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Superstatistical approach to air pollution statistics
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Air pollution by nitrogen oxides (NOx) is a major concern in large cities as it has severe adverse health effects.
However, the statistical properties of air pollutants are not fully understood. Here, we use methods borrowed
from nonequilibrium statistical mechanics to construct suitable superstatistical models for air pollution statistics.
In particular, we analyze time series of nitritic oxide (NO) and nitrogen dioxide (NO2) concentrations recorded
at several locations throughout Greater London. We find that the probability distributions of concentrations have
heavy tails and that the dynamics is well described by χ2 superstatistics for NO and inverse-χ 2 superstatistics
for NO2. Our results can be used to give precise risk estimates of high-pollution situations and pave the way to
mitigation strategies.
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I. INTRODUCTION

Complex driven nonequilibrium systems with timescale
separation are often well described by superstatistical meth-
ods, i.e., by mixing several dynamics on distinct timescales
and constructing effective statistical mechanics models out of
this mixing [1,2]. The intensive parameter β that fluctuates
in a superstatistical way can be an inverse temperature of
the system, a fluctuating diffusion constant, or simply a local
variance parameter in a given time series generated by the
complex system under consideration. This formalism is in par-
ticular relevant for heterogeneous spatiotemporally varying
systems and has been successfully applied to many areas of
physics and beyond, most notably Lagrangian turbulence [3],
defect turbulence [4], wind velocity fluctuations [5,6], share
price dynamics [7], diffusion of complex biomolecules [8],
frequency fluctuations in power grids [9], rainfall statistics
[10,11], and many more. Here, we apply a superstatistical
analysis to an important topic of high relevance, namely, the
spatiotemporally dynamics of air pollution in big cities. Our
main example of pollutants considered in the following are
NO and NO2, but the method can be similarly applied to other
substances.

NO and NO2 are examples of nitrogen oxides (NOx),
which are gaseous air pollutants that are primarily discharged
through combustion [12]. In urban areas, the main cause of
this is through automobile emissions [13]. These chemicals
have been shown to aggravate asthma and other respiratory
symptoms and increase mortality. Further, short-term expo-
sure to NO2 has been shown to correlate with ischemic and
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hemorrhagic strokes [12,14,15]. While NO is a very important
substance within Earth’s ecosystem, for example, regulating
the development in plants and acting as a signaling hormone
in certain processes in animals, it can also cause severe
environmental damage in high concentrations [16–18]. NO
may form acids, e.g., by chemically mixing with water (H2O)
to form nitric acid (HNO3), or reacting further to NO2 [19] it
can cause acid rain [15]. Though NOx are not thought to be
carcinogenic, they indicate the presence of other harmful air
pollutants [13].

The data analyzed here were taken from the publicly
available London Air Quality Network (LAQN) website [20].
The site provides readings of pollutant levels at different lo-
cations throughout Greater London at different time intervals,
with the 15-min interval data analyzed here. Inspecting the
measured concentration time series for both NO and NO2

reveals that both pollutants’ concentrations vary on multiple
timescales (see Fig. 1).

II. ANALYSIS OF NO DATA

Concentrating on the case of NO for now, we notice that
the probability distribution of the measured concentration
exhibits power-law tails (see Fig. 2). The distribution is well
fitted by a q-exponential [21] of the form

p(u) = (2 − q)λq[1 + (q − 1)λqu]
1

1−q , (1)

where u are the concentration levels (μg/m3) of the pollutant,
and the q and λq values are parameters. q can be regarded as
an entropic index [21–23] and it is related to λq and the mean
μ by

λq = 1

μ(3 − 2q)
(2)

(see Appendixes A and B for more details).
The basic idea of the superstatistical modeling approach

is that a given time series, generated by a complex driven
nonequilibrium system, obeys a stochastic differential equa-
tion (SDE) where the parameters of the SDE change randomly
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FIG. 1. The concentration levels vary on several distinct timescales. (a) We display the concentration of NO, recorded at the Sir John Cass
School location (London), measured in 15-min intervals. The inset reveals large variations within 1 month. (b) We plot the concentration of
NO2, recorded at the North Street location (London), measured in 15-min intervals. The inset again gives the concentrations for 1 month. For
both pollutants we note seasonal changes, weekly changes, and intermittent fluctuations.

