠ +

∑
α>β=1

(qα − qβ )Tr(X (β )X (β )†
∂iX

(α)∂iX
(α)†

)

=
p∑

α=1

qαTr[(1 − X (α)X (α)†
)∂iX

(α)∂iX
(α)†

] − 2
p∑

α>β=1

qβTr(X (β )X (β )†
∂iX

(α)∂iX
(α)†

). (69)

In this form it can then be surmised how to form a gauge-invariant Lagrangian with an auxiliary gauge field, which would,
upon integrating it out, produce the Lagrangian above. To wit, the following is satisfactory:

L =
p∑

α=1

⎛
⎝qα|DμX (α)|2 + 2

∑
β<α

qβTr
(
iA(αβ )

μ Jμ(βα) + H.c.
) +

∑
β,δ<α

qβAμ(βα)A(αδ)
μ X (δ)†X (β )

⎞
⎠, (70)

where we define the following quantities:

DμX (α) = (
∂μX (α)− iX (α)A(α)

μ

)
, J (αβ )

μ = ∂μX (α)†
X (β ) = J (βα)†

μ , A(αβ )
μ = A(βα)†

μ . (71)

The field A(α)
μ is a genuine gauge field which serves to enforce U (Nα ) gauge invariance. The currents J (αβ )

μ are, despite
appearances, gauge-covariant quantities due to the orthogonality relations between these fields. Then, the vector fields A(αβ )

μ

are gauge-covariant bifundamental auxiliary vector fields, charged under U (Nα ) × U (Nβ ). They are not associated with any
gauge invariance and obey A(αβ )†

μ = A(βα)
μ , much like J does.

Now that we have placed the Lagrangian in a more usual field-theoretic form, we can exponentiate the constraints placed
upon the fields X (α) and add them to the Lagrangian as Lagrange multipliers, to wit,

L =
p∑

α=1

⎛
⎝qα|DμX (α)|2 + qαTrD(α)(X (α)†X (α) − 1) + 2

∑
β<α

qβ (TrD(αβ )X (β )†X (α) )

+2
∑
β<α

qβTr
(
iA(αβ )

μ Jμ(βα) − iA(βα)
μ Jμ(αβ )

) + qβ

∑
β,δ<α

Aμ(βα)A(αβ )
μ X (β )†X (β )

⎞
⎠. (72)

We can already notice the block-merging phenomenon in this form also: whenever qβ = qα , the gauge fields A(α)
μ , A(β )

μ , and
A(αβ )

μ merge into one larger gauge field, allowing for larger gauge transformations to be allowed in this action. The numbers
qα are not gauge couplings: a single power of q multiplies terms both linear and quadratic in the auxiliary gauge fields A(αβ ),
but they determine whether these extra constraints can join into the gauge-covariant kinetic terms for the X (α). This happens
identically to the D auxiliary variables. This is not accidental: this model derives from a supersymmetric theory, and we expect
all of these auxiliary fields to turn into components of a supermultiplet. From the form above, it is straightforward to write a
SUSY action which reduces to the correct Lagrangian.

We introduce the following superfields: �(α) a chiral multiplet bifundamental of U (N ) × U (Nα ), V (α) a twisted chiral
multiplet in the adjoint of U (Nα ), V (αβ ) a twisted chiral multiplet in the bifundamental of U (Nα ) × U (Nβ ). They have the
following superspace expansions:

�(α) = X (α) + θχ (α) + θ2F (α),

V (α) = · · · + θ̄ θσ 1(α) + iθσ 3θσ 2(α) + θσμθ̄A(α)
μ + θ̄2θλ(α) + θ̄2θ2D(α), (73)

V (αβ ) = · · · + θ̄ θσ 1(αβ ) + iθσ 3θ̄σ 2(αβ ) + θσμθ̄A(αβ )
μ + θ̄2θλ(αβ ) + θ̄2θ2D(αβ ).

We can then construct an N = (2, 2) supersymmetric action thanks to these variables, to wit,∫
d2x

∫
d2θ d2θ̄ Tr

⎡
⎣ p∑

α=1

⎛
⎝qα �(α)eV (α)

�(α)† + 2
∑
β<α

qβ�(β )V (βα)�(α)† +
∑

β,δ<α

qβ�(β )V (βα)V (αδ)�(δ)δ

⎞
⎠
⎤
⎦. (74)

One may worry that V (αβ ) does not appear in some kind of
exponential in the terms above. Glossing over the technical

difficulties of somehow writing a rectangular matrix in an
exponential, it is in any case not necessary to do so since they
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do not enforce any gauge symmetry. That is, at least, until we
reach the special points where gauge symmetry is accidentally
enhanced, at which point they merge with V (α), V (β ) to form
a larger square matrix, which can then be written as a super-
space exponential to demonstrate supergauge invariance.

Out of superspace, this action produced is the following:
we absorb qα as a kinetic normalization factor of �(α), and

rescale

|�|2 → |�|2 g2

4π
, V (α) → V (α) 4π

g2
(75)

so as to have normalized kinetic terms in the action. We obtain

L =
[

p∑
α=1

(DμX (α) )†(DμX (α) ) − D(α)

(
(X (α)†X (α) ) − 4π

g2
2

1

)
+ χ̄ (α)( /Dχ (α) ) (76)

+ [(i
√

2λ̄X (α)χ (α) ) + i
√

2χ̄ (α)(σ 1(α) + iσ 2(α)γ 3)χ (α) + H.c.] − 2X (α)†(σ̄ (α)σ (α) )X (α)

+
∑
β<α

√
qβ

qα

((
iA(αβ )

μ Jμ(βα) − iA(βα)
μ Jμ(αβ )

) +
∑

β,δ<α

Aμ(βα)A(αβ )
μ X (β )†X (β )

+ i
√

2λ̄(αβ )X (α)χ (β ) − i
√

2λ(βα)X (β )χ (α) + H.c. + 2D(αβ )X (α)†X (β )

+ i
√

2χ̄ (α)(σ 1(αβ ) + iσ 2(αβ )γ 3)χ (β ) + H.c. − 2X (α)†(σ̄ (αβ )σ (αβ ) )X (β )

)]
. (77)

We can also introduce another representation of this action, in the form of a proper nonlinear sigma model, that is, using a direct
parametrization of the manifold at the cost of having a target space metric for the elementary degrees of freedom.

