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Simulating the Majorana dynamics with ultracold atomic gases in a bilayer honeycomb lattice
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Cold atomic gases in a hexagonal optical lattice is a highly effective quantum simulator for exploring
graphenelike physics. In this paper, we propose a feasible scheme to simulate and detect the Majorana dynamics
with cold atoms in a bilayer hexagonal lattice. We explore the dynamics of a general Majorana particle, in
which three key observables featuring the Majorana dynamics are studied, which include the pseudoenergy,
orthogonality, and the fidelity. The results reveal that the fidelity is a good observable to distinguish Majorana
from Dirac or Weyl dynamics. Through the decomposition of the Majorana equation, we address the Majorana
Zitterbewegung, which is indeed the addition of two Dirac Zitterbewegung. Finally, we present a method to
detect the Majorana dynamics with the quantum-state tomography implemented with quenches. Our scheme may
provide an avenue for observing the phenomena described by the Majorana equation through bilayer graphene
lattices.
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I. INTRODUCTION

In 1937, Italian theoretical physicist Ettore Majorana no-
ticed that the solution of the Dirac equation could be totally
real on the condition that the Dirac gamma matrices are
chosen to be pure imaginary. Then the particle described
by the wave function serves meanwhile as the antiparticle
of itself [1]. The equation is called the Majorana equation.
Soon afterwards, researchers found that it does not neces-
sarily need pure imaginary gamma matrices to establish the
Majorana equation [2]. The more general Majorana equation
(GME) describes a type of novel particles beyond the standard
model. To directly investigate the dynamics of such Majorana
particles is an impossible mission owing to the fact that the
particle wave function and its charge conjugation are both
found in the equation [3]. Researchers are driven to look for
other ways to study the GME. In particular, experimental
and theoretical efforts have been devoted to the quantum
simulation of the GME, through which powerful and feasible
schemes have been finally formed in trapped ion [4–6] and
optical waveguide [7] systems.

On the other hand, as one of the promising quantum simu-
lators [8–12], the cold atomic lattice systems have been well
proven reliable on the simulation of relativistic quasiparticles.
With several proposed lattice schemes, noteworthy progress

*lizhiphys@126.com

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

has been made in simulating relativistic phenomena with
mono- or multilayer honeycomblike sheets [13–17]. Klein
paradox, Zitterbewegung, and relativistic Landau levels have
been realized in tabletop ultracold atomic experiments one by
one [18–26]. Furthermore, the recent finding of merged Dirac
points [27,28], Weyl semimetal [29–36], one-dimensional
(1D) and two-dimensional (2D) spin-orbit couplings [37–40]
have given a great push for the further understanding of rel-
ativistic effects and relevant phenomena in condensed-matter
and high-energy physics [15]. The artificial gauge fields for
neutral atoms also constitute an effective platform [11,41–
45] for simulation of the relativistic quasiparticle and related
topological states [8–12]. The well-known Harper-Hofstadter
model [46–48], Haldane model [49,50], and other related
models being realized one by another, and some topological
features such as chiral edge states [51,52], the Berry phase,
and Chern numbers [41,53] have been observed in cold atomic
systems.

So far, much attention has been paid to the study of
Dirac/Weyl physics in the above graphenelike systems. Nev-
ertheless, only a few papers have discussed the Majorana
physics [4–7]. This paper is devoted to simulating the dynam-
ics of a general Majorana particle (GMP) in the cold-atom
system. Three crucial observables in differentiating Majorana
from Dirac/Weyl physics, i.e., pseudoenergy, orthogonality,
and fidelity, will be investigated. Theoretically, the GMP can
be decomposed into two Majorana fermions with opposite
masses. We propose a feasible scheme to realize the Majorana
equations with an AA-stacked bilayer of hexagonal lattice. The
proposed lattice preserving inversion symmetry generates a
doubly degenerate energy spectrum while the Dirac dispersion
at the Brillouin corner consists of opposite mass terms. The
final GMP state can be constructed via tunable interlayer
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coupling so that the measurement is based on conventional
quantum-state tomography in a single layer. In the cold-atom
system, the final state tomography can be experimentally
implemented via the quench dynamics, which was developed
for the measurement of the Chern number [54,55].