as well, but on a much longer timescale [24]. In our case,
the concentration time series, while being q-exponentially
distributed as a whole, appears to be nonstationary, in the
sense that it can be divided into shorter time slices, of length
T , that each have locally an exponential density with different
relaxation constant λe each (see Fig. 3). These changes in the
pollutants statistics make sense due to the changing environ-
ment, e.g., because of changing weather conditions or traffic
flow varying from week to week and also across seasons.
Observing simple (exponential) statistics locally, while noting
heavy tails in the aggregated statistics, clearly suggests a
superstatistical description. One of the simplest local models
is based on an exponential probability distribution of the form

p(u|β ) = β exp(−βu), (3)

FIG. 2. Pollution statistics is not exponentially distributed, but
rather q-exponentially distributed. We display the histogram of the
NO data, together with the best exponential fit (green) and a q-
exponential fit (red). Also displayed are the value of the exponential
parameter λe and the q and λq parameters for the q-exponential
distribution.

where β = λe is a local relaxation parameter that fluctuates on
the larger superstatistical timescale.

We determine this large timescale by computing the aver-
age local kurtosis κ of a cell of length �t , similarly as done
in Ref. [2] for locally Gaussian distributions. We use a local
average kurtosis defined as

κ (�t ) = 1

tmax − �t

∫ tmax−�t

0
dt0

〈(u − ū)4〉t0,�t

〈(u − ū)2〉2
t0,�t

, (4)

where tmax is the full length of the time series. The notation
〈· · · 〉t0,�t indicates the expectation for the time slice of length
�t starting at t0. Assuming local exponential distributions
with kurtosis 9, we apply Eq. (4) to determine the long
timescale T as the special time length �t such that

κ (�t ) = κ (T ) = 9. (5)

We show an example of how T is calculated in Fig. 4, with
a plot illustrating how the average local kurtosis depends on
�t . Once the time slice length T is calculated, we define an
intensive parameter β for each local cell, by setting β = λe =
1/〈u〉t0,T . The distribution of this parameter, f (β ), is then
obtained from a histogram, as shown in Fig. 5(a). In good
approximation, we find β to be χ2 distributed, i.e.,

f (β ) = 1

�
(

n
2

)(
n

2β0

) n
2

β
n
2 −1 exp

(
− nβ

2β0

)
, (6)

where n is the number degrees of freedom and β0 is the mean
of β.

Integrating out the β parameter, the marginal distribution
p(u) is calculated as

p(u) =
∫ ∞

0
p(u|β ) f (β )dβ, (7)

which evaluates to

p(u) = (2 − q)λq[1 + (q − 1)λqu]
1

1−q , (8)

with

−n

2
− 1 = 1

1 − q
, (9)
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FIG. 3. NO concentrations locally follow exponential distributions. (a) We plot the NO concentration for several months in 2010, with two
periods of length �t = T ≈ 6 days highlighted, whose distributions are explored in (b) and (c). The histograms of (b) and (c) are fitted with
exponential distributions and we note their respective λe values. Note that the exponent in (b) is only one fourth of the exponent recovered in
(c), i.e., high-pollution levels are much more likely to be observed in (b), a time period in January, than in (c), a time period in June. These
different exponents quantify the observation that pollutant levels tend to be higher during the winter than during the summer (see also Fig. 1).

and
1

2
(q − 1)λq = β0

n
. (10)

Equation (8) is the q-exponential distribution, which we de-
rived from a superposition of local exponential distributions.

FIG. 4. The average kurtosis κ as given by Eq. (4) is plotted as
a function of the time window �t (blue). The crossing between the
horizontal line at κ = 9 (the kurtosis of an exponential distribution)
and the κ vs �t curve gives the value for �t = T ≈ 6.

Fitting the n parameter to find f (β ), as illustrated in
Fig. 5(a), we determine the q and λq parameters from Eqs. (9)
and (10), respectively. Inserting the χ2-distribution f (β ), we
use (7) and (8) to compute a probability density, which both
approximates the fitted q-exponential and the data very well,
successfully serving as a consistency check of the superstatis-
tical approach [see Fig. 5(b)].

