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Mass hierarchy in collective modes of pair-density-wave superconductors
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We study collective modes near the quantum critical point of a pair-density-wave (PDW) superconductor
in two-dimensional Dirac systems. The fate of gaps of various collective modes is investigated by functional
renormalization. For incommensurate PDW superconductors, we show that the gapless Leggett mode, protected
by the emergent U (1) symmetry, can induce an exponentially small Higgs mass compared to the superconducting
gap. Further, for commensurate PDW superconductors, we find an emergent mass hierarchy in the collective
modes, i.e., the masses of Leggett boson, Higgs boson, and the superconducting gap can differ by several
magnitudes in the infrared. This may shed light on a mechanism underlying the hierarchy problem in the standard
model of particle physics.

DOI: 10.1103/PhysRevResearch.2.013034

I. INTRODUCTION

Collective modes in superconductors are among the most
fascinating emergent phenomena in condensed matter physics
[1,2], and are further related to the famous Anderson-Higgs
mechanism [3–6]. In the case of charge-neutral particles,
spontaneous breaking of global U (1) symmetry provides mas-
sive amplitude and gapless phase fluctuations at low ener-
gies. However, in the context of charged superconductors,
i.e., electrons interacting with dynamic photons, the gapless
Goldstone mode is “eaten” by gauge bosons resulting in
massive transverse photons and the Meissner effect [7–9]; in
this case, the amplitude mode is also known as Higgs mode.
Another collective mode—the Leggett mode [10]—appears in
superconductors described by a superconducting (SC) order
parameter with multiple components. While the U (1) trans-
formation from charge conservation corresponds to a uniform
phase shift in all components, the Leggett modes describe the
relative phase fluctuations between different condensates.

One intriguing manifestation of a multicomponent super-
conductor is the pair-density-wave (PDW) superconductor
whose order parameter transforms as a nontrivial representa-
tion of both U (1) and lattice translation operations [11–24]
(see Ref. [25] for a recent review). Recently, experimental
evidences of PDW ordering in cuprate high-temperature su-
perconductors were reported [26]. The superconducting order
parameter of a generic PDW reads

�(�r) = �+(�r)ei �Q·�r + �−(�r)e−i �Q·�r, (1)
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where �± correspond to two superconducting condensates
that are related by time reversal (or inversion) symmetry.
Under a translation operation, the order parameters transform
as �± → e±iQ�±, where Q = �Q · �r. Therefore, the phases
of the two complex order parameters manifest themselves as
order parameters of global charge conservation and translation
symmetry. It also manifests in secondary orders induced by
the PDW, i.e., the 2 �Q charge-density wave (CDW) ρCDW ∼
�+�∗

− and the charge-4e SC �4e ∼ �+�− [13]. Upon the
transformation �± → eiθ±�±, ρCDW → ei(θ+−θ− )ρCDW and
�4e → ei(θ++θ− )�4e.

It is clear that the induced CDW order is proportional to the
Josephson coupling between the two condensates described
by �+ and �−. For incommensurate momentum Q, any
local Josephson coupling, i.e., (�∗

+�−)N for any integer N ,
is forbidden by the translational symmetry of the Landau
theory and consequently, in addition to the global charge
conservation, another U (1) symmetry which is characterized
by the phase difference between the two condensates emerges.
Consequently, the Leggett mode is gapless which is protected
by the emergent U (1) symmetry in the incommensurate PDW
phase. Surprisingly, we find that the fluctuations of the gapless
Leggett mode can dramatically renormalize the mass of Higgs
mode. Specifically, we show that the Higgs mass is exponen-
tially small compared to the superconducting gap—i.e., the
gap in fermion spectrum—at low energies, and thus opens up
the possibility of a detectable Higgs mode [27–31] in PDW
superconductors.