The paper is organized as follows. In Sec. II, we present
the model for simulating the GME. In Sec. III, we investigate
the observables in Majorana dynamics with atomic wave
packets. In Sec. IV, we propose an experimental procedure
and measurement schemes for simulating Majorana dynamics
in the tabletop atomic lattice system. The paper is concluded
in Sec. V.

II. BILAYER HEXAGONAL OPTICAL LATTICE

The GME in general suffers a nonunitary evolution due
to the existence of an unphysical complex conjugate opera-
tor. However, in two spatial dimensions one can circumvent
this by decomposing the GMP into two Majorana ferimions,
which enables the experimental investigation of the GME
[4,7]. To be explicit, we start from the (2 + 1)-dimensional
two-component GME which has the form

i∂t� = (pxσx + pyσy)� − iMσy�
∗, (1)

where σx,y are the usual Pauli matrices and the superscript ∗
denotes the complex conjugate. By decomposing � = (ψ1 +
iψ2)/

√
2 and assuming the Majorana fermion condition φμ =

−iσzσyφ
∗
μ, one obtains

i∂t

(
ψ1

ψ2

)
=

[
h1(p) 0

0 h2(p)

](
ψ1

ψ2

)
, (2)

where h1,2(p) = (pxσx + pyσy) ± Mσz describe the corre-
sponding two Majorana fermions. Through this procedure,
one obtains a Hermitian Hamiltonian consisting of two de-
coupled Dirac equations with opposite masses. Hence the
simulation of the GME can be mapped as the simulation of
the two Dirac equations, which covers the rest of the paper. In
the rest of this section, we shall first present an optical lattice
scheme for the realization of these two Dirac Hamiltonians.

Inspired by the experimental achievements in simulating
Dirac quasiparticles [13,27], here we propose an AA-stacked
bilayer optical lattice with each layer formed by three retrore-
flected laser beams of wavelength λ. The lattice potential is
given by [27]

Vμ(x, y) = −VX̄ cos2(kLx + θ/2) − VX cos2(kLx)

−VY cos2(kLy)

− 2α
√

VXVY cos(kLx) cos(kLy) cos(ϕμ), (3)

where the subscript μ = 1, 2 denotes the first and second
layers. α is the visibility of the interference pattern and kL =
2π/λ. Various lattice structures can be realized, depending on
relative intensities of the beams, and we consider the regime
where the hexagonal lattice is formed [see Figs. 1(b) and 1(c)].
The single-beam lattice depths VX̄ , VX , and VY are set to be the
same for two different layers. A gap could be generated at
the Dirac point by tuning the laser parameter θ . We also take
ϕ1 = 0, ϕ2 = π (the phase between two orthogonal primary
lasers X and Y ), which forms A and B sublattices with the
opposite energy offset for layer 1 and layer 2. Besides the

FIG. 1. (a) The proposed AA-stacked bilayer optical lattice,
where the corresponding potential of layer 1 (b) and layer 2 (c) can
be realized in the x-y plane depending on the interference of the
three laser beams. A sublattice offset could be generated in both
layers under the condition, say, θ = 0.5π and the two layers are set
with opposite on-site energy offset. An auxiliary double well is set
along the z direction for tuning the coupling between the two layers.
Sketch of the tight-binding model is given (d) and topologically the
quadratic lattice is equivalent to the hexagonal lattice. (e) Within the
first Brillouin zone, there are two Dirac points, namely, K and K′.