III. ANALYSIS OF NO2 DATA

We already noticed different statistical behavior when in-
specting the trajectory of the NO2 data in Fig. 1, as compared
to that of NO. Following a similar procedure as for the
NO data, we find that for NO2 the aggregated distribution
is approximated by a q-Maxwell-Boltzmann distribution, of
the form

p(u) = 1

Z
u2σ 3/2

q [1 + (q − 1)σqu2]
1

1−q , (11)

where Z is the normalization factor given by

Z =
√

π�
( 5−3q

2(q−1)

)
4(q − 1)3/2�

(
1

q−1

) , (12)

and where q is related to the scale parameter σq and the mean
μ by

σq =
(

2(q − 1)3/2�
(

1
q−1

)
μ

√
π (2 − q)(3 − 2q)�

( 5−3q
2(q−1)

)
)2

(13)
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FIG. 5. The superstatistical approach consistently describes the data. (a) The distribution of local exponents of the NO data, here named β,
follows a χ 2 distribution, one of three commonly observed universality classes in general superstatistical complex systems [2]. (b) Histogram
of the NO data, together with a q-exponential distribution with fitted q and λq values (red), and a q-exponential distribution with q and λq

values derived from the parameters of the fitted χ2-distributed f (β ) (orange).

(see Appendix C for details).
Analogously to the NO case, we explain the aggregated

distribution as a superposition of simple local distributions,
here chosen as ordinary Maxwell-Boltzmann distributions.
Each local Maxwell-Boltzmann distribution is defined as

p(u) =
√

16

π
u2σ

3/2
mb exp(−σmbu2), (14)

where σmb =: β is a scale parameter.
We determine the long timescale T by varying �t so

that we locally obtain the kurtosis of a Maxwell-Boltzmann
distribution, which is given as

κ (T ) = 15π2 + 16π − 192

(3π − 8)2
≈ 3.1082 (15)

(see Appendix C for the calculation). If the β values
again follow a χ2 distribution, the superpositioned Maxwell-
Boltzmann distributions would lead to an exact q-Maxwell-
Boltzmann distribution (see Appendix C for a detailed calcu-
lation).

The results of our superstatistical analysis for the NO2 data
are displayed in Fig. 6. The χ2 distribution is only a rough fit

and the histogram of β is instead best fitted by an inverse-χ2

distribution

f (β ) = β0

�
(

n
2

)(
nβ0

2

) n
2

β− n
2 −2 exp

(−nβ0

2β

)
. (16)

This leads to a different superstatistics, compared to the
case of NO. Integrating the conditional probability p(u|β ),
as in Eq. (7) but with local Maxwell-Boltzmann distributions
p(u|β ) and an inverse-χ2 distribution f (β ), gives the marginal
distribution as

p(u) =
√

64

π

β0

�
(

n
2

)(
nβ0

2

) n+1
4

u
n+3

2 K 1−n
2

(u
√

2nβ0), (17)

where Kv (z) is the modified Bessel function of the second
order. This inverse-χ2-superstatistical model leads to a very
good description of the data (see Fig. 6) and it approximates q-
Maxwell-Boltzmann distributions for medium concentrations
but it not exactly the same. In fact, the probability distribution
function (PDF) of the observed statistics decays as p(u) ∼
exp(−const

√
u) for large u values (see also Appendix C).

FIG. 6. NO2 concentrations are well described by inverse-χ2 superstatistics. (a) The extracted distribution of the scale parameter β for the
NO2 time series is very well fitted by an inverse-χ 2 distribution (green). (b) Histogram of the NO2 data, together with a q-Maxwell-Boltzmann
distribution with fitted q and σq values (red) and a q-Maxwell-Boltzmann with q and σq values superstatistically calculated from a χ 2-distributed
f (β ) (orange), and Eq. (17), which is calculated from inverse-χ 2 superstatistics (green). The inverse-χ 2 superstatistics fits the NO2 data best.
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TABLE I. Overview of the different cases of local distributions (exponential or Maxwell-Boltzmann)
and the β distributions of the individual scale parameters.

χ 2 Inv. χ 2

Exponential q-exp, empirical NO Not observed here, but see [25]
Maxwell-Boltzmann q-MB Empirical NO2

IV. CONCLUSION

To conclude, we have illustrated that superstatistical meth-
ods, originally introduced in nonequilibrium statistical me-
chanics and applied to fully developed turbulent flows and
other complex systems, can also be used to quantitatively
model the statistics of air pollution. We find excellent agree-
ment of simple superstatistical models with the experimen-
tally measured pollution data. A main result is that different
pollutants obey different types of superstatistics (in our case
χ2 for NO and inverse χ2 for NO2). In fact, different types
of local dynamics also occur (in our case locally exponential
density for NO and locally Maxwell-Boltzmann for NO2).
Once the precise superstatistical model for a given pollutant
has been identified, precise risk estimates of high-pollution
situations can be given, by integrating the tails of the probabil-
ity distribution above a given threshold. These estimates could
help to design tailor-made thresholds for suitable policies to
tackle the pollution problem in cities. We discuss some ex-
plicit examples in Appendix D. While the precise local statis-
tics (exponential or Maxwell-Boltzmann) does significantly
influence the likelihood to observe very low concentrations,
the probability to observe high concentrations is determined
by heavy tails in both cases.