B. Nonlinear sigma model

To perform this construction, we must provide a parametrization of the space that solves all the constraints by construction.
This necessarily picks a gauge, so all the indeterminacy is lifted. We remind ourselves that the dimension of the flag manifold is

F{N1...Np} =
p∑

α>β=1

2NαNβ (78)

which suggests to start by writing the fields in our previous description of the theory in the following way: we organize our
degrees of freedom in the following block-matrix shape:

(Y (1)|Y (2)| . . . |Y (p) ) =

⎛
⎜⎜⎜⎝

q1φ01 q2φ02 . . . qpφ0p

1N1 (q2 − q1)φ12 . . . (qp − q1)φ1p

0 1N2 . . . . . .

. . . 0 . . . (qp−1 − qp)φp−1 p

0 . . . 0 1Np

⎞
⎟⎟⎟⎠, (79)

where φβα is a rectangular complex matrix with Nβ rows
and Nα columns, and α > β. We also define their complex
conjugates by writing

(φβα ) = φαβ. (80)

The index structure is again representative of the row and
column sizes of these rectangular blocks, allowing a check
on the sanity of any products of these objects. The rectangular
matrix φαβ always comes multiplied by (qα − qβ ) so that the
ansatz remains valid when the solution undergoes a block
merger. Indeed, it is not merely enough that the action we are
inserting this ansatz in respects extra symmetries at certain
values in parameter space, the ansatz itself needs to obey the
same property, or else it is not a good ansatz since it will break
symmetries of the action.

We have introduced a set of degrees of freedom in the
correct number to parametrize the space in a convenient array,
but this array does not (yet) satisfy the constraints in our

theory, namely, orthonormality. First off, we ought to define
the block matrix Y (0) to be a (nonorthonormal) basis for the
complement of the space spanned by the above matrices, in a
convenient notation

Y (0) = �(Y (1) ∧ . . .Y (p) ) (81)

by which we mean each individual column inside each of the
blocks Y (α) participates in this wedge product. This symbolic
notion is still useful as it allows us to guess at the shape of Y (0)

by using the usual formulas for the cross products of vectors.
As an example, let us look at the case p = 2:

(Y (1)|Y (2) ) =
⎛
⎝q1φ01 q2φ02

1 (q2 − q1)φ12

0 1

⎞
⎠,

Y (0) =

⎛
⎜⎝

1

−q1φ10

q1(q2 − q1)φ21φ10 − q2φ20

⎞
⎟⎠. (82)
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This block of columns is indeed orthogonal to the other two
and its components are hinted at by the three-dimensional
(3D) cross-product formula even if strictly speaking its first
component is not the matrix product of any two components of
the original columns. Setting q2 = q1 = 1 should then reduce
to the Grassmannian case, providing a check of our solution;
this we will do shortly.

In addition, we also need to prepare from the Y (α) vectors
an orthonormal basis to form the required X (α) degrees of
freedom. In general, orthonormal vectors are produced from a
set of any linearly independent vectors via the Gram-Schmidt
process. This is cumbersome to perform for block matrices: it
is easy to write a normalized block vector, for instance,(

U
V

)
× 1√

U †U + V †V
(83)

but involves multiplication by an inverse square-root matrix
acting as its norm. These inverse square-root matrices are very
complicated objects in practice, in fact, they are ill-defined
objects: matrix square roots are defined up to a unitary matrix.
In addition, being a matrix object, it rarely commutes with
its surroundings, which complicates the algebra of simplifi-
cations that happen in Gram-Schmidt orthonormalization. We
present here a systematic approach to generate such a basis.

To begin, it is easy to see that the complement vector X (0)

is defined in the following way:

Y (0) =

⎛
⎜⎜⎝

�00

�10

. . .

�p0

⎞
⎟⎟⎠,

�α0 = det

⎛
⎝q1φ10 1 0

. . . . . . 1
qαφα0 . . . (qα−1 − qα )φα α−1

⎞
⎠. (84)

The “determinant” expressed here is not intuitively defined,
if anything, because the matrix in question is not square.
However, it does have the same number of row and column
blocks, it is block square. The determinant operation should
be thought of as indicating a rule for products between these
blocks according to row expansion, resulting not in a c number
but a matrix object of size Nα × N0, hence the index structure.
Formally, we define this object by recursion via row expan-
sion. To wit,

�00 = 1N0 , �α0 = −
∑
β<α

(−1)β (qα − qβ )φαβ�β0. (85)

We then define the determinants �α0 = (�0α )
†

and normalize
this block by writing

X (0) =

⎛
⎜⎜⎝

1
�10

. . .

�p0

⎞
⎟⎟⎠ 1√

1 + ∑p
β=1 �0β�β0

. (86)

Again, the labeling of these objects is consistent with their
dimensions which allows a check at a glance of the coherence
of the matrix products. In addition, it is easy to check that this
is directly orthogonal by construction to the Y (α) vectors.

Furthermore, the use of these determinants allows us to
express in a compact way the sought-after orthonormal basis
of column blocks X (α). This requires the introduction of yet
more notational shorthand in order to be able to produce
intelligible expressions. We call

�
(α)
00 =

∑
0<β�α

�0β�β0, �
(0)
00 = 1 (87)

such a factor already appeared in the above expression for
X (0).

It is possible to iteratively relate a certain expression in-
volving � thanks to the Sherman-Morrison formula, a specific
example of the more general Woodbury identity which we
will make broader use of later. To alleviate some mathematical
tedium, we will consign discussions of block-matrix algebra
to Appendix B.

An orthonormal basis of vectors spanning the relevant
spaces is obtained from the coordinates defined within the Y (α)

by the following expression:

X (α) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−�00
1

1+�(α−1) �0α

. . .