2D optical lattice potential, we also include a double-well
trap along the z direction for tuning the interlayer coupling,
which is necessary for the tomography of the final GMP
state [see Sec. IV]. Below we first consider a deep trap and
hence the two layers are treated isolated. The depth of the
potential in x-y plane can also be tuned such that the localized
Wannier functions decay very rapidly with distance. Under
the tight-binding approximation, only the tunneling terms
between nearest-neighboring sites in x-y are considered and
the corresponding tight-binding Hamiltonian is written as

H =
∑

μ=1,2

∑
〈i, j〉

J〈i, j〉,μ(a†
i,μb j,μ + H.c.) + �〈i, j〉,μn〈i, j〉,μ, (4)

where 〈i, j〉 denotes the nearest-neighboring sites in each unit
cell. ai,μ and bi,μ represent the boson annihilation operator
at site i for the sublattices A and B in layer μ, respec-
tively. The tunneling rates J〈i, j〉,μ, in general, depend on the
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tunneling directions in an anisotropic hexagonal lattice and we
denote them as J , Jw, Jd corresponding to the three different
directions [see Figs. 1(d) and 1(e)]. �〈i, j〉,μ denotes the on-
site energy in layer μ and we set �μ,A = −�μ,B = �μ. The
positions of the sites in sublattice A can be expressed as Ai =
m1a1 + m2a2, where m1, m2 are integers and the basis vector
a1 = (l, l ) and a2 = (l,−l ). The sites in the sublattice B can
then be generated by a shift B j = A j + δi, where the vector
δi could be an arbitrary one from four possible shift vectors
δ1 = (l, 0), δ2 = (−l, 0), δ3 = (0, l ), and δ4 = (0,−l ) [see
Figs. 1(d) and 1(e)]. Hereafter, we set the lattice spacing l = 1
for simplicity.

With a Fourier transform aj,μ = 1√
N

∑
k,μ exp(ik · A j )ak,μ

and b j,μ = 1√
N

∑
k,μ exp(ik · B j )bk,μ, where N is the number

of the unit cell, the Hamiltonian simplifies to

H =
∑
k,μ

(a†
k,μ

b†
k,μ)Hμ(k)

(
ak,μ

bk,μ

)
,

Hμ(k) =
[
�μ εk
ε∗

k −�μ

]
, (5)

where εk ≡ 2J cos ky + Jwe−ikx + Jd eikx and Hμ(k) is the
Bloch Hamiltonian. The energy eigenvalues are given by
Eμ(k) = ±

√
ε2

k + �2
μ, which has the expression

E2
μ(k) = (Jd − Jw )2 + 4J2 cos2(ky) + 4Jd Jw cos2(kx )

+ 4J (Jd + Jw ) cos(kx ) cos(ky) + �2
μ. (6)

Within the regime Jw < 2J − Jd , the energy spectra ex-
hibit linear dispersion at two Dirac points K, K′ ≡
(0,± arccos Jd +Jw

−2J ). The increase of the tunneling strength Jw

leads to a merge of Dirac points in pairs along the ky direction.
When Jw > 2J − Jd , the energy spectrum is linear in kx, while
it becomes quadratic in ky. Since we need those two Majorana
fermions (with opposite masses) to form a GMP, we consider
the case of J < 2J − Jd . We plot the dispersion relation in
the first Brilloiun zone [see Fig. 1(e)] with parameters Jd = 0,
Jw = 1, J/Jw = √

2, and �μ/Jw = ±1.
By expanding the momentum as k = K + q around the

high-symmetry point K, where q = (qx, qy, qz ) is the dis-
placement vector measured from the K point in the reciprocal
space. One can obtain the dispersion relation Eq. (6) as

Eμ(q) = ±
√

v2
x q2

x + v2
y q2

y + �2
μ, (7)

where vx = Jd − Jw, vy =
√

4J2 − (Jd + Jw )2. The wave
function for the quasiparticles satisfies the Dirac equation
ih̄∂tψμ = H′