On the other hand, for commensurate momentum �Q with
commensurability N , the minimum integer satisfying 2NQ =
2π× integer, the emergent U (1) symmetry mentioned above
is lowered to a discrete ZN symmetry and the Landau free
energy can then allow the following Josephson coupling term
at order N , h[(�+�∗

−)N + H.c.] = 2h|�+�−|N cos N (θ+ −
θ−), where h is a constant. In this situation, the Leggett
mode will obtain a mass proportional to the strength of the
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FIG. 1. (a) Schematic flow diagram near the phase transition
between a (semi)metal and a PDW superconductor. The two axes
represent the tuning parameter and the Josephson coupling strength,
respectively. There are two fixed points, indicated by red points,
corresponding to the superconducting (SC) transition point and the
Nambu-Goldstone (NG) fixed point. The black and blue arrows
indicate the flow for the incommensurate and commensurate PDW
states, respectively, distinguished by whether the Josephson coupling
is vanishing or not. Panels (b), (c), and (d) are the flow diagrams of
the potential coefficients in the incommensurate PDW phase. The
horizontal axis represents the flow parameter t ≡ log �0/�.

order-N Josephson coupling JN ∝ 2h|�+�−|N . As a result,
the commensurability N provides a knob to tune the mass
of the Leggett mode: for larger commensurability (larger N),
the Josephson coupling is more irrelevant, and the Leggett
boson mass gets smaller at low energies. In 2 + 1 dimensions,
the Josephson coupling is dangerously irrelevant for N � 3,
which will result in an interesting hierarchy [32–35] of the
various masses of collective modes as we will show below.

In the following, we implement a functional renormaliza-
tion group (FRG) approach [36–38] to investigate collective
modes in both incommensurate and commensurate PDW su-
perconductors in Dirac systems. The FRG is a nonperturba-
tive approach to evaluate the effective action—namely, the
one-particle irreducible generating functional—at any energy
scale below the cutoff. Importantly, it allows one to study
generic potential functions irrespective of whether they are
perturbatively renormalizable or beyond [39–41]. Thus the
FRG method is a suitable approach for the investigation of
bosonic collective modes, where the effective potential is
crucial for the determination of various gaps in the symmetry-
broken phase.

II. PDW STATE IN HONEYCOMB DIRAC SEMIMETALS

We consider the PDW state of spinless fermions on a
honeycomb lattice close to a quantum phase transition [21,42]
as a primary example [see Fig. 1(a) for a schematic phase
diagram]. The half-filled honeycomb lattice hosts two Dirac
cones at K and K ′ in the Brillouin zone, which are referred to

as valley degrees of freedom and are denoted by n = ±. We
consider a finite intravalley pairing, i.e., �n ∼ 〈ψnσ

yψn〉 �=
0, which breaks the translation symmetry of the underlying
lattice. Under translation of the primitive lattice constant
Dirac fermions and the order parameters transform as ψ± →
e±iKψ± and �± → e±i2K�±, where K = 2π/3 and we set the
lattice constant to unity. Thus the intravalley pairing state is
a PDW superconducting state with commensurability N = 3.
Such a state can, for example, be realized in the honeycomb
model with nearest- and next-nearest-neighbor interactions
[21].

In the charged PDW phase described above, its low-energy
physics is described by the Abelian Higgs model

S =
∫

x

−F 2

4e2
+

∑
n=±

[
|(∂μ − iAμ)�n|2 + r

2
|�n|2 + u

4!
|�n|4

]

+ u′

4
|�+|2|�−|2 + h′(�3

+�∗3
− + H.c.) + · · · , (2)

where
∫

x ≡ ∫
d3x, A and F are the vector potential and

the field strength, respectively, and e is the effective charge
of Cooper pairs. The particle-hole symmetry of supercon-
ductors rules out a linear kinetic term [43,44]. Note that,
in Eq. (2), the gapped fermions are ignored for simplic-
ity as their inclusion does not qualitatively change the
discussion of the Higgs mechanism. In terms of ampli-
tude and phase modes, �± = ϕ±eiθ± , the kinetic energy
is expressed as |(∂μ − iAμ)�±|2 = |∂μϕ± + iϕ±(∂μθ̄ − Aμ ±
∂μθ )|2, where θ̄ = (θ+ + θ−)/2 and θ = (θ+ − θ−)/2 corre-
sponding to Goldstone and Leggett modes, respectively. In
unitary gauge, Aμ → Aμ + ∂μθ̄ , the Goldstone mode is eaten
by the gauge field via the Higgs mechanism, while the gauge
field obtains a mass. The mass of the gauge boson is set by
the amplitude of the SC order parameter, i.e., |�±|, which is
comparable to the SC gap of the Dirac fermions. Thus, as far
as the physics below the SC gap is concerned, both the eaten-
up Goldstone mode and the gauge boson can be neglected
[45]. Note that it is reasonable to neglect the eaten-up Gold-
stone mode and the gauge boson in both incommensurate and
commensurate PDW phases, although the discussion above is
focused on the PDW phase with commensurability N = 3.

