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Magnetic field induced competing phases in spin-orbital entangled Kitaev magnets

Li Ern Chern ,1 Ryui Kaneko ,2 Hyun-Yong Lee ,2 and Yong Baek Kim1,3,4,5

1Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7
2Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

3Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5
4Canadian Institute for Advanced Research/Quantum Materials Program, Toronto, Ontario, Canada M5G 1Z8

5School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea

(Received 30 September 2019; revised manuscript received 19 November 2019; published 6 January 2020)

There has been a great interest in magnetic field induced quantum spin liquids in Kitaev magnets after the
discovery of neutron scattering continuum and half-quantized thermal Hall conductivity in the material α-RuCl3.
In this work, we provide a semiclassical analysis of the relevant theoretical models, which enable us to treat
large system sizes approximating the thermodynamic limit. We find a series of competing magnetic orders with
fairly large unit cells at intermediate magnetic fields, which are mostly missed by previous studies. We show that
quantum fluctuations are typically strong in these large unit cell orders, while the magnetic excitations, magnons,
have a dispersion that resembles a scattering continuum. The huge quantity of magnon bands with finite Chern
numbers also gives rise to an unusually large thermal Hall conductivity. Given the highly frustrated nature of the
spin model, the large unit cell orders are likely to melt into the putative spin liquid in the quantum limit. Our
work provides an important basis for a thorough investigation of emergent spin liquids and competing phases in
Kitaev magnets.
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I. INTRODUCTION

Discovery of quantum spin liquids [1,2] with emergent
quasiparticles has been an important subject in modern con-
densed matter physics. This serves as an ultimate test of
our understanding of highly quantum entangled phases in
interacting electron systems. Recent research has invested
tremendous effort on a number of materials with strong
spin-orbit coupling [3,4], which leads to intriguing bond-
dependent exchange interactions between spin-orbital en-
tangled pseudospin-1/2 moments. These studies are largely
motivated by the exact solution of the Kitaev honeycomb
model [5]. The Kitaev interaction is naturally present in
the systems with 4d/5d transition metal elements [6], such
as honeycomb/hyperhoneycomb iridates [7–9] and α-RuCl3

[10]. However, other exchange interactions are present too
[11], which often lead to magnetically ordered ground states
instead of the desired quantum spin liquid [12–15]. Hence,
much effort has been spent to suppress the magnetic orders
and gain access to the possible spin liquid phases.

Over the past few years, great experimental progress has
been achieved in α-RuCl3. At zero magnetic field, this ma-
terial orders magnetically in the zigzag (ZZ) order [14,15].
Upon the application of an external field, neutron scattering
experiments [16–18] find an intermediate window of fields
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before the system enters the polarized state, where sharp
magnon modes are absent but a scattering continuum appears
instead. Under a [111] field (perpendicular to the honeycomb
plane), the measured thermal Hall conductivity above the
ordering temperature TN ≈ 7 K follows the predicted trend of
itinerant Majorana fermions in the pure Kitaev model [19].
When the field is tilted away from the [111] direction by 45◦
and 60◦, half-quantized thermal Hall conductivity is observed
[20]. These observations raise the hope that the paramagnetic
state in the intermediate field regime may be the sought-after
chiral spin liquid with Majorana edge modes.

Theoretical models for α-RuCl3 include substantial Ki-
taev and symmetric anisotropic � interactions, both strongly
dependent on the bond directions, with additional small
exchanges such as the nearest neighbor Heisenberg J , the
third nearest neighbor Heisenberg J3, and the anisotropic �′
[21–23], on the honeycomb lattice. Previous analyses are
largely done on quantum models with small system sizes (typ-
ically a 24-site cluster) via exact diagonalization (ED) [24–28]
or in quasi-one-dimensional limit via density matrix renor-
malization group (DMRG) [26,27,29], with varying degree
of complexity. For example, a recent work [27] on the K��′
model in an external magnetic field suggests that it allows
an intermediate spin liquid phase continuously connected to
the pure Kitaev model between the low-field ZZ order and
high-field polarized state.

In this article, we investigate the possible competing phases
in the classical K��′ model under a [111] magnetic field
for large system sizes. The purpose is to critically examine
what kind of competing phases may be present and how these
phases may be related to potential spin liquids in the quantum
model. Rather surprisingly, we find a series of competing
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magnetic orders with large unit cells in the intermediate field
regime. In particular, in the K��′ model with small �′, the
ground state in the zero field limit is the ZZ order, which is
consistent with previous experiments and theoretical calcu-
lations. Upon increasing the field, the ZZ order is replaced
by a series of magnetically ordered phases with 8-, 18-, 32-,
50-, 70-, and 98-site unit cells before the system enters the
polarized state (see Fig. 2). Hence, the magnetic field reveals a
series of competing orders, which form an intermediate region
in the phase diagram. Most of these large unit cell orders had
not been identified in previous works.