μψμ, where the relativistic Hamiltonian is de-
rived by linearizing the Bloch Hamiltonian at the K point. Up
to a rotation in the xy plane, i.e., (σx, σy) → (−σy,−σx ), the
effective Hamiltonian can be written as

H′
μ(q) = vxqxσx + vyqyσy + �μσz. (8)

Due to the opposite on-site energy offset in layers 1 and 2, the
effective mass �1 = −�2. By equating H′

μ with hμ in Eq. (2)
we arrive at

h1(q) = vxqxσx + vyqyσy + Mσz,
(9)

h2(q) = vxqxσx + vyqyσy − Mσz,

where M ≡ �1. Correspondingly we write ψ1 and ψ2 as two-
component Dirac wave functions for positive- and negative-
mass Dirac equations, respectively. The total wave function
ψD = (ψ1, ψ2)T thus is a four-component one and the total
Hamiltonian of bilayer hexagonal lattice exhibits a block-
diagonal form. Using (τ0, τ ) to denote the Pauli matrices in
the layer space, the full Dirac Hamiltonian can then be written
as

HD = (vxqxτ0 ⊗ σx + vyqyτ0 ⊗ σy) + Mτz ⊗ σz. (10)

Up to now the dynamics of the GMP can be simulated with
the Dirac Hamiltonian shown in Eq. (10) as well as the
corresponding Dirac state. To derive the final GMP state, we
introduce the interlayer coupling for the tomography of the
GMP states, which will be shown in Sec. IV. Since the two
layers are AA stacked, we write the interaction Hamiltonian
as Hint = ∑

i J⊥e−iϕ⊥ (a†
i,1ai,2 + b†

i,1bi,2) + H.c., where J⊥eiϕ⊥

denotes the tunneling rate in the z direction that can be
realized by, say, laser-assisted transition [48,56,57]. In the
reciprocal space, it is written as

Hint = J⊥ cos ϕ⊥τx ⊗ σ0 + J⊥ sin ϕ⊥τy ⊗ σ0, (11)

where σ0 denotes the identity matrix in the sublattice space.
In the following section, we will show that such interlayer
coupling is also feasible for phase imprinting of the GMP
state.

III. MAJORANA DYNAMICS

To verify the simulation of the GME, we investigate the
observables pseudoenergy, orthogonality, and fidelity, which
have been treated as the signatures of Majorana dynamics
[4–7]. We start with a simple theoretical analysis on the free
evolution of the GMP in the rest frame. Under such circum-
stances, the dynamics of Majorana and Dirac particles show
the most difference [6] and the Majorana equation becomes a
very compact form as

∂t� = −Mσy�
∗. (12)

Taking complex conjugates on both sides of the equation,
we obtain ∂t�

∗ = Mσy� and ∂2
t � = −M2�. Through simple

calculation, the general solution of Eq. (12) can be obtained as

�(t ) = cos (Mt )�(0) − sin (Mt )σy�
∗(0). (13)

Pseudoenergy, orthogonality, and fidelity. In the rest frame,
the Dirac Hamiltonian is reduced to hμ = �μσz and the oper-
ator σz or pseudoenergy corresponds to a conserved quantity.
In contrast, the GMP consisting of two coherent Majorana
fermions prohibits the conservation of the pseudoenergy. By
inserting the wave function in Eq. (13) into the definition, the
pseudoenergy is obtained as

〈σz(t )〉 = 〈�(t )|σz|�(t )〉
= cos (2Mt )�†(0)σz�(0)