III. COLLECTIVE MODES IN INCOMMENSURATE PDW

An incommensurate PDW can occur, e.g., through intraval-
ley pairing in a nematic Dirac semimetal that breaks the
C3 symmetry of the underlying honeycomb lattice. Without
C3 symmetry, the Dirac point is still locally stable, but the
momentum of the Dirac point is no longer locked at K or K ′.
A possible example is the twisted bilayer graphene, where an
intermediate C3 nematic semimetal phase is proposed [46]. At
a generic momentum, the PDW is incommensurate with the
underlying lattice and an additional U (1) symmetry emerges
as discussed above. The three boson degrees of freedom, i.e.,
two Higgs modes ϕ± and one Leggett mode θ , can be changed
to three real bosons, φ± and φ, i.e., �± = ϕ±e±iθ → �± =
φ± ± iφ.

Now, we are ready to write down the bare action for
the incommensurate PDW state with two Dirac fermions
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S = S0 + S1 with

S0 =
∫

x

(∂φ)2

2
+

∑
n=±

[
(∂φn)2

2
+ �†

nHn�n

]
, (3)

S1 =
∫

x
λ11(ρ+ − ρ−)2 +

∑
n=±

[
λ2

2
(ρn − ρ0)2

+ λ3

6
(ρn − ρ0)3 + g�†

nσ y(φnμ
x + nφμy)�n

]
, (4)

where �± is the Dirac fermion in Nambu space with Pauli
matrices μi and σ i acting on Nambu space and Dirac space,
respectively. In Eq. (4), the ρ terms concern the bosonic
action, while the last term originates from Yukawa coupling
in Nambu space. H± = −iω ± kxσ

x + kyσ
yμz is the kinetic

term of the fermions and we have further introduced ρ± ≡
1
2 (φ2

± + φ2). λi characterizes the boson potential and g is
the Yukawa coupling. We consider a time-reversal invariant
PDW phase, so the minimum of the potential is chosen to be
located at φ±,min = √

2ρ0 and φmin = 0. In Eq. (4), there is
no Josephson coupling because of the incommensurability of
the PDW phase under consideration and the emergent U (1)
symmetry renders the Leggett mode massless.

IV. FUNCTIONAL RG ANALYSIS

We use the FRG approach to study the superconducting
gap and the masses of the collective modes. The exact flow
equation [36] reads ∂�� = 1

2 Tr[∂�R(�(2) + R)−1], where �

denotes the flowing effective action with energy scale � and
�(2) is the second functional derivative of the effective action
with respect to boson and fermion fields. Furthermore, R is a
suitable cutoff function. We implement the extended local po-
tential approximation (LPA′) considering the following ansatz
of effective action � = �0 + �1 with

�0 =
∫

x
Zb

(∂φ)2

2
+

∑
n=±

[
Zb

(∂φn)2

2
+ Z f �

†
nHn�n

]
,

�1 =
∫

x
λ11(ρ+ − ρ−)2 +

∑
n=±

[
λ2

2
(ρn − ρ0)2

+ λ3

6
(ρn − ρ0)3 + g�†

nσ y(φnμ
x + nφμy)�n

]
, (5)

where Zi, i ∈ {b, f }, are field renormalization factors. We
implicitly assume Higgs and Leggett modes have the same
field renormalization factor. Note that the fields φ±, �±, and
φ in the effective action are expectation values and different
from the fields in the bare action. For notational convenience
we use the same symbols.