We compute the zero point quantum fluctuations for these
magnetic orders and estimate the reduction of the size of
the local moments. We find that quantum fluctuations are
strong in the large unit cell orders so that the renormalized
local moment is only about 50% of the full magnitude on
average. The flat and dense spin wave spectra in the large
unit cell orders, in particular the 70- and 98-site orders,
essentially look like continua of spin excitations. Furthermore,
we calculate the thermal Hall conductivity due to magnons
in some of the large unit cell orders and find that it is as
large as that observed experimentally at low temperatures.
While strong quantum fluctuations are present and hence it
is likely for the series of competing phases to turn into spin
liquids in the quantum limit, it is also evident that previous
theoretical studies on quantum models with small system sizes
[24–29] cannot resolve many of these large unit cell orders.
Therefore, in future analyses of such quantum models, it will
be important to understand the role of quantum fluctuations
in the large unit cell orders unveiled in the current work.
Our findings demonstrate the possibility of novel and exotic
ordering patterns in spin-orbital entangled Kitaev magnets,
which provide an important basis for further investigations of
the origin and the nature of quantum spin liquids that they may
host.

II. MODEL

We investigate the nearest neighbor K��′ model on the
honeycomb lattice in a [111] magnetic field h,

H =
∑

λ=x,y,z

∑
〈i j〉∈λ

[
KSλ

i Sλ
j + �

(
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i Sμ
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j

)] − h ·
∑

i

Si, (1)

where K is the Kitaev interaction, � and �′ are off-diagonal
spin exchanges, (λ,μ, ν) is a cyclic permutation of (x, y, z),
and the field h = h(1, 1, 1)/

√
3. We have also assumed an

isotropic g tensor. In (1), h actually carries a factor of S but for
notational simplicity we will just write h in units of the Kitaev
interaction, for instance h = 0.1|K| instead of h = 0.1|K|S, in
the rest of this article.

In the experimentally relevant parameter regime, K < 0
and � > 0 are large while �′ < 0 is small. In contrast to
many of the previous studies [24–30], we investigate the
classical limit of this model, that is, by treating the spins
Si = (Sx

i , Sy
i , Sz

i ) in (1) as three-dimensional vectors of fixed
magnitude |Si| = S for all i. We use simulated annealing to
determine the ground-state spin configuration of the system.

FIG. 1. Classical phase diagram of the K� honeycomb model in
a [111] magnetic field h. Ferromagnetic Kitaev interaction K= − 1
is assumed. Each of the integers indicates the total number of
sublattices in a unit cell of the corresponding magnetic order, while +
indicates degeneracy. KSL denotes the extensively degenerate man-
ifold of the Kitaev model, which only exists in the Kitaev limit
(�, h) = (0, 0). The ground state in the parameter region enclosed by
the red dashed line is likely an incommensurate order which exhibits
domains of 18 and 18-C3.

Details of the simulated annealing calculation can be found in
Appendix A.

III. RESULTS

A. Phase diagrams

We first consider the K� model by setting �′ = 0 in (1),
with a ferromagnetic Kitaev interaction K = −1. We explore
� ∈ [0, 0.5], h ∈ [0, 1.2] and map out the phase diagram,
as shown in Fig. 1. Apart from the extensively degenerate
Kitaev limit (�, h) = (0, 0), we find that the vast majority
of the parameter space favors particular magnetic orders. All
these ordered phases, except the zigzag (ZZ) order and the
ferromagnet (FM), are labeled by the number of sites con-
tained in their respective magnetic unit cells.

In the zero field limit, the degeneracy of the Kitaev man-
ifold is lifted as the ZZ order and a 12-site order (a 6-site
order and an 18-site order) are selected at small (intermediate)
�. These two phases have exactly the same energy at h = 0,
but the ZZ order or the 6-site order is preferred once h 	= 0.
However, the 18-site order reemerges at higher fields and
replaces the 6-site order as the ground state. Tracing back to
the parameter region with small � and h, we see that the ZZ,
6-site, 12-site, and 18-site orders are continuously connected
to the Kitaev limit. The 6-site order (the 18-site order) was
first reported in Ref. [31] (Ref. [32]) and termed the X phase
(the diluted star phase). At sufficiently large values of � and
h, even larger cluster ordering patterns like the 30-site and
50-site orders are stabilized. There is also an 18-site order
with C3 symmetry, which we label by 18-C3 to distinguish
it from the previous 18-site order as they are described by
different arrangements of spins on the honeycomb lattice.

