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Smooth or shock: Universality in closed inhomogeneous driven single file motions

Tirthankar Banerjee 1,2,* and Abhik Basu3,†

1Instituut voor Theoretische Fysica, KU Leuven, 3001 Heverlee, Belgium
2LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay cedex, France

3Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Calcutta 700064, India

(Received 22 October 2018; revised manuscript received 1 August 2019; published 8 January 2020)

We study the nonequilibrium steady states in a unidirectional or driven single file motion (DSFM) of a
collection of particles with hard-core repulsion in a closed system. For driven propulsion that is spatially
smoothly varying with a few discontinuities, we show that the steady states are broadly classified into two
classes, independently of any system detail: (i) when the steady state current depends explicitly on the conserved
number density n, and (ii) when it is independent of n. This manifests itself in the universal topology of the phase
diagrams and fundamental diagrams (i.e., the current versus density curves) for DSFM, which are determined
solely by the interplay between two control parameters n and the minimum propulsion speed along the chain.
Our theory can be tested in laboratory experiments on driven particles in a closed geometry.
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I. INTRODUCTION

Driven single file motion (DSFM) implies unidirectional
particle movement along narrow channels where the particles
cannot cross each other due to hard-core repulsion. It is an
inherently nonequilibrium process that consumes energy for
propulsion. We are particularly interested in DSFM with spa-
tially nonuniform propulsion and finite resources, i.e., fixed
available number of particles. This should be relevant in wide-
ranging systems, e.g., vehicular or pedestrian movement along
closed networks of roads with bottlenecks having varying
strength, closed urban transport networks with enforced speed
variations [1,2], and spatially varying electric fields in closed
arrays of quantum dots [3]. This study could form the basis
for further research on weakly number-conserving quasi-one-
dimensional (1D) transport models where particle number
conservation approximately holds at timescales shorter than
any nonconserving processes, e.g., ribosome translocations
along closed mRNA loops with pause sites (for which ribo-
somes are typically reinitiated in translocation and breaking of
ribosome number conservation is likely to have an effect only
at relatively large timescales) [4–6]. It should also be useful
in studies on the effects of quenched disorder on asymmetric
exclusion processes with finite resources [7].

The general goal of this work is to theoretically under-
stand the classes of steady states in spatially nonuniform
systems with restricted one-dimensional (1D) motion with
finite resources, and to elucidate their universal nature. For
this, we construct a minimal theory for DSFM with position-
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dependent propulsion speed and hard-core repulsion in closed
geometries, with the total number of particles Ntot being
conserved. This theory adequately describes the interplay
between inhomogeneity and conservation laws, and reveals
the generic universal nature of the nonequilibrium steady
states. It applies to all in vitro or in vivo systems where
individual particles are nonactive or weakly active, i.e., do not
actively push or pull the neighbors strongly and are under-
going quasi-1D motion, without mutual passage and having
number conservation. It can also be useful and serve as a the-
oretical benchmark for quasi-1D systems with weak particle
nonconservation, e.g., binding-factor-mediated enhancement
of the probability of loop formation in mRNA in eukaryotes
[8]. The results can be tested in carefully designed in vitro
experiments on the collective motion of driven particles along
a nonuniform closed track.

We focus on the steady state densities in DSFM and their
dependencies on Ntot and position-dependent propulsion. In
order to extract generic results from a minimal description
without losing the essential physics, we model DSFM by the
well-known 1D totally asymmetric simple exclusion process
(TASEP), where each site can accommodate at most one par-
ticle that can hop only in one direction if the neighboring site
is empty. TASEP with open boundaries is a simple model for
nonequilibrium phase transitions in 1D open systems [4,9,10].

The rest of the paper is organized in the following manner.
In Sec. II, we present our principal results. Then in Sec. III,
we introduce the model. We evaluate the steady state densities
using standard mean-field methods (along with corresponding
Monte Carlo simulation results) in Sec. IV. Finally, in Sec. V
we summarize and conclude.