With cutoff functions [47] Rb = Zb(�2 − k2)θ (�2 − k2)
and R f

n = Z f Hnr f ( �
k ), where r f (x) = (x − 1)θ (x2 − 1), the

flow equation for the bosonic potential U reads

∂�U = KDZb�
D+1

D

[∑
n

1 − ηb

D+2

Zb�2 + m2
n

+ 1 − ηb

D+2

Zb�2 + m2
L

]

− 2
KDZ2

f �
D+1

D

∑
n

1 − η f

D+1

Z2
f �

2 + 2g2ρn
, (6)

where D is the space-time dimension and K−1
D =

2D−1πD/2�(D/2). The RG flow of U can be projected
to the flow of the minimum of the potential ρ0 and
the interaction coefficients λi. Their dimensionless
versions are given as ρ̄0 ≡ Zb�

2−Dρ0, λ̄2 ≡ Z−2
b �D−4λ2,

ḡ2 ≡ Z−2
f Z−1

b �D−4g2, . . .. The mass terms appearing in
Eq. (6) and the following flow equations are evaluated
at generic field configurations, m± = m±(φ±, φ) and
mL = mL(φ±, φ). At the minimum of the potential, two Higgs
modes are given by m2

+ = 2λ2ρ0 and m2
− = 2λ2ρ0 + 8λ11ρ0,

while the Leggett mode remains massless, mL = 0, due to
the emergent U (1) symmetry. The superconducting gap is
�2 = 2g2ρ0. The flow equation for the Yukawa coupling
reads

∂�g2 = g4KD�D+1

2D
(
Z2

f �
2 + �2

)
[(

1 − η f

D+1

)
Z2

f

Z2
f �

2 + �2

(
1

Z2
b �2 + m2+

+ 1

Z2
b �2 + m2−

− 2

Z2
b �2 + m2

L

)
+

(
Zb

(
1 − ηb

D+2

)
(Z2

b �2 + m2+)2

+ Zb
(
1 − ηb

D+2

)
(Z2

b �2 + m2−)2
− 2Zb

(
1 − ηb

D+2

)
(
Z2

b �2 + m2
L

)2

)]
. (7)

Note that in the symmetry-breaking phase, the renormaliza-
tion of Yukawa coupling g2 [48,49] is not vanishing. Finally,
the anomalous dimensions are related to field renormalization
factors by ηi = −�Z−1

i ∂�Zi,

ηb = 8KDλ2
2ρ0Zb�

D+2

D(Zb�2 + m2+)2
(
Zb�2 + m2

L

)2 + 8KDg2�DZ2
f

ZbD

×
[ (

D + 2 − 4η f

D−1

)
Z2

f �
2

(D − 2)
(
Z2

f �
2 + �2

)3 −
3
4 − η f

2(
Z2

f �
2 + �2

)2

]
, (8)

η f =
(

1 − ηb

D + 1

)
8KDZb�

D+2g2

D
(
Z2

f �
2 + �2

)
×

[
1

2

∑
n

1(
Zb�2 + m2

n

)2 + 1(
Zb�2 + m2

L

)2

]
. (9)

In Fig. 1, we show the flow diagrams for the couplings
λ̄2, λ11 and ḡ2 as a function of flow parameter t = log �0/�.
Here, �0 is the cutoff energy of the bare action. The initial
values of the RG flow are chosen in the PDW regime close to
the transition point. The flow diagram of λ̄2, Fig. 1(b), shows
two plateaus corresponding to the PDW transition point and
the Nambu-Goldstone (NG) fixed point of the broken U (1)
symmetry owing to the incommensurability. Note that the
PDW transition point is a critical point, while the NG fixed
point is a stable fixed point characterizing the gapless Leggett
modes. The flow diagram of ḡ2, Fig. 1(c), only shows the
PDW transition plateau, because the fermions are gapped out
in the SC phase and decouple from the low energy sector at
the NG fixed point. Thus, the flow of ḡ2 is set by its canonical
dimension at the NG fixed point. The flow diagram of the
dimensionful λ11 shows its irrelevance at the critical point
[21].

After identifying two fixed points, we can study in more
details the flow of the SC gap and Higgs boson mass towards
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FIG. 2. Flow diagrams of the superconducting gap and mass of
amplitude mode at the incommensurate PDW phase. We have scaled
the initial value to 1. Panel (a) shows the flow of �2 and m2

+.
Notice that the flow quantities have dimension mass squared. Panel
(c) shows the flow of the ratio m2

+/�2.

low energies and we focus on one of the Higgs modes, i.e.,
m2

+, for simplicity. We show the flow of the dimensionful
squared masses �2 and m2

+ in Fig. 2(a). At the energy scale
controlled by the PDW transition point, the RG flows of SC
gap and Higgs boson mass are almost identical. At lower
energies, the physics is controlled by the NG fixed point:
while �2 stops flowing because it decouples from the low
energy sector, m2