The superstatistical approach presented here can easily
be generalized and extended. For example, we may formu-
late an explicit dynamical process to match the trajectories
in time (in form of a superstatistical stochastic differential
equation), which could lead to synthetic dynamical models
and the possibility to employ short-term predictions of the
pollution concentration. Further research should be devoted
to understand how and why certain local statistics, such as
exponential or Maxwell-Boltzmann distributions, arise, and to
potentially link these statistics to the physical and chemical
properties of the pollutants.
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APPENDIX A: SUPERSTATISTICAL CASES

These Appendixes provide calculations of some equalities
used in the main text, such as relationships between mean,
variance, and kurtosis for the relevant distributions. We also
explain how the long timescale is determined and explicitly
discuss how the knowledge of concentration probability distri-
butions could be used to set pollution thresholds and policies.

We start by providing an overview of the different cases of
local distributions (exponential or Maxwell-Boltzmann) and
the β distributions of the individual scale parameters, shown
in Table I.

APPENDIX B: NO

In the case of NO concentrations, we approximate local
concentrations as exponential distributions,

p(u) = λeexp(−λeu), (B1)

and the aggregated statistics as q-exponentials,

p(u) = (2 − q)λq[1 + (q − 1)λqu]
1

1−q , (B2)

derived from a χ2 distribution of β = λe,

f (β ) = 1

�
(

n
2

)(
n

2β0

) n
2

β
n
2 −1 exp

(
− nβ

2β0

)
. (B3)

1. Calculation of λq

Here, we show how to express the scale parameter of q-
exponentials λq as a function of the mean of the distribution
μ = 〈u〉 and the q parameter. We start by computing the mean,

μ = 〈u〉

= (2 − q)λq

∫ ∞

0
u[1 + (q − 1)λqu]

1
1−q du

=
(2 − q)�(2)�

( 3−2q
q−1

)
λq(q − 1)2�

(
1

q−1

)
= 1

λq(3 − 2q)
, (B4)

which gives

λq = 1

μ(3 − 2q)
. (B5)

2. Calculation of mean μ of exponential distribution

We briefly recall the relationship between the exponential
scale parameter β = λe and the mean μ as

μ = 〈u〉

= β

∫ ∞

0
uexp(−βu)du

= 1

β
. (B6)
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3. Calculation of kurtosis κ of exponential distribution

In the main text, we determined the timescale T as the
timescale where the local kurtosis of the local exponential
distribution takes on the value κ = 9. Here, we provide the
corresponding calculation,

κ = 〈(u − μ)4〉
〈(u − μ)2〉2

=
∫ ∞

0 (u − μ)4βexp(−βu)du[∫ ∞
0 (u − μ)2βexp(−βu)du

]2

=
∫ ∞

0 (u4 − 4u3μ + 6u2μ2 − 4uμ3 + μ4)βexp(−βu)du[∫ ∞
0 (u2 − 2uμ + μ2)βexp(−βu)du

]2

= 24 − 24μβ + 12μ2β2 − 4μ3β3 + μ4β4

4 − 8μβ + 8μ2β2 − 4μ3β3 + μ4β4

= 9, (B7)

using μ = 1
β

.

4. Superstatistical calculation of q-exponential distribution

We show how integrating several local exponential distri-
butions, whose exponents β follow a χ2 distribution, leads to
an overall q-exponential distribution: Each local distribution
is given as

p(u|β ) = βexp(−βu). (B8)

Integrating over all of these distributions can be expressed as

p(u) =
∫ ∞

0
p(u|β ) f (β )dβ

= 1

�
(

n
2

)(
n

2β0

) n
2
∫ ∞

0
β

n
2 exp

[
−β

(
n

2β0
+ u

)]
dβ,

(B9)

which we evaluate to

p(u) = (2 − q)λq[1 + (q − 1)λqu]
1

1−q , (B10)

if we identify

−
(

n + 2

2

)
= 1

1 − q
, (B11)

1

2
(q − 1)λq = β0

n
, (B12)

where β0 is the mean of β.
We determine the long timescale T from the time series

using Eq. (4) from the main text given as

κ (�t ) = 1

tmax − �t

∫ tmax−�t

0
dt0

〈(u − ū)4〉t0,�t

〈(u − ū)2〉2
t0,�t

. (B13)

The long timescale T is defined as T := �t such that κ (�t ) =
9. Here, we compute the average local kurtosis κ as a function
of the time window �t and thereby determine T .