+ sin(2Mt )Im[�T (0)σx�(0)], (14)

where Im[c] denotes the imaginary part of complex number
c. For the same reason, the orthogonality of two initial states
will not be maintained during the evolution and it is given by

|〈�(t )|�⊥(t )〉|2 = sin2(2Mt )[Im[�T (0)σy�⊥(0)]]2, (15)
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where �⊥(t ) represents the time-evolved state of the initial
one �⊥(0), which is orthogonal to the initial state �(0). In a
similar way, the fidelity is defined as

|〈�(t )|�θ (t )〉|2 = | cos2(θ ) + sin2(θ ) cos2(2Mt )|2, (16)

where �θ denotes the wave function that evolves from initial
state �(0)eiθ with θ being a constant. The fidelity oscillation
arises due to the fact that the GME has no global U(1) symme-
try, which is completely different from Dirac/Weyl dynamics
[3]. The GMP states � and �eiθ are in general two different
states, which can be explicitly seen by decomposing them into
corresponding Majorana fermions. Taking � = ψ1 + iψ2,
where ψ1 and ψ2 satisfy the Majorana fermion condition, then
we have �eiθ = (cos θψ1 − sin θψ2) + i(sin θψ1 + cos θψ2)
or

� → �θ =
[

cos θ − sin θ

sin θ cos θ

](
ψ1

ψ2

)
, (17)

where each matrix element is implicitly multiplied with a 2 ×
2 identity matrix. In other words, a U(1) transformation of the
GMP state is manifested as a SO(2) rotation of corresponding
two Majorana fermions. Writing the rotation matrix as UR =
e−iτy⊗σ0θ , one can recognize such operation as an evolution
matrix with Hamiltonian given by Eq. (11), which enables
phase imprinting of the GMP state in experiments by tuning
the interlayer coupling.

In the cold-atom system, we consider a cold atomic ensem-
ble trapped in a 2D harmonic well for experimental investiga-
tion of the dynamics and observables. We take the initial GMP
state in the form

� = 1√
2πL

e−(x2+y2 )/4L2+iK·x�, (18)

where � denotes the spinor part of the wave function
and L represents the width of the initial Gaussian pro-
file. The factor exp(iK · x) is included which renders the
GMP state localized at the Dirac point K in the reciprocal
space. The evolution therefore is governed by the effec-
tive Hamiltonian given in Eq. (10). For large width L, the
evolution of the spinor wave function is mainly assumed
by the mass term. The contribution from the momentum-
dependent terms can be neglected and hence the previous
results in the rest frame can be applied. For a numeri-
cal demonstration, we have computed the evolutionary pro-
cess of a GMP by solving the Schrödinger’s equation with
Hamiltonian Eq. (10). For a general view on the GMP
state evolution, we take three typical initial spinors [�x =
(1/

√
2)(1, 1)T , �y = (1/

√
2)(1, i)T , and �z = (1, 0)T , by

which any spinor can be constructed] into consideration.
By decomposing the initial state into two Majorana fermion
states, the corresponding Dirac spinors are φx,1 = (0, 0)T ,
φx,2 = (1/

√
2)(−i,−i)T , φy,1 = (1/2)(1 + i, i − 1)T , φy,2 =

−(1/2)(1 + i, i − 1)T , φz,1 = (1/
√

2)(1,−1)T , and φz,2 =
(1/

√
2)(−i,−i)T , where φx,y,z,1 (φx,y,z,2) corresponds to the

Dirac quasiparticle in layer 1 (2). For the pseudoenergy and
orthogonality with initial spinor given by the three typical

0

1

0 1 2 3
0

1

-1

0

1

(b)

θ=π/2
θ=π/4

φx & φy
φz

|<
Ψ
(t)

|Ψ
(t)
>|
2

(c)|<
Ψ
(t)

|Ψ
θ(
t)>
|2

t/π

<σ
z(
t)

>

φz
φy
φx

(a)

FIG. 2. Pseudoenergy (a), orthogonality (b), and fidelity (c) of
a GMP with the three typical initial spinors (�x , �y, and �z). The
fidelity oscillation in (c) is independent of the initial spinor wave
function while it depends on the phase difference θ of the initial
GMP states. The lines (symbols) represent the analytical (numerical)
results, which shows good agreement. In computation, the width of
initial wave function L = 10 and the effective mass M = 1. The time
t is in units of 1/Jw .

spinors, we have

〈σz(t )〉 =
⎧⎨
⎩

0 for �x

sin (2Mt ) for �y

cos (2Mt ) for �z

(19)

and

|〈�(t )|�⊥(t )〉|2 =

⎧⎪⎨
⎪⎩

sin2 (2Mt ) for �x

sin2 (2Mt ) for �y

0 for �z.