+ continues to flow due to fluctuations of
the massless Leggett mode. Eventually, m2

+ flows to zero
at extremely low energies [50]. Figure 2(b) shows the flow
of the ratio between the SC gap and Higgs boson mass.
After the system enters the energy scale controlled by the
NG fixed point, the Higgs mass gets exponentially smaller
compared to the SC gap at low energy. This provides a robust
energy window where the Higgs modes are detectable in an
incommensurate PDW superconductor. The response of the
Higgs mode to external probe is similar to that in neutral
SC/superfluid [50,51].

V. COLLECTIVE MODES IN COMMENSURATE PDW

We now study the case of commensurate PDW. Due to the
commensurability N = 3, we add a Josephson coupling term
SJ ∝ �3

+�∗3
− + H.c. to the action which couples the two SC

condensates. In terms of real bosons SJ reads

SJ = h
∫

x

(
8
∑

n

ρ3
n − [(φ+ + iφ)3(φ− + iφ)3 + H.c.]

)
.

We added
∑

n ρ3
n such that SJ is nonnegative and the minimum

of the potential is still at φ±,min = √
2ρ0, φmin = 0. Including

a term corresponding to SJ in the truncation, the flow equa-
tions of the potential and fermion anomalous dimension are
the same as Eqs. (6) and (9), except the masses are different
due to the presence of the Josephson coupling. The flow
equation of boson anomalous dimensions is

ηb = 8KDZb�
D+2(λ2 + 288hρ0)2ρ0

D(Zb�2 + m2+)2
(
Zb�2 + m2

L

)2 + 8KDg2�DZ2
f

DZb

×
[ (

D + 2 − 4η f

D−1

)
Z2

f �
2

(D − 2)
(
Z2

f �
2 + �2

)3 −
3
4 − η f

2(
Z2

f �
2 + �2

)2

]
. (10)

The masses of Higgs mode and Leggett mode are given by
m2

+ = 2λ2ρ0 and m2
L = 288hρ2

0 , respectively. Note that the

FIG. 3. Flow diagrams of the potential coefficient λ̄2, SC gap,
and masses of various collective modes at the commensurate PDW
phase. We have scaled the initial value to 1. Panel (a) shows the
flow of dimensionless coefficient λ̄2 �2. Panel (b) shows the flow
of superconducting gap, Higgs boson mass, and Leggett boson mass
denoted by �2, m2

+, and m2
L , respectively. Notice that the flow

quantities have dimension mass squared.

Leggett boson mass is proportional to the strength of the
Josephson coupling.

To study the flow of collective modes in the commensurate
PDW, we set initial values in the PDW regime close to the
transition point. Figure 3(a), the flow diagram of λ̄2, shows
two fixed points corresponding to the PDW transition point
and the NG fixed point similar to that in the incommensurate
PDW state. However, the NG fixed point is unstable in the
commensurate PDW state due to the runaway flow of λ̄2 after
the NG fixed point. This behavior originates in the Josephson
coupling which is dangerously irrelevant at the PDW transi-
tion point and triggers the runaway flow of λ̄2. In Fig. 3(b),
we show the flow diagrams of the SC gap and the masses of
the collective modes. In the energy range controlled by the
PDW transition point, the flows of SC gap �2 and Higgs mass
m2

+ are identical. More interestingly, the flow of the Leggett
boson mass m2

L is faster, because of the irrelevance of h at the
PDW transition. Note that it is a robust feature insensitive to
the initial values [50]. Thus it provides an energy window to
detect the Leggett boson, i.e., the (dangerous) irrelevance of
the Josephson coupling makes the Leggett mode detectable in
commensurate PDW.

In the energy range controlled by the NG fixed point
only the Higgs boson mass continues to flow, similar to the
incommensurate PDW state, while both SC gap and Leggett
boson mass stop running. Finally, when the system reaches
lower energies, all masses stop flowing and remain finite:
unlike the incommensurate PDW state where the enhanced
U (1) symmetry protects gapless Leggett modes, there is no
protected gapless mode in the commensurate PDW phase.
The presence of two fixed points gives rise to an interesting
emergent hierarchy of boson masses [33], which may shed
light on a mechanism underlying the hierarchy problem in the
standard model of particle physics [32].