−�α−1 0
1

1+�(α−1) �0α

1
0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

1√
1 + �α0

1
1+�

(α−1)
00

�0α

. (88)

In the case of the Grassmannian manifold, the expression
above does reduce to the correct result, and with a little
checking it is clear that the vectors above (regardless of the
normalization factor) are all orthogonal amongst each other,
are all orthogonal to X (0), and finally that they have unit
norm. While these expressions can be derived directly from
the results of Gram-Schmidt orthonormalization, the process
is tedious and unenlightening. It is enough to notice the form
taken by the Gram-Schmidt solution in the case where all the
φαβ are scalar to derive the form above, which then manifestly
has the correct properties in the full case.

Finally, we introduce another block-matrix element, to wit,

�
(α)
βγ =

⎛
⎝1 + �10�01 . . . �10�0α

. . . . . . . . .

�α0�01 . . . 1 + �α0�0α

⎞
⎠

−1

βγ

. (89)

It is related to the previously defined object, in a way that is
reminiscent of simpler identities often seen for Fubini-Study–
type metrics:

�(α) = 1 − �
1

1 + �(α)
�,

1

1 + �(α)
= 1 − ��(α)�,

�(α)� = �
1

1 + �(α)
, ��(α) = 1

1 + �(α)
�. (90)

We introduce it to condense the expressions involved and to
produce a result formally similar to the structure seen in these
simpler cases. This matrix, like �, also obeys iterative con-
struction laws, again given by the generic Woodbury formula.

We are now ready to write the full nonlinear sigma model
action. We show the fullness of the proof of this statement
in Appendix B. Once the substitution for the X columns is
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performed, it can be shown that the action boils down to

L =
p∑

α=1

(qα − qα+1)Tr

(
1

1 + �(α)
∂�0γ �

(α)
γ δ ∂�δ0

)
, (91)

where, by an abuse of notation, we pick qp+1 = 0.
This expression is remarkable in several ways. Equating

all flux numbers cancels all terms other than the very last.
This last term in the summand by itself is then action for the
Grassmannian

U (N )

U (N0) × U (N1 + · · · + Np)
. (92)

This connects with the rigorous definition of a flag as a
progressive inclusion of linear subspaces: adding the next-to-
last term breaks the symmetry down to

U (N0 + · · · + Np)

U (N0)U (N1 + · · · + Np−1)U (Np)
(93)

and this process carries all the way down, producing the
desired flag manifold.

Second, the above action reproduces the sought-after
block-merger phenomenon, at least when considering merg-
ing two neighboring blocks. Attempting to merge non-
neighboring blocks is naively incompatible with our choice
of coordinates Y (α). In any case, we have assumed from the
get-go that the qα windings are increasingly ordered, it is
not surprising that one cannot directly see a merging of two
distant blocks. It is possible to do so, however: one starts by
merging two neighboring blocks of size Nα, Nα+1 by setting
their windings to be equal. Symmetry becomes enhanced as

U (Nα ) × U (Nα+1) → U (Nα + Nα+1). (94)

At this point, we can swap over the two “subblocks” inside
the newly fused block by reordering. Swapping them this
way, then breaking the symmetry by reintroducing unequal
winding, makes any specific single degree of freedom “travel”
to the target block to be merged with.

Lastly, because it is built up of individual Grassmannian-
type terms, it is completely straightforward to write a Kähler
potential that generates this nonlinear sigma model, which
instantly provides us with the full N = (2, 2) NLSM action.
Flag manifolds are known to be Kähler manifolds (in fact, they
are Calabi-Yau spaces, see [17]), but the Calabi construction
for them yields one metric with no tunable parameters like we
have here, thanks to our ansatz which has this block-merger
property: it is rigid, where we have a deformable metric.

Let us write the Kähler potential: assuming that the field
φαβ is the lowest component of an N = (2, 2) chiral multiplet
�α,β , we write the partial determinants of these objects by
recycling our notation

�0β = det

⎛
⎝q1�01 . . . qα�0α

1 . . . . . .

0 1 (qα−1 − qα )�α−1 α

⎞
⎠ (95)

and

�
(α)
00 =

α∑
β=1

�0β�β0; (96)

the Kähler potential can be written

K =
p∑

α=1

(qα − qα+1)Tr log
(
1 + �

(α)
00

)
. (97)

This reduces correctly to the Grassmannian and CP (N − 1)
cases. From this expression, it is then straightforward to
define all the supermultiplet components and their interactions
between them, and many geometrical insights about the theory
can then be obtained. Again, performing this analysis, as one
would usually, an Einstein homogeneous manifold defined as
a quotient of Lie groups would lead to a rigid Kähler potential
which does not have the possibility of smoothly deforming
it to manifolds with fewer degrees of freedom: we remind
the reader that the flux numbers qα occur not only as the
leading coefficients of the terms in the Lagrangian, but also
in the definition of � itself, as reviewed above, allowing to
dynamically turn on or off the required fields. This is a feature
unique to our vortex construction.

For clarity, we provide in Appendix C an explicit construc-
tion of the p = 2 flag, involving the actual physical degrees
of freedom φαβ ; since our formulas systematically involve
the determinants �0α , the formulation somewhat obscures the
view.

With these algebraic details provided and the various types
of actions for the model obtained, we will provide a cursory
first pass over the physical properties of this class of theories.

IV. PHYSICAL PROPERTIES OF THE MODEL

There are a few consequences that we can immediately
come to. The gauged linear sigma model is particularly useful
due to its similarity with ordinary gauged field theories. First,
we can infer the existence of a mass gap in all of these
theories. Strictly speaking, there are many couplings in the
theory: every term in the sum in Eq. (57) could potentially
have its own coupling, unrelated to the 4D coupling g2, if not
at tree level, then at least as we move through the renormaliza-
tion group (RG) flow. However, the tree-level action that one
derives from non-Abelian strings sees all of these couplings
lock into integer ratios of each other. In addition, in the gauged
linear sigma model, the coupling of the D(α) auxiliaries to the
dynamical degrees of freedom all occur identically:

TrD(α)

(
X (α)†X (α) − 4π

g2
1

)
. (98)

All of these Fayet-Iliopoulos (FI) terms could be physically
different, but our construction sets them to be equal at tree
level. Then, let us observe if one-loop corrections could
change them. These occur due to tadpole diagrams involving
loops of X (α) as shown in Fig. 1.