II. PRINCIPAL RESULTS

In this article, we study closed TASEP with N sites as a
model for DSFM. Space-dependent propulsion is described
by quenched hopping rates that are spatially smoothly vary-
ing with a finite number of discontinuities having single or
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multiple point minima. The main results are as follows: (i) in-
dependently of the details of the heterogeneous hopping rates,
there are generically two classes of steady states delineated
by the steady state current J: (a) when J depends on mean
density n = Ntot/N (0 < n < 1) explicitly (hereafter smooth
phase), and (b) when J is independent of n, characterized by a
phase separation with localized (LDW) or delocalized (DDW)
domain walls (hereafter shock phase); (ii) the phases and the
reentrant transitions between them are controlled by the in-
terplay between n and the global minima qmin of the position-
dependent propulsion speed; (iii) moving shocks appear only
for multiple global minima in propulsion speed; multiple local
minima with only one global minimum only produce a local-
ized shock; and (iv) while accumulation of particles where the
hopping rate is low is naively expected, we show below that
the position of the peak of the density in the shock phase can
actually be anywhere in the system, being controlled by n.

This article shows how the general concept of univer-
sality, well developed for equilibrium systems, applies for
spatially varying steady state density profiles in driven inho-
mogeneous systems with number conservation. This remains
hitherto unexplored. More specifically, the topology of the
phase diagrams plotted as functions of n and qmin and the
associated fundamental diagrams (i.e., the J vs n plots) is
argued to be universal, independently of the precise hopping
rate functions; see Fig. 1.

III. MODEL

The model consists of a closed 1D lattice, and the particles
execute unidirectional motion from one site to its neighbor,
subject to exclusion. The model has a hopping rate qi � 1
at a site i. The dynamics clearly conserves the total particle
number Ntot = ∑N

i ni, where ni is the occupation of site i.
The dynamics of TASEP is formally given by rate equations
for every site, which are not closed [11]. In mean-field theory
(MFT), we write down the dynamical equations for TASEP
in closed forms, amenable to analytical treatments. We label
the sites by x = i/N ; in the thermodynamic limit N → ∞, x
effectively becomes a continuous variable confined between
0 and 1. In this parametrization, the hopping rate function
is given by 0 < q(x) � 1; we assume q(x) to be piecewise
continuous, smooth, slowly varying functions of x with a few
point minima. Further, we define ρ(x) = 〈ni〉 as the density
at x; here 〈. . .〉 refers to temporal averages in the steady
states. Studies on quenched heterogeneous TASEP have a long
history; see, e.g., Refs. [12–15] for some studies on different
aspects of heterogeneous TASEP. Our model complements
these existing works, and primarily investigates the notion of
universality not discussed elsewhere.

IV. STEADY STATE DENSITIES

In the steady states

∂ρ

∂t
= − ∂

∂x
[q(x)ρ(1 − ρ)] = 0, (1)

in MFT over a range of x in which q(x) is smooth [16]. This
gives

q(x)ρ(x)[1 − ρ(x)] = J, (2)
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FIG. 1. (a) Illustrations of universal topology of the phase dia-
grams in the qmin-n plane: (i) q(x) = (x − 0.5)2 + qmin = q1(x), and
(ii) (inset) q(x) = 0.5x2 + qmin = q2(x) (with n = [0, 1] and qmin =
[0, 0.75]). The range of qmin is chosen in such a way that q(x)
does not exceed unity anywhere. Magenta lines and blue points are
overlapping MFT and MCS results, respectively. (b) Fundamental
diagrams (J vs n) for q1(x) = (0.5 − x)2 + 0.5 (dashed curves) and
q2(x) = 0.5x2 + 0.25 (solid curves) as chosen above for (a). The
different phases that exist on the fundamental diagrams are marked.
Both curves have the same form (see text). Note the saturation of
current J with respect to the density n in the shock phase. Curves
and points represent MFT and MCS results, respectively.

where J , a constant (yet unknown), is the steady state current.
Equation (2) has two spatially nonuniform solutions ρ+(x)
and ρ−(x):

ρ+(x) = 1
2 [1 +

√
1 − 4J/q(x)] > 1

2 , (3)

ρ−(x) = 1
2 [1 −

√
1 − 4J/q(x)] < 1

2 , (4)

for all x. Clearly, both ρ+(x) and ρ−(x) are smooth functions
for all x, except where q(x) itself is discontinuous. Since
ρ(x) > 0 for all x, 1 − 4J

q(x) � 0. Thus

J � q(x)/4, (5)
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everywhere. The maximum allowed value of J is thus inde-
pendent of n:

Jmax = qmin/4, (6)

whence ρ+(x0) = ρ−(x0); x = x0 is the location of q; see
Ref. [17] for analogous result in a disordered exclusion model.