VI. CONCLUDING REMARKS

By using the FRG method, we show that (a) in an incom-
mensurate PDW superconductor, the Higgs mass is exponen-
tially smaller than the superconducting gap near the super-
conductor transition point, due to the gapless fluctuations of
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Leggett modes, and (b) in the commensurate PDW phase, the
Leggett boson mass is finite but exponentially small compared
to the Higgs boson mass and superconducting gap, i.e., a mass
hierarchy of the collective modes emerges.

While we studied the PDW state in Dirac semimetals as
an explicit example, we note that the results are robust in
nodeless PDW superconductors: in the incommensurate PDW
state, the gapless Leggett modes—which are protected by
the emergent U (1) symmetry—can strongly renormalize the
Higgs mass. These findings are in general correct in nodeless
incommensurate PDW superconductors. On the other hand,
in commensurate PDW superconductors, the mass hierarchy
between Higgs boson and Leggett boson masses relies on the
fact that the Josephson coupling is dangerously irrelevant at
the PDW transition point. This happens generically in PDW
states with high commensurability.
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APPENDIX

1. Mechanism of the emergent mass hierarchy

Here we would like to articulate more about the origin of
the mass hierarchy between Leggett mode and Higgs mode in
the commensurate pair-density-wave (PDW) superconductor.
In short, it is due to the irrelevance of Josephson coupling
at criticality. More specifically, this mass hierarchy can be
quantified by the inverse ratio of the masses of the Higgs mode
m2

+ ∝ λ2ρ0 and the Leggett mode m2
L ∝ hNρN−1

0 , where hN is
a Josephson coupling with commensurability N ,

m2
L

m2+
∝ h̄N ρ̄N−2

0

λ̄2
. (A1)

Near the critical point, the RG flows of the dimensionless ρ̄0

and λ̄2 show plateaus, i.e., their values stay nearly constant.
On the other hand, at the critical point the dimensionless h̄N

will flow to zero asymptotically, because, here, the Josephson
coupling is irrelevant for large enough N (N � 3). The longer
the RG flow is dominated by the critical point, the smaller the
ratio m2

L/m2
+ becomes, independent of the initial value of the

Josephson coupling. This can be controlled by tuning closer
to criticality. Eventually, in the deep infrared, both masses
freeze-out and give a constant tiny but finite mass ratio—the
mass hierarchy.

The canonical scaling dimension of h̄N is (2 − D)N + D.
For D = 3 and N = 3, h̄N is marginal at tree level and
quantum fluctuations have to be considered. Employing the

FIG. 4. Flow of the mass of the Leggett mode and the mass
ratio for different choices of the initial parameters, namely, at (ρ̄0 −
ρ̄∗)/ρ̄∗ = 10%, 1%, and 0.1% away from the critical point in the
symmetry-broken phase.

nonperturbative functional RG approach, we find that the
quantum fluctuations render the Josephson coupling irrele-
vant at the critical point, which is also in agreement with
simpler perturbative arguments. Here, we add another non-
perturbative reasoning, which further supports our finding
for the PDW transition in the Dirac semimetal as consid-
ered in the manuscript: the PDW transition for this specific
system features emergent supersymmetry (SUSY) [21]. More
explicitly, it is described by two decoupled copies of N =
2 Wess-Zumino supersymmetric theory leading to an exact
scaling dimension of complex boson, [�±] = 2/3, and con-
straining the quantum fluctuation such that [�N

±] = N × [�±]
[52]. Since two valleys are decoupled at criticality, we have
[(�∗

+�−)N ] = [(�∗
+)N ] + [(�−)N ] = 4N/3 and [h̄N ] = 3 −

4N/3. As a result, the mass ratio is

m2
L

m2+
∝ h̄N (�0)ρ̄N−2

0 (�)

λ̄2(�)

(
�

�0

)3−4N/3

, (A2)

where �0 is the energy cutoff and � represents the energy
scale. Because ρ̄0(�) and λ̄2(�) stay roughly constant near
the transition point, we can see the reason of mass hierarchy
is due to the irrelevance of Josephson coupling. Moreover, the
mass hierarchy is more apparent for the larger N .