Clearly, all the coefficients of each TrD(α) term undergo
the same correction. Since they were already all equal to start
with, it makes sense to say that there is one coupling for the
entire theory, at one-loop order. Higher loops may spoil this
picture, but given the fact that the only global symmetry in
the theory is U (N ) and that the impact of the qα windings
is reduced to off-diagonal terms, it is not impossible that
the theory will remain, in some form, in a “lock-step” phase
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FIG. 1. The one-loop diagrams leading to corrections of the FI
term. They are all identical in structure, which is clear in the ’t Hooft
double-line prescription employed here.

where all the couplings to TrD(α) obey relations fixing them
to each other, running together.

At one loop, therefore, the β function for the single cou-
pling in the theory is

β(g2) = − N

4π
g4. (99)

This immediately entails that the theory develops a mass scale,
dynamically: the following mass is an RG invariant of the
theory

� = Me
− 4π

Ng2 , (100)

where M is some mass parameter included in the theory
through a renormalization scheme, for instance a UV cutoff
scale.

We can also comment on the number of SUSY vacua in
the theory. From the four-dimensional perspective, the number
of distinct strings we can set up while forbidding all U (N )
rotations is combinatorially described by

I{Nα} = N!

N0! . . . Np!
(101)

since this counts the number of ways of sprinkling the winding
scalar profiles down the diagonal of the matter field ansatz.

U (N ) transformations map these distinct strings onto one
another, of course, and the gauged linear theory is a theory
for the massless moduli which emerge in this picture. One
way of recovering the vacua from the world-sheet theory is
to make all of the fields massive, with different masses, as
is done in [19]. World-sheet masses for the X (α) fields derive
directly from four-dimensional masses for the � fields. Let us
therefore introduce a set of masses

mA, A �= B −→ mA �= mB. (102)

At this point, the scalar potential defining the vacuum is∑
α

∑
A

2[(σ̄ (α) − m̄A1)(σ (α) − mA1)] jiX
(α)†
iA X (α)

A j

+ D(α)

(
(X (α)†X (α) ) − 4π

g2
2

1

)
, (103)

and the D-term potential implies that the following expression
is a vacuum solution,

(X (1)| . . . |X (p) ) =
(
1
0

)
, (104)

where the upper block in the right-hand matrix is of size
N1 + · · · + Np = N − N0. Since we are fully breaking U (N )
by introducing different masses for each flavor, we cannot
map from this vacuum solution to the other ones. A generic
vacuum solution, therefore, has each column in this column
block above necessarily with exactly one entry, all on different
rows:

X (α)
AiA

= δAiA . (105)

There are

N!

N0!(N − N0)!
(106)

ways of preparing a vacuum for the X fields, which is not yet
correct, but we are not done constructing a vacuum solution.
Indeed, the full solution also needs to be compatible with the
σ part: whenever a component of X (α) becomes nonzero, one
diagonal component σ̄ σ needs to develop a VEV in order
for the relevant term to cancel. Since N − N0 total columns
become nonzero, all diagonal components of all σ (α) fields
develop VEVs:

(σ̄ (α)σ (α) )ii = mA when X (α)
Ai = 1. (107)

Classically, therefore, this confirms that the theory does iso-
late a discrete number of vacua in the expected number. The
effective potential acting on σ can then be written, for each
diagonal component σ

(α)
ii ,

N∏
A=1

(
σ

(α)
ii − mA

) = 0, (108)

i.e., the σ
(α)
ii pick out all the roots of the polynomial above.

Now, from this equation, the counting of vacua can be made
explicit: the ordering of the VEV components inside σ (α) is
irrelevant thanks to leftover ZNα

symmetry due to the Cartan
generators of U (Nα ), therefore, this produces exactly

I{Nα} = N!

N0! . . . Np!
(109)

different solutions, from the combinatorics of picking the
masses for each field σ (α).

We can hypothesize that, as in the Grassmannian case, the
quantum version of the equation above is simply

N∏
A=1

(
σ

(α)
ii − mA

) = �N , (110)

this is reasonable to assume since we have a gauged linear
sigma model representation, the potential for σ likely derives
from a Landau-Ginsburg effective superpotential, obtained
upon integration of the full massive matter supermultiplet,
in which case its quantum version proceeds from Ref. [20].
The counting is naively less obvious now, but this equation is
directly solvable if one chooses to use twisted masses:

mA = m e2π i A
N , A = 1 . . . N (111)

in which case

σ
(α)
ii = |�N + mN |1/N e2π i

k(α)
i
N , 1 � k(α)

i � N. (112)

013038-13



EDWIN IRESON PHYSICAL REVIEW RESEARCH 2, 013038 (2020)

From this solution, we can let m tend to zero to reach the
massless limit: in the quantum theory, therefore, the theory
does have the correct number of vacua. A further confirmation
of this property would be easily found by a direct computation
of the Witten index, a topological index which is equal to the
number of (unlifted) SUSY vacua. We leave this for further
investigation.

The values k(α)
i specify the vacuum completely, but as

we argued the relative orderings of these VEVs within each
σ (α) field are irrelevant. This means that a specific vacuum is
labeled by the sets of values K (α) = {k(α)

i }. Defining K (0) =
ZN\(K (1) ∪ · · · ∪ K (p) ), we see that the K (α�0) form a parti-
tion of ZN of sizes N0 . . . Np, the combinatorics of which do
confirm the number of vacua at hand at the quantum level. A
generic vacuum state can therefore be written

|K (1), . . . , K (p)〉. (113)

K (0), being entirely determined by the other sets, does not
need to figure in the quantum numbers.