APPENDIX C: NO2

In the case of NO2 concentrations, we approximate local
concentrations as Maxwell-Boltzmann distributions,

p(u) =
√

16

π
u2σ

3/2
mb exp(−σmbu2), (C1)

and the aggregated statistics is a q-Maxwell-Boltzmann distri-
bution,

p(u) = 1

Z
u2σ 3/2

q [1 + (q − 1)σqu2]
1

1−q , (C2)

if σmb is χ2 distributed. These q-Maxwell-Boltzmann distri-
butions would strictly arise if the scale parameters β = σmb

were following a χ2 distribution. Empirically, we observe that
for our data, the β values follow an inverse-χ2 distribution
instead,

f (β ) = β0

�
(

n
2

)(
nβ0

2

) n
2

β− n
2 −2exp

(−nβ0

2β

)
. (C3)

We obtain this inverse-χ2 distribution from a simple transfor-
mation of random variables when β−1, rather than β, is χ2

distributed.

1. Calculation of σq

Here, we show how to express the scale parameter of q-
Maxwell-Boltzmann distributions σq as a function of the mean
of the distribution μ = 〈u〉 and the q parameter. We start by
computing the mean,

μ = 〈u〉

= σ 3/2
q

Z

∫ ∞

0
u3[1 + (q − 1)σqu2]

1
1−q du

=
�(2)�

( 3−2q
q−1

)
2Zσ

1/2
q (q − 1)2�

(
1

q−1

)
= 1

2Z (2 − q)(3 − 2q)σ 1/2
q

=
2(q − 1)3/2�

(
1

q−1

)
σ

1/2
q

√
π (2 − q)(3 − 2q)�

( 5−3q
q−1

) , (C4)

which gives

σq =
(

2(q − 1)3/2�
(

1
q−1

)
μ

√
π (2 − q)(3 − 2q)�

( 5−3q
q−1

)
)2

. (C5)

2. Calculation of mean μ of Maxwell-Boltzmann distribution

We briefly recall the relationship between the scale param-
eter β = σmb of the Maxwell-Boltzmann distribution and the
mean μ as

μ = 〈u〉

=
√

16

π
β3/2

∫ ∞

0
u3exp(−βu2)du

=
√

16

π
β3/2

(
�(2)

2β2

)
= 2√

πβ
. (C6)
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FIG. 7. NO2 concentrations locally follow Maxwell-Boltzmann distributions. (a) We plot the NO2 concentration for several months in
2010, with two periods of length �t = T ≈ 2.6 days highlighted, whose distributions are explored in (b) and (c). The histograms of (b) and
(c) are fitted with Maxwell-Boltzmann distributions and we note their respective λmb values, which are strongly varying in time.

3. Calculation of kurtosis κ of Maxwell-Boltzmann distribution

In the main text, we determined the timescale T
as the timescale where the local kurtosis of the local
Maxwell-Boltzmann distribution takes on the value κ ≈
3.1082. Here, we provide the corresponding calculation,

κ = 〈(u − μ)4〉
〈(u − μ)2〉2

=
√

16
π

β3/2
∫ ∞

0 (u − μ)4u2 exp(−βu2)du(√
16
π

β3/2
∫ ∞

0 (u − μ)2u2 exp(−βu2)du
)2

=
μ4√π

4β3/2 − 2μ3

β2 + 9μ2√π

4β5/2 − 4μ

β3 + 15
√

π

16β7/2√
16
π

β3/2
(

μ2
√

π

4β3/2 − μ

β2 + 3
√

π

8β5/2

)2
(C7)

= 15π2 + 16π − 192

(3π − 8)2
≈ 3.1082. (C8)

4. Superstatistical calculation of q-Maxwell-Boltzmann
distribution

We show how integrating several local Maxwell-
Boltzmann distributions, whose exponents β follow a χ2

distribution, leads to an overall q-Maxwell-Boltzmann distri-
bution: Each local distribution is given as

p(u|β ) =
√

16

π
u2σ

3/2
mb exp(−σmbu2). (C9)