We now outline the derivation of the results announced
at the beginning of this article and the principles for the
construction of Fig. 1, followed by some illustrations of the
phases for some representative q(x). Since ρ+(x) [ρ−(x)] >

[<] 1/2 for all x except at isolated points x0 where q(x) =
qmin, for a given q(x) if n is sufficiently close to 1/2, ρ(x) must
be a combination of ρ+(x) (> 1

2 ) and ρ−(x) (< 1
2 ). This is the

shock phase mentioned above. In contrast, when n approaches
0, there are only a few particles in the system and ρ(x) =
ρ−(x) in the steady state throughout the system. Analogously,
for n approaching unity, ρ(x) = ρ+(x) in the steady state.
The smooth phases with ρ(x) = ρ−(x) < 1/2 and ρ(x) =
ρ+(x) > 1/2 are spatially nonuniform, and hence generalize
the spatially uniform low-density (LD) and high-density (HD)
phases, respectively, of TASEP with open boundaries [16].
Thus, a reentrant smooth-shock-smooth nonequilibrium phase
transition is expected as n rises from 0 to 1 for any given q(x).
The precise boundaries between these phases for a given n
and q(x)—which will tell us for a given q(x) how close n
must be to 1/2 for the smooth-shock transition—are obtained
by imposing particle number conservation on (3) and (4) and
using (6); see below.

Current J is fixed by the particle number conservation:
∫ 1

0
ρa(x) = n, a = +,−. (7)

From (3) and (4), the maximum (minimum) of ρ−(x) [ρ+(x)]
coincides with the minimum of q(x), a fact borne out by our
Monte Carlo simulation (MCS) studies: qmin effectively acts
as a bottleneck, and as a result, particles tend to accumulate
behind it (see below).

As n increases from zero, J rises and eventually reaches
Jmax. For J = Jmax, ρ+(x0) = ρ−(x0), where x0 is the location
of qmin. On increasing n further, the additional particles are
accommodated by representing ρ(x) as a combination of
ρ−(x) and ρ+(x) which meet smoothly at x0. Since particles
should accumulate behind the bottleneck at x0, we expect that
additional particles will go over to the high-density solution
represented by ρ+(x). Since we have a closed system, the two
solutions must meet at another point xw, such that ρ+(xw ) >

ρ−(xw ) [since ρ+(x) = ρ−(x) only at x = x0], leading to a
discontinuous jump in the form of a localized domain wall
(LDW) in ρ(x) at xw, thus giving rise to the shock phase, with
a jump ρ given by

ρ+(xw ) − ρ−(xw ) = ρ, (8)

controlled by n and the functional form of q(x). As more
particles are added, xw shifts to make the region of exis-
tence for ρ+(x) larger and ρ−(x) smaller. This indeed leaves
J = Jmax = qmin/4 unchanged. Thus the current in the shock
phase saturates to its maximum value Jmax. This continues till
ρ+(x) spans the full system. Thus, as n rises from the low to
moderate values, a smooth-to-shock transition is encountered.

Interestingly, independently of the form of q(x) this transition
is reentrant—since, as n rises further, the system moves from
shock phase to smooth phase again, with ρ+ now being
the only valid solution. This reentrant transition can also be
understood from the particle-hole symmetry of the model.
Since particle density ρ+(x) can be interpreted as the hole
density 1 − ρ+(x) = ρ−(x), if ρ−(x) is a steady state solution
for overall particle density n, ρ+(x) is a steady state solution
for particle density 1 − n. This picture remains valid even
when there are additional local minima (but only one global
minimum qmin at x0): Jmax is still controlled solely by qmin

[Eq. (6) above], with ρ+(x0) = ρ−(x0); the other local minima
having no effect on Jmax are effectively screened in any steady
state current measurements in the shock phase. However, the
form of the LDW, i.e., the functional form of ρ(x), depends
on any local minima through its dependence on the full form
of q(x).

Assuming only one global minimum for q(x), at the phase
boundary between smooth and shock phases, J = Jmax =
qmin/4 and ρ(x) = ρ−(x) (for n < 1/2) for all x, or for n >

1/2, ρ+(x) for all x. Thus

∫ 1

0
dx ρ±(x, Jmax) =

∫ 1

0
dx

1

2

[
1 ±

√
1 − qmin

q(x)

]
= n (9)

gives the quantitative dependence of n on qmin for the reentrant
transition, or equivalently, the boundaries between smooth
and shock phases in Fig. 1(a). As our arguments above are
independent of the precise form of q(x), the topology of the
phase diagrams in Fig. 1 (top) should remain independent
of the precise forms of q(x) having the same qmin. This is
the universality in DSFM mentioned at the beginning that is
also manifest in the fundamental diagrams in Fig. 1 (bottom),
obtained from (2) and (7). The results in Fig. 1 are also
obtained from the MCS studies, which corroborate the MFT
predictions closely. This holds true even if there are multiple
global minima with value qmin; in this case, shock phases
correspond to moving shocks (see below). Notice that the
topology of the phase diagram and the corresponding funda-
mental diagram are the same as those obtained in Ref. [18],
where a single slow site controls the current, establishing an
equivalence between the model of Ref. [18] with a single slow
site and our model here. The strength of the single slow site in
the model of Ref. [18] corresponds to qmin here.