We clearly exhibit this result by showing the renormaliza-
tion group flow of the mass for different choices of tuning
parameters away from criticality; see Fig. 4. This confirms
that an initial value which is closer to the critical point induces
a smaller Leggett mass and mass ratio m2

L/m2
+ as argued

above. Note the small increase of the mass ratio in the figure is
due to the Nambu-Goldstone (NG) fixed point, which further
decreases the Higgs mass but not Leggett mass.

The above results explain the mass hierarchy between
the Leggett mode and the Higgs mode. Next, we provide a
physical reason for the mass hierarchy of the Higgs mode
and the superconducting (SC) gap. From Fig. 2 and Fig. 3
in the main text, we can see that the mass hierarchy emerges
near the NG fixed point. Because the mass ratio is m2

+/�2 ∝
λ̄2/ḡ2, the hierarchy is due to the different IR behavior of λ̄2

and ḡ2. The FRG equations near the incommensurate PDW
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transition are given by

�∂�λ̄2 = −λ̄2 + 3λ̄2
2

π2(1 + 2λ̄ρ̄0)3
− ḡ2

(1 + 2ḡ2ρ0)3
+ 2λ̄2

2

3π2
,

(A3)

�∂�ḡ2 = −ḡ2 + ḡ4

6π2(1 + 2ḡ2ρ̄)2

[
1

1 + 2λ̄2ρ̄0
− 1

+ (1 + 2ḡ2ρ̄)

(
1

(1 + 2λ̄2ρ̄0)2
− 1

)]
. (A4)

The above equation allows us to directly analyze the behavior
of the system at the NG fixed point: since the NG fixed point
describes the symmetry broken phase, the relevant tuning
parameter diverges, i.e., ρ̄0 → ∞, and the RG equations
reduce to

�∂�λ̄2 = −λ̄2 + 2λ̄2
2

3π2
, (A5)

�∂�ḡ2 = −ḡ2. (A6)

The flow of ḡ2 is set by its canonical dimension because
the quantum corrections vanish due to the decoupling of the
fermion from the low-energy sector. With the solutions of the
RG equation at the NG fixed point,

λ̄2(�) = 1
2

3π2 + (
1

λ̄2(�0 ) − 2
3π2

)
�
�0

, ḡ2(�) = ḡ2(�)
�0

�
,

(A7)

we can get the mass ratio

m2
+

�2
∝ 3π2

2ḡ2(�0)

�

�0
. (A8)

Physically, the mass hierarchy is due to the fact that the
fermion decouples from the low-energy sector at the NG fixed
point, while the Higgs mode does not.

2. Observability of Higgs mode in incommensurate
PDW superconductors

In this section, we discuss the observability of Higgs modes
in PDW superconductors (SC) in 2 + 1D. One necessary
condition of a well-defined Higgs mode is Lorentz symme-
try. In condensed matter physics, which typically provides
a nonrelativistic environment, the particle-hole symmetry in
superconductors plays an essential role similar to Lorentz
symmetry [44]. In the incommensurate PDW SC, it is not
obvious whether the Higgs mode can be probed in experi-
ments due to the gapless fluctuations of the Leggett mode.
The effective theory, i.e., Eqs. (3) and (4), in terms of Higgs
and Leggett modes is

L =
∑

n

[
(∂φn)2 + (λ2ρ0 + 2λ11ρ0)φ2

n + λ2
ρ0

2

(
φ3

n + φnφ
2
)]

+ (∂φ)2 + λ2

8
φ4 − 4λ11ρ0φ+φ−

+ λ11

4
(φ+ − φ−)2(2

√
2ρ0 + φ+ + φ−). (A9)

Note that λ11 only couples the Higgs modes. To address the
effect of the gapless fluctuation of the Leggett mode, one can

FIG. 5. One-loop diagrams containing singular polarization. The
dashed lines and the wavy lines represent Higgs mode propagator
and Leggett mode propagator, respectively.

set λ11 = 0 for simplicity, i.e.,

L =
∑

n

[
(∂φn)2 + (λ2ρ0 + 2λ11ρ0)φ2

n + λ2
ρ0

2

(
φ3

n + φnφ
2
)]

+ (∂φ)2 + λ2

8
φ4. (A10)

The polarization operator of the Higgs mode is given by

�(q) = 1

4

∫
dDk

(2π )D

1

k2(k + q)2

= 1

4

1

(4π )D/2

23−D√
π�(D/2 − 1)

�(D/2 − 1/2)

�(2 − D/2)

q4−D
.