(20)

Both analytic (lines) and numerical (symbols) results are
plotted in Fig. 2, which shows good agreements. The fidelity
oscillation does not rely on the initial spinor and the periodic
oscillation always occurs with a nonzero global phase factor.
It means that the fidelity is a good quantity to distinguish the
Majorana from Dirac/Weyl dynamics [2,28,36].

Majorana Zitterbewegung. Apart from the observables rel-
evant to the spinor wave function, we proceed to investigate
the spatial part of the wave function, which shows Zitter-
bewegung (ZB) [5,58]. The ZB effect historically was first
derived by solving the Dirac equation, which exhibits an
oscillatory behavior in the particle’s motion. For the GMP, the
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decomposition in Eq. (2) enables an analytical investigation
of the corresponding analog in the GME. The Dirac ZB effect
in experiments can be examined by monitoring the center
of mass of wave packets [16]. Similarly, for the GMP state
we calculate the evolution of the expectation values r̄(t ) =
〈�(t )|r̂|�(t )〉. By its definition, we have

r̄(t ) = 〈�(t )|r̂|�(t )〉
= 1

2
〈ψ1(t )|r̂|ψ1(t )〉 + 1

2
〈ψ2(t )|r̂|ψ2(t )〉

+ i

2
〈ψ1(t )|r̂|ψ2(t )〉 − i

2
〈ψ2(t )|r̂|ψ1(t )〉. (21)

The first two terms are the usual Dirac ZB associated to
each Majorana fermion while the last two terms are the
ZB resulted from the transition between the two Majorana
fermion states. An analytical derivation can be done in the
Heisenberg picture. Defining the operators

r̂1,2(t ) = eih1,2t r̂(0)e−ih1,2t , r̂12(t ) = eih1t r̂(0)e−ih2t , (22)

we can rewrite r̄(t ) as

r̄(t ) = 1

2
〈ψ1(0)|r̂1(t )|ψ1(0)〉 + 1

2
〈ψ2(0)|r̂2(t )|ψ2(0)〉

+ i

2
〈ψ1(0)|r̂12(t )|ψ2(0)〉 − i

2
〈ψ2(0)|r̂†

12(t )|ψ1(0)〉.
(23)

For r̂12, we obtain

r̂12(t ) =
[

1 + iMσz
sin 2Et

E

+ i2M
sin2 Et

E2
(vx pxσy − vy pyσx )

]
r̂2(t ), (24)

where E =
√

v2
x q2

x + v2
y q2

y + M2 . r̂1,2(t ) can be solved by
using the anticommutation properties of the Pauli matrices
and one finds

x̂1,2(t ) = x̂(0) + v2
x h−1

1,2qxt

− ivx

2
h−1

1,2(ei2h1,2t − 1)
(
σx − vxh−1

1,2qx
)
,

ŷ1,2(t ) = ŷ(0) + v2
y h−1

1,2qyt

− ivy

2
h−1

1,2(ei2h1,2t − 1)
(
σy − vyh−1

1,2qy
)
. (25)

By substituting Eqs. (22)–(25) into Eq. (21), an exact formula
can be derived for r̄(t ) and one can find that the last two terms
in Eq. (21) are exactly canceled. For the wave packet given in
Eq. (18), however, we could simplify the calculation by taking
q → 0, which corresponds to the large width limit of the wave
packet, i.e., L → ∞. Then we obtain

r̂12(t ) = ei2Mσzt r̂2(t ), (26)

and

x̂1,2(t ) = x̂1,2(0) ± vx

2M
σy(cos 2Mt − 1) + vx

2M
σx sin 2Mt,

ŷ1,2(t ) = ŷ1,2(0) ∓ vy

2M
σx(cos 2Mt − 1) + vy

2M
σy sin 2Mt .