We now illustrate the phases with a few representative
choices for q(x). See Fig. 2 for a plot of ρ(x) vs x in the
smooth phase; see also Figs. 7–9 in Appendix C for plots of
ρ(x) with different q(x) in the smooth phase; good agreements
between MFT and MCS results are evident. Further see Fig. 3
for a plot of the density in the shock phase for a choice of q(x),
again showing strong agreements between MCS and MFT
results; see also Fig. 10 in Appendix C.

Notice that the peak of the density in the smooth phase in
Fig. 2 coincides with the location of qmin. As argued above,
this can be understood from the form of ρ−(x) as given in
(4)—clearly, the maximum of ρ−(x) must coincide with the
minimum of q(x). In contrast, the location of the extrema of
the density profiles in the shock phase have no such relation
with the minimum of q(x). Instead, as we note in Fig. 3, ρ(x)
is continuous at the location x0 of qmin, so long as q(x) itself
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FIG. 2. Plot of ρ(x) vs x in the LD phase (n = 0.2). Magenta
line indicates the hopping rate function q(x) = (x − 0.5)2 + 0.5. Red
continuous line and blue points denote ρ−(x), respectively, from
MFT and MCS studies (see text). Excellent agreement between MFT
and MCS results is clearly visible. We have used N = 2000.

is continuous at x0 (since ρ+ = ρ− at x0). If however, q(x)
itself is discontinuous at x0, the density is also discontinuous
there; see Fig. 10 (right) in Appendix C. In both these cases,
the density has a discontinuity elsewhere whose location is
controlled by n for a given q(x) with q(x) being continuous
there. This is one of the principal results in this article.
Furthermore, given that ρ+(x) reduces and ρ−(x) grows when
q(x) grows in x [see Eqs. (3) and (4) above], the density in the
shock phase, being a linear combination of ρ+(x) and ρ−(x),
can have a peak anywhere in the system that is controlled by n.

We further illustrate the occurrence of a single LDW in the
shock phase with q(x) having multiple local but one global
minimum in Fig. 4, with ρ+(x) = ρ−(x) only at the location of
the global minimum of q(x), in agreement with the theoretical
predictions. Thus, experimental measurements of the steady
state densities will not reveal the actual existence of other
local minima.

When there are multiple global minima, the above-
mentioned theory of LDW breaks down and very different
physics emerges in the shock phase. For instance, consider
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FIG. 3. Plot of ρ(x) vs x in the shock phase with n = 0.7, N =
2000. Magenta line indicates q(x) = 1 − x, 0 � x < 0.5, and q(x) =
x, 0.5 � x < 1. Red line and blue points, respectively, represent
MFT and MCS results for ρ(x).
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FIG. 4. One LDW with n = 0.6, N = 2000 and q(x) = 1 − x,
x = [0, 0.25]; q(x) = 0.5 + x, x = [0.25, 0.5]; q(x) = 2 − 2x, x =
[0.5, 0.75]; q(x) = 2x − 1, x = [0.75, 1] with two local minima of
q(x) at x = 0.25 and x = 0.75. Excellent agreement between MFT
and MCS is observed.

q(x) to have only two global minima at diametrically opposite
points x1 and x2: q(x1) = q(x2) = qmin; see Fig. 5 for such a
choice of q(x). Thus there are now two effective bottlenecks
at x1 and x2 which split the ring into two identical segments,
say TA and TB [19,20], of equal length. Furthermore, from (3)
and (4) we have

ρ−(x1) = ρ+(x1) = ρ−(x2) = ρ+(x2). (10)