By analogy with CP (N − 1), the vacuum here has the
structure of N − N0 copies of CP (N − 1), antisymmetrized
and partitioned in the above way. In the case of the Grassman-
nian manifold, an exact identity can be written to this effect
[21]: only one set of indices is needed to specify a vacuum,
and the following identification is true all the way down at the
quantum level:

GM,L = CP (N − 1)L//SL. (114)

This group quotient occurring here is not an orbifold, rather,
it selects the longest orbits of points under permutation of
its components, i.e., it ensures that all components are all
different from each other and unordered. As a result of this
identification, the quantum numbers of the Grassmannian can
be seen directly to be related to the structure of CP (N − 1)
since the latter has vacua labeled by ZN :

(ZN )L//SL = {M ⊂ ZN , |M| = L}. (115)

The quotient operation immediately produces the quantum
numbers of the vacua of the Grassmannian, subsets of
1, . . . , N of size L. It is not obvious how to generalize this for-
mula; we have to produce disjoint subsets of ZN of prescribed
sizes with group quotients alone. The space[

CP (N − 1)N1//SN1

] × [
CP (N − N1 − 1)N2//SN2

]
× · · · [CP (N0 + Np − 1)Np//SNp

]
(116)

has the right number of elements but constructing quantum
numbers like shown in Eq. (115) from this set does not directly
produce disjointed subsets of ZN . For instance, a vacuum of

U (5)
U (2)U (2)U (1) is labeled by the numbers |{1, 2}, {3, 4}〉, whereas
the suggested group quotient construction would consider the
element |{1, 2}, {1, 2}〉 perfectly valid: the second set in this
multiplet has its range restricted from 1 to 2, independently of
the previous set.

We propose the following representation of the space of
vacua: first, we define

V0 = ∅, (117)

then we iteratively create

Vα+1 ={
(M1, M2, . . . , Mα+1), (M1, . . . , Mα ) ∈ Vα,

Mα+1 ∈ [ZN\(M1 ∪ · · · ∪ Mα )]Nα+1//SNα+1

}
. (118)

This procedure ensures that Mα+1 is one of the subsets of
size Nα+1 in the complement of all the previous Mβ , projected
duly under the symmetry group. Then, the sets of indices that
generate all of the vacua of the flag are

{K1, . . . Kp} ∈ Vp. (119)

By analogy we provide a construction for the entire space
itself: first we define

W0 = ∅, (120)

then create

Wα+1 ={
(z1, z2, . . . , zα+1), (z1, . . . , zα ) ∈ Wα,

zα+1 ∈ [CP (N − 1)\(z1 ∪ · · · ∪ zα )]Nα+1//SNα+1

}
(121)

which generate the following spaces:

W0 = ∅,

W1 = U (N )

U (N1) × U (N − N1)
,

W2 = U (N )

U (N1) × U (N2) × U (N − N1 − N2)
, . . . ,

Wp = U (N )

U (N0) × · · · × U (Np)
. (122)

Finally, as previously mentioned, we anticipate that this
vacuum structure derives from a Landau-Ginsburg superpo-
tential for all the fields in V (α), i.e., the potential written in
Eq. (110) applies not just to σ (α) but to the entire multiplet.
In which case, the world-sheet theory would bear kinks which
interpolate between vacua. Since these states are constructed
from the vacuum states of CP (N − 1), we can already fore-
see, much like for the Grassmannian vacuum structure, that
the spectrum of kinks of the lowest mass will interpolate be-
tween vacua with exactly one differing index. To recycle our
previous concrete example of a flag, the vacua |{1, 2}, {3, 4}〉
and |{1, 2}, {4, 5}〉 will be connected by a minimal kink,
but |{1, 2}, {3, 4}〉 and |{1, 3}, {2, 4}〉 will not. This analysis
occurs precisely in the Grassmannian case and the masses of
all (minimal and nonminimal) kinks are known exactly thanks
to the tt∗ equations [21,22], we leave the investigation for this
case for a further endeavor.

V. CONCLUSIONS

We have introduced the notion of a fully composite non-
Abelian string: a more complex version of the Grassmannian
string, it can be viewed as the admixture of several Grass-
mannian strings with overlapping but unequal sets of color
fluxes running through them, such that different groups of
colors have different amounts of flux or winding number.
The symmetry breaking that the existence of such an object
enforces endows it with internal degrees of freedom, and
we argued that they must exist in a flag manifold. These
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spaces fully generalize the type of manifold seen previously
as the target space of internal degrees of freedom in non-
Abelian strings, CP (N ), and Grassmannian spaces. Because
Grassmannian and elementary non-Abelian strings are BPS
protected objects which respect some of the supersymmetry
of the ambient space they exist in, we hypothesized then
demonstrated that flag strings are also BPS, and found a
formula for its tension which confirms its nature as a com-
posite object with no binding energy. Thanks to the BPS
equations, we were able to write a very convenient expression
for the low-energy effective action of the fluctuations of the
internal degrees of freedom along the string, the flag sigma
model, in which the couplings between the various fields all
depended on a single parameter, the 4D gauge coupling g2,
up to integer multiplicative factors related to the distribution
of flux numbers qα across all colors. We then computed two
further presentations of this sigma model, of the gauged linear
and nonlinear type. The former converts all geometric con-
straints into very field-theoretical auxiliary terms and gauge

interactions, acting on particles in linear representations of
the symmetries of the system. In the end, they very much
resembled Yang-Mills–type theories, opening up the way for
standard field-theoretical methods of analysis of this model,
which we discussed. The second is the nonlinear sigma model
presentation, where all constraints acting on our degrees of
freedom are explicitly solved for at the expense of introducing
a curved target space, where quantum geometrical methods
may be useful for further analysis. All three presentations of
these sigma models, as derived from the world sheet of vortex
strings, show promising potential for future investigation.
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APPENDIX A: PROJECTOR ALGEBRA NOTATION

We introduced the following notational shortcuts:

Pα = X (α)X †(α), Rα = X (α)∂X †(α), Lα = ∂X (α)X †(α), �α = ∂X (α)∂X †(α). (A1)

We avoid at all costs writing expressions where R0, L0 appear, although they will implicitly turn up in sums where their prefactor
is zero, canceling their effective contribution. These objects obey the following algebraic rules