Integrating over all of these distributions can be expressed as

p(u) =
∫ ∞

0
p(u|β ) f (β )dβ

=
√

16

π

1

�
(

n
2

)(
n

2β0

) n
2

u2

×
∫ ∞

0
β

n+1
2 exp

[
β

(
n

2β0
+ u2

)]
dβ, (C10)

which can be evaluated to

p(u) ∼ u2σ 3/2
q [1 + (q − 1)σqu2]

1
1−q , (C11)

if we identify

−
(

n + 3

2

)
= 1

1 − q
, (C12)

1

2
(q − 1)σq = β0

n
, (C13)

where β0 is the mean of β.

5. Calculation of inverse-χ2 superstatistical distribution based
on superimposed Maxwell-Boltzmann distributions

Taking the conditional density p(u|β ) as given in Eq. (C9)
and the inverse-χ2 distribution for the distribution f (β ), the

013019-7
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FIG. 8. The average kurtosis κ is plotted as a function of the time
window �t . The crossing between the horizontal line at κ = 3.1082
(the kurtosis of a Maxwell-Boltzmann distribution) and the κ vs �t
curve gives the value �t = T = 2.61.

probability density p(u) is given as

p(u) =
√

16

π

β0

�
(

n
2

)(
nβ0

2

) n
2

u2

×
∫ ∞

0
β− (n+1)

2 exp

(
−nβ0

2β
− βu2

)
dβ

=
√

64

π

β0

�
(

n
2

)(
nβ0

2

) n+1
4

u
n+3

2 K 1−n
2

(u
√

2nβ0). (C14)

This PDF has still heavy tails, which decay as p(u) ∼
exp(−const

√
u) for large u values.

6. Extra figures

We repeat Fig. 3 from the main text for local NO2 con-
centrations, i.e., analyzing brief periods of the NO2 trajectory.
Figure 7 illustrates that in good approximation the local be-
havior follows Maxwell-Boltzmann distributions with fluctu-
ating variance. Further, we also determine the long timescale
T for the local Maxwell-Boltzmann distributions by setting
T := �t for the local kurtosis κ (�t ) ≈ 3.1082, following
Eq. (4) from the main text again. See Figs. 7 and 8.

APPENDIX D: THRESHOLDS AND POLICIES

Policies to tackle pollution in cities often focus on
thresholds and compliance with these thresholds. This then
often leads to pollution just below the threshold in many
regions. However, in many cases it may be more reasonable
to reduce the overall exposure to pollutants [26]. Weather is
responsible for many fast variations of the air pollution [26].
The focus on threshold is especially dangerous as there is
strong evidence that even small concentrations of pollutants,
below national standards, increase the death rate [27]. The
U.K. government (Department of Health and Social Care)
calls air pollution a “health emergency” and the World Health
Organization (WHO) judges the situation similarly on a
global scale [28]. Note that about 9500 premature deaths
are attributed to air pollution in London alone every year
[29]. On a global scale this number rises to about 4.9 million
premature deaths, making air pollution the fifth leading cause
of mortality worldwide [30].

So let us finally sketch how the knowledge of the prob-
ability density function (PDF) allows estimates of threshold
crossings and total exposure. Setting thresholds on pollutant
concentrations is a popular tool when setting pollution poli-
cies. Simultaneously, data coverage might not be very good in
all locations. Especially if data are not available for the full
time period of interest but only for a few months, estimates on
how frequently thresholds are violated are difficult to obtain.
As soon as we are able to determine the PDF p(u) for the
concentration levels u, we can easily compute the number of
days where thresholds are violated as

Nu>uthreshold = 365
∫ ∞

uthreshold

p(u)du. (D1)

This integral can be easily evaluated numerically, using q-
exponential distributions for NO, see Eq. (8) from the main
text, and Eq. (17) from the main text for NO2, consistent with
experimental observations.

The number of threshold violations explicitly depends on
the parameters λq and q, which have to be determined from the
data sets but can then be compared between different locations
and time periods. Having these two parameters explicitly
disentangles two aspects: the rate of (rare) extreme events,
encoded in q, and the overall variability of the pollutant
concentration, encoded in λq (or λmb for NO2).

Complementary to thresholds, policies could instead focus
on the total pollution exposure (TPE) describing the average
amount citizens are exposed to. Again, this is easily computed
from the PDF as

TPE = 365
∫ ∞

0
p(u)udu. (D2)
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