In each of TA and TB, MFT for the shock phase applies.
Therefore, two domain walls are expected. Particle number
conservation then can only yield a single relation between
the two domain wall positions and n, and cannot determine
both xw1 and xw2 separately. This means that a shift in xw1

can be balanced by an equivalent reverse shift in xw2 that still
satisfies particle number conservation. Due to the inherent
stochasticity of the system, all possible solutions of xw1 and
xw2 that are consistent with particle number conservation are
visited by the system, if we wait long enough. This leads
to two DDWs. Under long-time averages, envelopes of the
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FIG. 5. Plot of ρ(x) vs x showing two DDWs; n = 0.5. Magenta
lines indicate q(x) = 1 − x, 0 � x < 0.5, and q(x) = 1.5 − x, 0.5 �
x < 1; red line and blue points, respectively, are MFT and MCS
results for DDW, which agree with each other.
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FIG. 6. Kymograph for n = 0.5, N = 800, q(x) = 1 − x for 0 �
x < 0.5; q(x) = 1.5 − x for 0.5 � x < 1. See [21] for technical de-
tails of obtaining kymographs of the same nature in closed TASEP
systems.

moving DDWs will be observed; see Fig. 5 and Appendix A
for detailed calculations.

As the DDWs in Fig. 5 move, TA and TB exchange particles.
Particle number conservation ensures that when a particle
enters (leaves) TA, it must necessarily leave (enter) TB, leading
to perfect synchronization of the DDWs in TA and TB; see
Appendix B for additional discussions and an associated
kymograph in Fig. 6.

If there are more than two global minima of q(x), then
there will be as many subchannels (TA, TB, TC, . . .), and thus,
as many DDWs. However, the argument for synchronization
breaks down in such cases; thus there should be no synchrony
in movement between any two of the DDWs; see Fig. 11 (left)
[and the corresponding kymograph Fig. 11 (right)] and related
discussions in Appendix B.

The shocks in open TASEPs, which are always delocalized,
appear when the entry (α) and exit (β) are equal and not
exceeding 1/2. This is equivalent to Jin = Jout, where Jin and
Jout are, respectively, the currents determined by the entry
side and exit side boundaries. The shock phase of the present
model is analogous to the shocks in open TASEPs. To see this
we note that our ring model can be viewed as an open TASEP
with effective entry [αe = ρ−(x0)] and exit [βe = 1 − ρ+(x0)]
rates that are joined at x0, the location of qmin (assuming a
single global minimum) [19–21]. From the condition of the
shock phase, Jin = Jout = Jmax = qmin/4 holds automatically.
That we obtain an LDW here as opposed to a DDW in an
open TASEP under equivalent conditions is due to the strict
particle number conservation here; see Refs. [7,18,19,21].
When there are two or more global minima of q(x), the system
can be thought to consist of those many TASEPs joined
together to form a ring; see Refs. [19,21]. The conditions for
the shock phase are satisfied in all these TASEP segments
simultaneously, leading to formation of a domain wall in
each of them. As explained in Refs. [19,21], in this situation
number conservation cannot pin the domain walls completely
giving rise to DDWs; see also Appendices A and B. We lastly
note one point of dissimilarity between the shocks here and
the DDWs in an open TASEP: for the latter, the current is
less than its maximum value, where as in the shock phase

here, the current necessarily saturates at its maximum value
of Jmax.

V. SUMMARY AND OUTLOOK

We have thus developed the theory for DSFM in a closed
system with position-dependent propulsion by studying a
closed TASEP with quenched hopping rates q(x). This theory
reveals the universal form of the phase diagrams and the
fundamental diagrams of the model, for generic smooth q(x)
with a finite number of discontinuities and global minimum,
but independent of the precise forms for q(x). Our theory
is sufficiently general and applies to any smoothly vary-
ing q(x) with a finite number of discontinuities; it gener-
alizes the analyses in Ref. [12]. From the perspectives of
nonequilibrium systems, these results generalize the studies in
Refs. [13,18,19,21,22]. In the more complex situation where
individual particles can actively push (or pull) its neighbor,
thus only dynamically modulating the effective hopping rate,
we expect our results to remain valid for weak activity. For
strong activity, competition between background heteroge-
neous hopping and the active processes will determine the
steady state, whose full analysis is beyond the scope of the
present work. We have here studied smooth q(x) with a small
number of discontinuities. There are in vivo situations where
q(x) could be rapidly fluctuating, e.g., the DNA strands [23]. It
would be interesting to study to what degree our results remain
valid for rapidly fluctuating q(x).

Lastly, MFT developed here neglects spatial density cor-
relations, which is an approximation. This may be improved
by systematically including two-point correlations; see, e.g.,
Ref. [15]. It has been shown that extended particles instead
of point particles significantly affect the steady state densities
of an open TASEP with site-dependent hopping rate; see
Refs. [15,24]. It will be interesting to study this effect in a
closed TASEP.