PαPβ = Pαδαβ, RβPα = −PβLα, LαRβ = �αδαβ, ∂Pα = (Lα + Rα ), PαRβ = δαβRα, LαPβ = Lαδαβ, (A2)

which imply the following trace identities:

Tr(RαPβRγ Pδ ) = δαδδβγ Tr(RαRβ ) = −δαδδβγ Tr(�αPβ ) = −δαδδβγ Tr(�βPα ) = Tr(PβLαPδLγ ) = δαδδβγ Tr(LαLβ ). (A3)

We express the 4D fields in this notation:

� =
p∑

α=0

φαPα, ∂aφ =
p∑

α=1

(φα − φ0)(Rα + Lα ), (A4)

Ai = 1

N
∂θ

p∑
β=0

[(
p∑

α=0

qα fαNα

)
− qβ fβN

]
Pβ = 1

N
∂θ

p∑
β=0

AβPβ, (A5)

∂aAi = 1

N
∂θ

p∑
β=0

Aβ (Rβ + Lβ ). (A6)

The extra gauge components are written in the following way:

A3 = i
p∑

α=1

α−1∑
β=0

(RαPβ − PβLα )ραβ (r), (A7)

which can be rewritten by defining ραβ = ρβα and using symmetries in a manifestly Hermitian form

A3 = i
p∑

α=1

(RβP0 − P0Lβ )ρ0β + 1

2
i

p∑
α,β=1

(RβPα − PαLβ )ραβ (r). (A8)

We now compute all the world-sheet contributions from the various 4D fields in the action. One was presented as motivation
for the form of the new gauge components but for the sake of completeness we show all of the details:

Tr(∂a�
†∂a�) =

p∑
α=1

p∑
β=1

(φα − φ0)(φβ − φ0)Tr[(Rα + Lα )(Rβ + Lβ )]

= 2
p∑

α=1

(φα − φ0)2Tr(�α ) − 2
p∑

α=1

p∑
β=1

(φα − φ0)(φβ − φ0)Tr(�αPβ ). (A9)
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We bring it to a more symmetric form

= 2
p∑

α=1

(φα − φ0)2Tr(�α ) − 2
p∑

α=1

p∑
β=1

(φα − φ0)2Tr(�αPβ ) − 2
p∑

α=1

p∑
β=1

(φα − φ0)(φβ − φα )Tr(�αPβ )

= 2
p∑

α=1

(φα − φ0)2Tr(P0�α ) −
p∑

α=1

p∑
β=1

(φα − φβ )(φβ − φα )Tr(�αPβ )

= 2
p∑

α=1

α−1∑
β=0

(φα − φβ )2Tr(�αPβ ), (A10)

Tr(∂aA3∂aA†
3) = −

p∑
α=1

α−1∑
β=0

p∑
μ=1

μ−1∑
ν=0

ρ ′
αβρ ′

μνTr[(RαPβ − PβLα )(RμPν − PμLν )]

= −2
∑

α>β,γ>δ

ρ ′
αβρ ′

μν[Tr(RαPβRμPν ) − Tr(PβLαRμPν )]

= −2
∑

α>β,γ>δ

ρ ′
αβρ ′

μνTr(�αPβ )(δανδβμ − δαμδβν )

= 2
∑
α>β

ρ ′2
αβTr(�αPβ ) = 2

∑
α

ρ ′2
0βTr(�αPβ ) +

p∑
α �=β=1

ρ ′2
αβTr(�αPβ ). (A11)

The first term vanishes identically since the Kronecker symbols enforce α = ν < μ = β < α, thanks to the restricted summation.
In a fully summed case, a symmetry argument cancels this contribution. This matches the shape of the term generated by
world-sheet variations of the scalar, without gauging. The gauging of the 4D scalars produces extra terms:

Tr|A3�|2 =
∑
α>β

∑
μ>ν

p∑
λ,κ=0

φλφκραβρμνTr[(RαPβ − PβLα )PλPκ (PνLμ − RμPν )]

=
∑
α>β

∑
μ>ν

φ2
αραβρμνTr[(RαPβ − PβLα )(PνLμ − RμPν )] (A12)

= 2
∑
α>β

φ2
αρ2

αβTr(�αPβ ) =
∑
α>β

(
φ2

α + φ2
β

)
ρ2

αβTr(�αPβ ). (A13)

This correctly reproduces the Grassmannian result

Tr(i∂a�
†�A3 − iA3�

†∂a�) =
⎛
⎝∑

α>β

p∑
λ=0

p∑
λ=1

Tr[(Rκ + Lκ )Pλ(RαPβ− PβLα )] − Tr[(RαPβ− PβLα )Pλ(Rκ + Lκ )]

⎞
⎠ραβφλ(φκ− φ0)

= −2
∑
α>β

ραβ (φα − φβ )2Tr(�αPβ ). (A14)

Now, the components of the gauge kinetic term

Tr|∂3Ai|2 = 1

r2

p∑
α,β=1

(
qα fα − 1

N

p∑
λ=0

qλ fλNλ

)(
qβ fβ − 1

N

p∑
λ=0

qλ fλNλ

)
Tr[(Lα + Rα )(Lβ + Rβ )] (A15)

=
p∑

α>β

2

r2
(qα fα − qβ fβ )2Tr(�αPβ ) (A16)

in an identical fashion as in Eq. (46):

[Ai, A3] = ∂iθ
∑
α>β

p∑
λ=0

ραβ

(
qλ fλ − 1

N

p∑
κ=0

qκ fκNκ

)
[Pλ(RαPβ − PβLα ) − (RαPβ − PβLα )Pλ]

= ∂iθ
∑
α>β

ραβ (qα fβ − qβ fβ )(RαPβ + PβLα ) (A17)
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so that

|[Ai, A3]|2 = 2

r2

∑
α>β

ρ2
αβ (qλ fλ − qβ fβ )2Tr(�αPβ ), (A18)

Tr([Ai, A3]∂iA3) = ∂iθ
∑
α>β

∑
μ>ν

ραβρμν (qμ f μ − qν f ν )Tr[(RαPβ + PβLα )(PνLμ − RμPν )] = 0. (A19)