(27)

-0.3

0.0

0.3

-0.5

0.0

0 5 10 15
-1.0

-0.5

0.0

-0.5

0.0

0.5

(a) x (φx)

(b) y (φx)

C
oM

[•]

(c) y (φy)

(d) y (φz)

t [1/Jw]

FIG. 3. Majorana Zitterbewegung for different initial spinors.
The analytical (lines) and numerical (symbols) results of the center
of mass (CoM) of a GMP with L = 10 are plotted. (a) and (b) show
the x̄ and ȳ for �x; (c) and (d) provide ȳ for �y and �z, respectively.
Throughout, the effective mass M/Jw = 1.

For the Majorana fermion condition, we further parametrize
the two Majorana fermion states as ψ1(0) = 1/

√
2

(eiφ1/2,−e−iφ1/2)T and ψ2(0) = 1/
√

2(eiφ2/2,−e−iφ2/2)T .
The final result is just the addition of the two Majorana
fermion’s ZB oscillation, which is given by

x̄(t ) = − vx

4M
[sin(2Mt − φ1) + sin(2Mt + φ2)],

ȳ(t ) = vy

4M
[cos(2Mt − φ1) − cos(2Mt + φ2)],

(28)

where we have neglected constant terms, which correspond
to the initial position of the wave packet. For the three initial
GMP spinors, we obtain

x̄ = vx

4M
sin 2Mt, ȳ = vy

4M
cos 2Mt (29)

for �x,

x̄ = 0, ȳ = vy

2M
sin 2Mt (30)

for �y, and

x̄ = 0, ȳ = vy

2M
cos 2Mt (31)

for �z. A numerical comparison has been given in Fig. 3. For
a broad wave packet, the numerical results agree well with
the analytical ones given above. For a smaller width, damping
behavior and drift velocity shall be exhibited as discussed in
Refs. [58–60].
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FIG. 4. Quench steps for yielding the density matrix of the Majo-
rana state. (a) Initially the layers are decoupled and AB sublattices are
energetically separated. In the step Q1, interlayer coupling is turned
on while the energy difference between sublattices is turned off at
the same time. In stage (b), the Majorana state is prepared in the first
layer. The state tomography is implemented in stage (c), in which the
system is quenched such that sublattices are energetically separated
by h̄ω and all the tunnelings are suppressed. The final time-of-flight
measurement is implemented only on the first layer.

IV. EXPERIMENTAL PROCEDURE AND MEASUREMENT

In previous sections, we have proposed a bilayer optical
lattice for simulation of the Dirac equation and investigated
featured observables in the Majorana dynamics. To simulate
the evolution of a GMP state, we need first to decompose it
into the two Majorana fermion states, say, ψ1(0) and ψ2(0).
Then prepare the initial state as ψD(0) = [ψ1(0), ψ2(0)]T and
time evolve the state in the bilayer system described by the
Dirac Hamiltonian, Eq. (10). The final step is to evaluate
the observables with the final state ψD(t ) = [ψ1(t ), ψ2(t )]T

or the GMP state � = ψ1(t ) + iψ2(t ), which are required to
be experimentally measured. Here we propose two quench
processes to complete the final experimental measurements,
which are pictured in Fig. 4. The first quench is to transform
the Dirac state into the GMP state since a Dirac state rather
than a GMP state is obtained in the simulation. The second is
to realize the state tomography of the derived GMP state.