This theory may be verified in model experiments on
the collective motion of driven particles with light-induced
activity [25] in a closed narrow circular channel [26,27].
Unidirectionality of the motion can be ensured by suppressing
rotational diffusion, e.g., by choosing ellipsoidal particles
with the channel width shorter than the long axis of the
particle everywhere, or by using dimer particles. Propulsion
speed can be tuned by applying patterned or spatially varying
illumination [25]. Steady state densities can be measured
by microscopy with image processing. While technical chal-
lenges are anticipated in setting up appropriate experimental
arrangements, we hope this will be realized in the near future.
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APPENDIX A: DENSITY PROFILES FOR
DELOCALIZED DOMAIN WALLS

We calculate here the steady state density profiles when
q(x) has two symmetrically placed global minima of same
value. The system then can be considered to consist of two
TASEP chains of equal size [19], say TA (with 0 � x � 1/2)
and TB (with 1/2 � x � 1), each spanning from one global
minimum of q(x) to the other. While the total particle number
in the ring is conserved, the number of particles in each of
TA and TB can fluctuate. We closely follow Ref. [28] in our
analysis below.

Now consider one delocalized domain wall (DDW) in each
of TA and TB. Let xA

w and xB
w be the instantaneous positions of

the DDWs in TA and TB, respectively, and let the respective
heights be �A(xA

w ) and �B(xB
w ). We note here that the DDW

heights are explicit functions of their positions, since the
steady state density is not uniform for an arbitrary q(x).

Now, increasing the number of particles in TA by 1 would
imply shifting xA

w by an amount δxA
w = −1

L�A
. Similarly, de-

crease of a particle would mean δxA
w = 1

L�A
. In order to

understand why this is so, we note that the “height �A of the
domain wall (DW) at xA

w” means that the �A number of excess
particles are needed to fill up one lattice spacing (= 1

L ), or to
cause one lattice spacing leftward or rightward movement of
the DW (and thus, the above values of δxA

w). Let us now note
that there are two basic processes which can alter the number
of particles individually in TA and TB, i.e., if a particle enters
TA through its left boundary (equivalent to a particle leaving
TB through its right boundary) and vice versa.

For the following analysis, we will focus on TA. Let
P(xA

w, t ) be the probability of finding a DW at xA
w at time

t . For a given xA
w, one can evaluate xB

w at time t , uniquely,
using total particle number conservation. The transition rate
for a particle entering TA through the left boundary can be
written as WL = Jin = q(x = 0)αA

e (1 − αA
e ), δxA

w = −1
L�A

. Sim-
ilarly, the transition rate for the particle leaving through the
right boundary is given by WR = Jout = q(x = 1/2)βA

e (1 −
βA

e ), δxA
w = 1

L�A
. Here, αe are βe are the densities at x = 0 and

x = 1/2, respectively, in TA, e.g., αe = ρ(x = 0), etc.
With these transition rates, we can calculate the average

shift or the expectation value of the change, 〈δxA
w〉, which is

given by the product of the increment (with sign) and the sum
of the different transition rates:

〈
δxA

w

〉 = 1

L�A
(
xA
w

) [Jout − Jin]. (A1)

It should be noted here that the domain wall itself performs
a random walk about its mean position, xA

w. For the fixed point
of the random walk, i.e., the value of xA

w for which 〈δxA
w〉 = 0,

we obtain

Jout − Jin = 0, (A2)

the well known condition for formation of domain walls. In
order to calculate the steady state profiles of the DDWs, we
need to study the fluctuations in the DW positions that we do
below.

Using the expressions for the transition rates defined above,
we can write down the master equation for P(xA

w, t ), the

probability of finding the DW at xA
w at time t :

dP
(
xA
w, t

)
dt

= �δxA
w

[
P
(
xA
w + δxA

w, t
)
W

(
xA
w + δxA

w → xA
w

)
− P

(
xA
w, t

)
W

(
xA
w → xA

w + δxA
w

)]
. (A3)

To proceed further, we employ a Kramers-Moyal expansion
[29] of the master equation above around xA

w, up to second
order in δxA

w. This gives

dP
(
xA
w, t

)
dt

= − ∂

∂y
[a(y)P(y, t )] + 1

2

∂2

∂y2
[b(y)P(y, t )], (A4)

where y = δxA
w, a(y) = �yyW (xA

w + δxA
w → xA

w ), and b(y) =
�yy2W (xA

w + δxA
w → xA

w ). Using the already known values for
W and δxA

w, and Eq. (A2), we arrive at the following results for
a and b:

a
(
xA
w

) = 1

L�A
(
xA
w

) [ − αA
e

(
1 − αA

e

) + βA
e

(
1 − βA

e

)] = 0

(A5)

and

b
(
xA
w

) = 1

L2�2
A

(
xA
w

) [
αA

e

(
1 − αA

e

) + βA
e

(
1 − βA

e

)]
> 0.