This accidental cancellation happens in the Grassmannian computation as well:

Tr([Ai, A3]∂3Ai − ∂3Ai[Ai, A3]) = 1

r2

∑
α>β

p∑
κ=1

ραβ

(
qκ fκ − 1

N

p∑
λ=0

qλ fλNλ

)
(qα fβ − qβ fβ )

× Tr[(RαPβ + PβLα )(Rκ + Lκ ) + (Rκ + Lκ )(RαPβ + PβLα )]

= 4

r2

∑
α>β

ραβ (qλ fλ − qβ fβ )2Tr(�αPβ ). (A20)

Altogether, this gives

S =
∑
α>β

4π Iαβ

g2
2

∫
dt dz Tr(∂iX

(α)∂iX
(α)†

X (β )X (β )†
) (A21)

with a number of integration constants

Iαβ =
∫

dr dθ

(
ρ ′2

αβ + 1

r2
(qα fβ − qβ fβ )2(1 − ραβ )2 + ρ2

αβ

2

(
φ2

α + φ2
β

) + (1 − ραβ )(φα − φβ )2

)
. (A22)

APPENDIX B: EXPLICIT COMPUTATION OF THE NLSM

To alleviate the discussion of the NLSM, we present in this Appendix the algebraic details of the block-matrix manipulations
which enable us to write the NLSM action. We recall that we defined the ansatz for the X variables in the following way:

X (0) =

⎛
⎜⎜⎝

1
�10

. . .

�p0

⎞
⎟⎟⎠ 1√

1 + �
(p)
00

(B1)

and

X (α) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−�00
1

1+�(α−1) �0α

. . .

−�α−1 0
1

1+�(α−1) �0α

1

0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1√
1 + �α0

1
1+�

(α−1)
00

�0α

, (B2)

where

�
(α)
00 =

∑
0<β�α

�0β�β0, �
(0)
00 = 1. (B3)

We immediately state the recursive relations that allow us to construct �
(α)
00 from �

(β<α)
00 : it is known as the Sherman-Morrison

formula, and is a special case of the more generic Woodbury identities we will see later. All of them are simply expressions of
inverses of blockwise-defined matrices in terms of the inverses of its blocks. To wit,

1

1 +∑
β<α �0β�β0 + �0α�α0

= 1

1 +∑
β<α �0β�β0

− 1

1 + ∑
β<α �0β�β0

�0α

1

1 + �α0
1

1+∑
β<α �0β�β0

�0α

�α0
1

1 + ∑
β<α �0β�β0

.

(B4)

Now, we have an ansatz for the X vectors, but we will need to produce expressions for the derivatives of these vectors, and this
may seem daunting. We first off mention that we will never need to introduce derivatives of the normalization factors since we
are always projecting ∂X (β ) onto a vector that X (β ) is orthogonal to, either X (0) or another X (α). Only derivatives of the vectorlike
object in the expression above need to be differentiated. Let us proceed iteratively again, checking along the way that we recover
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the Grassmannian expression: first, we compute

q1|X (0)∂X (1)|2 = Tr
1

1 + �
(p)
00

∂�01

1

1 + �10�01
∂�10. (B5)

If we were to set p = 1, then we would have finished the computation and produced the NLSM. It is indeed true that the above
is in that case exactly the generalized Fubini-Study metric for the Grassmannian as described in Ref. [12]. It is clearer that it is
the Fubini-Study metric by use of the following identity:

1

1 + �10�01
= 1 − �10

1

1 + �
(1)
00

�01. (B6)

As we add more and more terms to the Lagrangian, bigger versions of this object will occur, it will be useful to label them and
write some of their properties preemptively. For this purpose we previously defined

�
(α)
βγ =

⎛
⎜⎝1 + �10�01 . . . �10�0α

. . . . . . . . .

�α0�01 . . . 1 + �α0�0α

⎞
⎟⎠

−1

βγ

. (B7)

It is related to the previously defined object by the full version of the identities which give us Eq. (B6):

�(α) = 1 − �
1

1 + �(α)
�,

1

1 + �(α)
= 1 − ��(α)�, �(α)� = �

1

1 + �(α)
, ��(α) = 1

1 + �(α)
�. (B8)

The combined use of the above equation and the “upgrade” identity of Eq. (B4) (the Sherman-Morrison identity) produces an
analogous “upgrade” formula for � matrices, called the Woodbury identity. For β, γ < α,

�(α)
αα = 1

1 + �α0
1

1+�(α−1) �0α

,

�
(α)
αβ = 1

1 + �α0
1

1+�(α−1) �0α

�α0
1

1 + �(α−1)
�0β, (B9)

�
(α)
βγ = �

(α−1)
βγ + �β0

1

1 + �(α−1)
�0α

1

1 + �α0
1

1+�(α−1) �0α

�α0
1

1 + �(α−1)
�0γ .

With these identities at hand, we can add another term to our Lagrangian. We compute

q2|X (0)∂X (2)|2 = q2 Tr

(
1

1 + �(p)

[
∂�02�

(2)
22 ∂�20 + ∂�01�

(2)
12 ∂�20 + ∂�02�

(2)
21 ∂�10 + ∂�01

(
�

(2)
11 − �

(1)
11

)
∂�10

])
. (B10)

The very last term is worth noting: if we set q2 = q1, a simplification occurs, and we obtain

Tr

(
1

1 + �(p)
∂�0α�

(2)
αβ ∂�β0

)
. (B11)

Again, if p = 2, this is exactly the Grassmannian sigma model action, for the same reasons as previously. This is nothing but the
block-merger phenomenon at hand.