In the first quench process, the interlayer coupling is
switched on while at the same time the energy offset between
the AB sublattices in each layer is turned off. According
to Eqs. (10) and (11), the system is then described by the
following effective Hamiltonian:

HQ1 =
[
vx pxσx + vy pyσy J⊥σ0

J⊥σ0 vx pxσx + vy pyσy

]
, (32)

where J⊥ denotes the interlayer hopping strength. Under the
condition J, Jw 
 J⊥, we could neglect the block diagonal
term. For a suitable duration of evolution with the simpli-
fied Hamiltonian, one can obtain the following evolution
matrix:

UQ1 = 1√
2

[
σ0 iσ0

iσ0 σ0

]
, (33)

which renders the Dirac states |ψ1,2〉 of the previously decou-
pled layers as

|ψ1〉 → |ψ1〉 + i|ψ2〉, |ψ2〉 → i|ψ1〉 + |ψ2〉. (34)

Through this procedure, the GMP state is prepared in the first
layer and we proceed to the next quench process for the state
tomography.

The state tomography of the GMP state is implemented
with the quench that all the tunneling is suppressed while the
sublattices are energetically separated [55]. Supposing the
energy offset between the A and B sublattices of the quenched
system is ω, then the Hamiltonian of the post-quenched
system is characterized by HQ2 = ωσz/2, which generates a
rotation around the z axis of the Bloch sphere. The time evolu-
tion conserves the momentum and mainly modifies the spinor
part of the wave function. Therefore the spatial wave function
of the final state is taken to be Gaussian. Therefore we
write the final GME state in the reciprocal space in the
form

|�(t )〉 = L√
π

e−(1/2)q2L2

(
sin β

2
cos β

2 eiγ

)
. (35)

By holding the gas in the quenched lattice for time interval th,
the momentum distribution of the gases is given by

n(k, th) = f (k)
L2

π
e−(k−K)2L2

[1 + sin β cos(γ + ωth)], (36)

where f (k) denotes the momentum distribution of the
Wannier function associated to the lattice sites and we have
used the relation q = k − K. By measuring the n(k, th) for
different hold time th, both β(t ) and γ (t ) can be obtained,
yielding the desired density matrix of the GMP state.

Given the density matrix of the GME state, the proposed
observables can be readily obtained. The pseudoenergy has
the simple form 〈σz〉 = − cos β(t ) while the other two quan-
tities can be constructed from the overlap of the time-evolved
states starting from different initial states. For example, the
orthogonality can be rewritten with the time-evolved density
matrices of the two initially orthogonal states

|〈�(t )|�⊥(t )〉|2 = Tr(ρρ⊥), (37)

where ρ(t ) ≡ |�(t )〉〈�(t )| and ρ⊥(t ) ≡ |�⊥(t )〉〈�⊥(t )|
and corresponding initial states satisfy the condition
〈�(0)|�⊥(0)〉 = 0.

V. CONCLUSION

In summary, we have proposed an AA-stacked bilayer
hexagonal lattice to simulate the general Majorana equation
and observe the dynamics with an atomic gas in a cold-atom
system. The evolution generated by the general Majorana
equation is nonunitary in general. However, the general Ma-
jorana equation can be cast into two Dirac equations with
opposite masses, which enables the experimental simulation
of the nonunitary evolution. In the context of a cold-atom
system, we explored the possibility of realizing the Dirac
equations with a bilayer optical lattice. In contrast to the
Dirac/Weyl case [2,28,36,61], there exist the oscillations
of pseudoenergy, orthogonality, and fidelity, as well as the
intriguing Majorana Zitterbewegung in the evolutionary pro-
cess. The evolution can be implemented by holding an atomic
ensemble in the bilayer lattice. Through absorption imaging
and quantum-state tomography, the density distribution and
the density matrices of the GMP state can be detected. The
necessary techniques for experiments are widely conducted
by several groups [54,57,62]. The oscillating frequency of the
observable quantities can be controlled in a detectable range
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and hence the observation of the aforementioned intriguing
phenomena are expectable in cold atomic experiments [63].
We hope this work will not only contribute to the fundamental
study of relativistic dynamics, but also promote the progress
of quantum simulators [64].
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