(A6)

Thus up to this order

dP(x, t )

dt
= 1

2

∂2

∂x2
[b(x)P(x)]. (A7)

Since Jin = Jout, the DW position effectively follows the
detailed balance condition. This means the fluctuations in
the DW position should follow an equilibrium distribution
in the steady state. Hence, the probability current, given by
JDW(x) = ∂

∂x [b(x)P(x)] = 0. This yields

P(x) = C

b(x)
, (A8)

where C is a constant which can be evaluated by the normal-
ization condition on P(x).

Construction of the density profiles

We can now construct the density profile ρ(x) with the
knowledge about P(x). Since the long-time-averaged steady
state density involves averaging over P(x), we argue that

∂ρ

∂x
= AP(x), (A9)

where A is a constant of proportionality. Clearly from
Eq. (A9), we can see that if P(x) = constant, as in the case
for a DDW in an open TASEP, ρ(x) varies linearly with x, a
known result. The constant A in this example can be evaluated
by the boundary conditions. In yet another example, for an
LDW as P(x) ∝ δ(x − xw ), ρ(x) is a Heaviside 	 function
according to Eq. (A9), whose height can be determined using
the boundary conditions. We now obtain the DDW steady state
density profiles.
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FIG. 7. (a) Plot of ρ(x) vs x in the smooth phase for q(x) = 1 − x, 0 � x < 0.5; q(x) = x, 0.5 � x < 1 (purple continuous line), n = 0.8.
(b) Plot of ρ(x) vs x in the smooth phase for q(x) = (x − 0.5)2 + 0.5 (purple continuous line), n = 0.8. (c) Plot of ρ(x) vs x in the smooth
phase for q(x) = 0.5x2 + 0.5 (purple continuous line), n = 0.8. Continuous magenta line and overlapping blue points represent, respectively,
MFT and MCS data in each plot.

By using Eq. (A9) we write

ρ(x) = Ã
∫

dx

b(x)
+ D = A1

∫
dx[ρ+(x) − ρ−(x)]2 + D,

(A10)

where, Ã, A1, and D are constants, and we have substituted
the value of the DW height �A(x) = ρ+(x) − ρ−(x) in b(x).
Using already derived expressions for ρ−(x) and ρ+(x) above,
we finally arrive at the following expression for the DDW

profile,

ρ(x) = A1

∫
dx

(
1 − qmin

q(x)

)
+ D. (A11)

The value of the constants can be fixed using the boundary
conditions on ρ(x). But there is one more undetermined
quantity that we are yet to address. The DDW in general
has a certain extent of wandering in TA that is less than the
length of the channel, depending on the number density. We
can have two situations: one where ρ(x) shows a mix of
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FIG. 8. (a) Plot of ρ(x) vs x in the smooth phase for q(x) = 1 − x, 0 � x < 0.5; q(x) = x, 0.5 � x < 1 (purple continuous line), n = 0.2.
(b) Plot of ρ(x) vs x in the smooth phase for q(x) = 1 − x, 0 � x < 0.5; q(x) = 1.5 − x, 0.5 � x < 1 (purple), n = 0.1. Continuous magenta
line and overlapping blue points represent, respectively, MFT and MCS data in each plot.
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FIG. 9. Plot of ρ(x) vs x in the smooth phase for q(x) =
1 − x, 0 � x < 0.5; q(x) = 1.5 − x, 0.5 � x < 1 (purple), n = 0.9.
Continuous magenta line and overlapping blue points represent,
respectively, MFT and MCS data.