By a completely analogous iterative computation, we can write that in general

|X (0)∂X (α)|2 = Tr

(
1

1 + �(p)

[
∂�0α�(α)

αα ∂�α0 + ∂�0β�
(α)
βα ∂�α0 + ∂�0α�(α)

αγ ∂�γ 0 + ∂�0β

(
�

(α)
βγ − �

(α−1)
βγ

)
∂�γ 0

])

= Tr

(
1

1 + �(p)
∂�0β�

(α)
βγ ∂�γ 0 − 1

1 + �(p)
∂�0β�

(α−1)
βγ ∂�γ 0

)
. (B12)

We are not yet finished, however, as the expression above is only part of the full answer. We must also compute the terms
involving different X (α>0). The computational techniques to do so are all identical to the ones already seen, we thus get, for
α > β,

(qα − qβ )|X (α)∂X (β )|2 = (qα − qβ )Tr

[(
1

1 + �(α)
− 1

1 + �(α−1)

)
(∂�0γ )

(
�

(β )
γ δ − �

(β−1)
γ δ

)
(∂�δ0)

]
. (B13)

When all terms are added to the Lagrangian, many cross simplifications occur due to repeated, canceling terms in the expressions.
Let us, for simplicity, define for α > β

Gα,β = Tr

(
1

1 + �(α)
∂�0γ �

(β )
γ δ ∂�δ0

)
. (B14)
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It is then simple enough to extract which of the Lagrangian terms contributes an individual G term, and sum up all the flux
numbers to obtain its leading coefficient. This splits up into several cases since the cases where one of the indices is p is special.
We obtain the following terms, for β − 1 < α − 1 < p:

Gp,p × qp, (B15)

Gp,p−1 × [−qp + qp−1 + (qp − qp−1)] = 0, (B16)

Gp,α × [qα − qα+1 + (qp − qα ) − (qp − qα+1)] = 0, (B17)

Gα,α = (qα − qα+1), (B18)

Gα,α−1 = (qα − qα−1) − (qα+1 − qα−1) + (qα+1 − qα ) = 0, (B19)

Gα,β = (qα − qβ ) − (qα+1 − qβ ) − (qα − qβ+1) + (qα+1 − qβ+1) = 0. (B20)

By an abuse of notation we can write qp+1 = 0 to have the total Lagrangian be

L =
p∑

α=1

(qα − qα+1)Tr

(
1

1 + �(α)
∂�0γ �

(α)
γ δ ∂�δ0

)
. (B21)

APPENDIX C: THE p = 2 FLAG MANIFOLD NLSM WRITTEN IN BLOCK COMPONENTS

We will here show the explicit construction of the simplest type of flag manifold, when p = 2: by this we mean fully
substituting the � determinants for the actual elementary degrees of freedom, the φ fields, as the generic formula obscures
the view of their input in the model.

A few intermediary additional simplifications occur in the case of U (3)
U (1)3 , i.e., when p = 2 and all variables are true scalars,

not matrices, in being able to commute terms past each other. We will write the final form of the action in a way that makes it
clearly analogous to the Fubini-Study metric, in which these extra simplifications are unneeded.

We define the variables φα,β in the following way:

(Y (1)|Y (2) ) =
⎛
⎝φ01 φ02

1 φ12

0 1

⎞
⎠. (C1)

We suppress factors of qα in this definition to keep expressions tidy but they are otherwise necessary in order for this ansatz to
reduce correctly. Notably, we recall that φ12 has a factor of q1 − q2 leading it, thus causing it to drop out of the solution altogether
at the special point, when the space becomes a Grassmannian.

First, we create the partial determinants �0α:

�01 = −φ01, (C2)

�02 = φ01φ12 − φ02. (C3)

We then define the objects �
(α)
00 :

�
(1)
00 = φ01φ10, (C4)

�
(2)
00 = φ01φ10 + (φ02 − φ01φ12)(φ20 − φ10). (C5)

We now define

�(α) =
(

1 + φ10φ01 φ10φ02 + φ12

φ21 + φ20φ01 1 + φ20φ02 + φ21φ12

)−1

. (C6)

Symbolically, this definition is practical to keep expressions tidy, but it is difficult to express in components: repeated use of the
Woodbury formula is required to define it explicitly. Instead, we will define this object through its relation to �(α), emphasizing
the connection to the Fubini-Study metric:

�(1) = 1 − φ10
1

1 + φ01φ10

φ01, (C7)

�(2) =
(
1 0
0 1

)
−
(

φ10

φ20 − φ21φ10

)
1

1 + φ01φ10 + (φ02 − φ01φ12)(φ20 − φ21φ10)
(φ01 φ02 − φ01φ12). (C8)
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From there we define X (0), X (1), X (2):

X (0) =

⎛
⎜⎝

1

−φ10

−φ20 + φ21φ10

⎞
⎟⎠ 1√

1 + φ01φ10 + (φ02 + φ01φ12)(φ20 + φ21φ10)
, (C9)

X (1) =

⎛
⎜⎝

φ01

1

0

⎞
⎟⎠ 1√

1 + φ10φ01

, (C10)

X (2) =

⎡
⎢⎣
⎛
⎜⎝

1
1+φ10φ01

(φ02 − φ01φ12)

φ10
1

1+φ10φ01
(φ01φ12 − φ02)

1

⎞
⎟⎠ 1√

1 + (φ20 − φ21φ10) 1
1+φ01φ10

(φ02 − φ01φ12)

⎤
⎥⎦. (C11)

We can then compose the full Lagrangian

L = (q1 − q2)Tr

[
1

1 + φ01φ10

∂φ01

(
1 − φ10

1

1 + φ01φ10

φ01

)
∂φ10

]

+ q2 Tr

{
1

1 + φ01φ10 + (φ02 − φ01φ12)(φ20 − φ21φ10)
(∂φ01 ∂ (φ02 − φ01φ12))

×
[(

1 0
0 1

)
−
(

φ10

φ20 − φ21φ10

)
1

1 + φ01φ10 + (φ02 − φ01φ12)(φ20 − φ21φ10)
(φ01 φ02 − φ01φ12)

](
∂φ10

∂ (φ20 − φ21φ10)

)}
.

(C12)

Setting q1 = q2 in practice also cancels all contributions from φ12 since we have suppressed some prefactors in the above
expression. Performing these cancellations we see that the action reduces to the usual Fubini-Study metric of a Grassmannian:
the first term cancels altogether and the second, thanks to our substitution for �(2), is already in the telltale shape that the action
is often presented in.
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