(A11)

Since �(q) = 1
32

1√
q2

in 2 + 1D, the self-energy suffers from

an IR singularity, making the direct observation of longitudi-
nal fluctuations difficult. Indeed, the spectral function of the
longitudinal susceptibility at one-loop order is given by

χ ′′
φnφn

= π

4
√

q2 + λ2ρ0

δ(ω −
√

q2 + λ2ρ0)

+ λ2
0ρ0

128

1

(ω2 − q2 − λ2ρ0)2

1√
ω2 − q2

�(ω2 − q2),

(A12)

where � is the step function. The first term is the quasiparticle
peak of the Higgs mode and the second term comes from the
decay to the Leggett mode. In the static limit, χ ′′

φnφn
∼ ω−1,

making the Higgs peak difficult to observe. Note that such a
situation is ubiquitous for the amplitude mode in spontaneous
continuous symmetry breaking in 2 + 1D; the gapless Gold-
stone mode fluctuations inhibit probing the longitudinal sus-
ceptibility [51,53]. In order to probe the signature of the Higgs
modes, one can instead consider the scalar susceptibility. The

scalar is defined as δρn ≡ 1√
2ρ0

( 1
2 |�n|2 − ρ0) = φn + φ2

n+φ2

2
√

2ρ0
,

and the scalar susceptibility is

χδρnδρn = χφnφn + 1√
2ρ0

(
χφnφ2 + χφnφ2

n

)
+ 1

8ρ0

(
χφ2φ2 + χφ2

nφ2
n

) + 1

4ρ0
χφ2

nφ2 . (A13)

We calculate the susceptibility by a weak coupling expansion
(loop expansion), and present the one-loop result. The singu-
lar loop diagrams shown in Fig. 5 lead to the singular part of
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the susceptibility,

χ
singular
δρnδρn

(q) = λ2
2ρ0χ0(q)�(q)χ0(q) − λ2χ0(q)�(q) + 1

4ρ0
�(q)

= q4

4ρ0(q2 + λ2ρ0)2
�(q), (A14)

where χ0(q) = 1
2

1
q2+λ2ρ0

is the bare propagator. One can see

in the singular at low energy is suppressed by a factor q4, i.e.,

[
χ

singular
δρnδρn

]′′
(ω, q) = (ω2 − q2)2

128ρ0(ω2 − q2 + λ2ρ0)2
�(ω2 − q2).

(A15)

The static scalar susceptibility is given by χ ′′
δρnδρn

(ω) =
π

4
√

λ2ρ0
δ(ω − √

λ2ρ0) + ω3

128ρ0(ω2−q2+λ2ρ0 )2 + regular terms,
where we can see clearly that the singularity is well
suppressed. As a consequence, the peak of the Higgs modes
can be observed experimentally in the scalar susceptibility
without covering from the IR divergence.

The suppression in the above calculation is actually due
to the different decompositions of the order parameter. In

the amplitude-angle decomposition, � = |�|eθ , it is the two
derivatives appearing in the coupling |�|(∂θ )2 that lead
to a suppression. We emphasize that the Higgs mode in
condensed-matter systems is not like the Bogoliubov quasi-
particle that can be detected by tunneling experiments. As
a neutral collective mode, the Higgs mode is not easy to
excite and detect. The different self-energy from the different
decomposition of order parameters by perturbative calculation
will not lead to a direct experimental observation. If both
perturbative calculations remain qualitatively correct when
high-order corrections are included, the lesson above tells
us that the Higgs mode can be observed by a suitable ob-
servable in experiments. For example, besides the contribu-
tion from the Bogoliubov quasiparticle in a superconductor,
the amplitude mode can lead to an excess contribution to
the dynamical conductivity. The leading contribution from the
amplitude mode is theoretically shown to have a hard gap
at the frequency set by the mass of the Higgs mode [51].
The experiments in disordered NbN and InO film confirm
the extra contribution in dynamical conductivity near the
superconductor-insulator transition [30].
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