LD and DDW profiles, or one where it is a mix of DDW
and HD profiles. Therefore, within x = [0, 1/2], we can have
either a situation with an LD phase from x = 0 to, say, x = x,
followed by the DDW from x = x to x = 1/2, or the situation
with the DDW from x = 0 to x = x, followed by an HD
phase from x = x to x = 1/2. Now, what determines the value
of x is the condition

∫ 1/2
0 ρA(x)dx = n, where ρA(x) is the

complete density profile for TA and n is the number density
(notice that TA and TB are identical, and both must have the
same average number density). If the DDW does not span
the entire TA, an additional unknown parameter x must be
determined, which we fix numerically by using the particle
number conservation. This in turn yields the complete density
profile. We use this scheme to obtain ρ(x) for q(x) = 1 − x for
x = [0, 0.5] and q(x) = 1.5 − x for x = [0.5, 1]; see Fig. 5 in
the main text. Good agreement with the MCS result is clearly
visible, establishing our analytical framework.

APPENDIX B: SYNCHRONIZATION OF DDW MOVEMENT

We now show that the two DDWs formed when q(x) has
two global minima placed at diametrically opposite points
in the ring move with perfect synchrony. To do that we first

consider the two basic microscopic processes in the dynamics
that lead to the movement of individual domain walls:

(i) A particle leaves TA and enters into TB.
(ii) A particle leaves TB and enters into TA.
Let δxA

w and δxB
w be the shifts in the instantaneous positions

xA
w and xB

w of the domain walls in TA and TB, respectively, due
to the processes mentioned above. Jumps in the densities at xA

w

and xB
w are given by

ρ+
(
xA
w

) − ρ−
(
xA
w

) = ρA, ρ+
(
xB
w

) − ρ−
(
xB
w

) = ρB. (B1)

In general, ρA �= ρB.
Since αe = βe for both TA and TB, both processes (i) and

(ii) take place with equal rate W = αe(1 − αe). By process
(i) above, δxA

w = −W L−1ρ−1
A , δxB

w = W L−1ρ−1
B . Similarly,

by process (ii) above, δxA
w = W L−1ρ−1

A , δxB
w = −W L−1ρ−1

B .
Thus,

〈
δxA

w

〉 + 〈
δxB

w

〉 = 0 (B2)

identically. This means 〈δxA
w〉 = −〈δxB

w〉, which is the essence
of synchronization of the movements of the two DDWs in
TA and TB. This synchronization manifests pictorially in a
kymograph given in Fig. 6.

The above argument for synchronization breaks down
when the number of global minima of q(x), which is same as
the number of TASEP segments that make up the ring system,
exceeds two. Now imagine q(x) to have N > 2 global minima
of value qmin, placed at equal spacing. Thus the ring system
can now be considered to be composed of N TASEPs. The
microscopic dynamical process for each TASEP consists of
receiving a particle from the previous TASEP and releasing a
particle to the next one. Clearly, the general analog of (B2)
would be

〈
δxA

w

〉 + 〈
δxB

w

〉 + 〈
δxC

w

〉 + · · · = 0. (B3)

This ensures that for any two successive TASEP segments the
sum of the shifts of the corresponding DDW is no longer zero,
leading to the loss of synchronization in the movement of the
DDWs in any two successive TASEP segments.
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FIG. 10. (a) Plot of ρ(x) vs x in the shock phase for q(x) = (x − 0.5)2 + 0.5 (purple continuous line), n = 0.6. (b) Plot of ρ(x) vs x
in the shock phase for q(x) = 1 − 0.5x2 (purple continuous line), n = 0.5. Continuous magenta line and overlapping blue points represent,
respectively, MFT and MCS data in each plot.
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FIG. 11. (a) MCS plot (blue dashed lines) of ρ(x) vs x for q(x) = 1 − 0.5 cos2(4πx), n = 0.5, N = 1200. The red solid lines and the blue
dashed lines represent q(x) and MCS data for ρ(x), respectively. (b) Kymograph for q(x) = 1 − 0.5 cos2(4πx), n = 0.5, N = 600. Existence
of four DDWs is clearly visible which move without any synchronization between any two of them.

APPENDIX C: DENSITY PROFILES

We show below some representative plots of ρ(x) vs x
from MCS studies along with MFT predictions. MCS studies
have generally been performed with N = 2000 with random
sequential updates (except for Fig. 5, where random updates
have been used for reasons of limitations on computational
resources).

1. Density profiles in the smooth phase

Here we show plots of ρ(x) vs x in the smooth phase with
various choices for q(x); see Figs. 7–9.

2. Density profiles in the shock phase

Here we present a few illustrative examples of the steady
state density profiles in the shock phase; see Fig. 10.

3. Density profile in the shock phase with four DDWs

Here we show results for the density profile when there are
four DDWs; see Fig. 11.
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