Next, we set �′ = −0.02 and map out the phase diagram
within the same ranges of � and h, as shown in Fig. 2. The
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FIG. 2. Classical phase diagram of the K��′ honeycomb model
in a [111] magnetic field h. Ferromagnetic Kitaev interaction K= − 1
is assumed. �′ is fixed to be −0.02. Each of the integers indicates
the total number of sublattices in a unit cell of the corresponding
magnetic order.

addition of such a small �′ term to the K� model alters the
phase diagram quite significantly. The degenerate manifold
in the Kitaev limit and its neighborhood are replaced by the
FM phase. The ZZ order is stabilized over a large portion of
the parameter space at zero [33] and low fields. Once again,
we find at intermediate fields several large cluster ordering
patterns, a 32-site order, a 70-site order, a 98-site order, and
a 50-site order with C3 symmetry, which we label by 50-C3.
Finally, the strong � high field regime of the phase diagram
displays some similarities to the �′ = 0 case, where the same
50-site, 18-site, and ZZ order are the lowest energy spin
configurations, before the system becomes a FM.

Details of the magnetic orders (the real space spin configu-
rations and the static spin structure factors, etc.) that show up
in the phase diagrams Figs. 1 and 2, from the four-sublattice
ZZ order to the 98-site order, can be found in the Supple-
mental Material [34]. We make some qualitative observations
as follows. Firstly, stronger � interaction stabilizes magnetic
orders with larger unit cells. This is true for both zero and
finite �′. We expect that ordering patterns with even larger unit
cells than those mentioned above may appear if � is further
increased beyond 0.5. Secondly, the large unit cell orders, like
the 70-site and 98-site orders, are closely competing in the
parameter region where they are stabilized. The difference
in energy is typically 10−3 to 10−4 of the energies of these
orders. Thirdly, the magnetic orders can be classified into
two categories, one with an inversion symmetry and the other
with a three fold rotational symmetry. The ZZ order and the
magnetic orders labeled by numbers fall into the former, while
the magnetic orders labeled by numbers appended with -C3

fall into the latter. More details can be found in Ref. [34].

B. Magnetization

The proposed spin model for the material α-RuCl3 is
parametrized by dominant K and � exchanges, with K < 0
and � ≈ −K/2, plus some small additional interactions like
�′, J and J3, where J (J3) is the (third) nearest neighbor
Heisenberg exchange [21–23]. Therefore, in the phase dia-

FIG. 3. (a) The magnetization along the field direction, with the
parametrization (K, �, �′) = (−1, 0.5, −0.02) relevant to the mate-
rial α-RuCl3. (b) The averaged renormalization of ordered moments
when quantum fluctuations are taken into account via the linear
spin wave theory with S = 1/2, using the same parametrization as
in panel (a), at zero temperature. Blank regions indicate that the
spin-wave Hamiltonian is not positive definite.

gram Fig. 2 of the K��′ model in a [111] magnetic field,
we take a cut along � = 0.5 and plot the magnetization
m = S · ĥ as a function of the field h, as shown in Fig. 3(a).
The magnetization increases monotonically with the field and
jumps at the phase transitions. The discontinuities are not very
obvious at the transitions between the large unit cell orders,
but are significant when the system enters to (exit from) a large
unit cell order from (to) ZZ and from ZZ to FM. This suggests
the difficulty of detecting phase transitions at intermediate
fields by inspecting the magnetization, if they exist at all in
the quantum model.

C. Linear spin wave theory

As a first approach to study the effect of quantum fluctu-
ations on the classical orders, we apply the linear spin wave
theory [35,36] to calculate the reduction of ordered moments
in the zero-temperature limit. For simplicity, we assume the
same underlying magnetic orders and do not consider how
the classical phase diagram may be changed due to quantum
correction to the energy because there are too many competing
phases. Details of the linear spin wave calculation can be
found in Appendix B. In Fig. 3(b), we plot the average fraction
of spins achieved in the linear spin wave theory with S = 1/2
as a function of the field

〈SLSWT〉
S

= 1 −
∑

i〈b†
i bi〉/Nsite

S
, (2)

where b†
i is the magnon creation operator at site i and

Nsite is the total number of sites in the system. Blank re-
gions indicate that the spin wave Hamiltonian is not positive
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FIG. 4. Spin wave dispersion of the 98-site order. Plotted in units
of |K|S, with the parametrization (K, �, �′) = (−1, 0.5, −0.02) and
at the field h = 0.6. The inset shows the path traveled in the first
Brillouin zone of the honeycomb lattice.

definite at one or more momenta; i.e., the lowest magnon band
becomes gapless. At low and intermediate fields h � 1, the
average reduction of ordered moments is about 50% of the
full magnitude S, hinting at strong quantum fluctuations. At
high fields h � 1, 〈SLSWT〉/S increase monotonically with h
in the ZZ phase, but the spin wave spectrum becomes gapless
throughout the region h ∈ [1.29, 1.37], where the system is
in the FM phase with the spins not completely aligning with
the [111] field [see Fig. 3(a)]. The physical origin of this
phase will be discussed in details later. Finally, for h > 1.37,
the system enters the fully polarized state and 〈SLSWT〉/S = 1
achieves saturation.

The spin wave dispersion of a (very) large unit cell order
typically appears flat and dense. As an example, we show
the spin wave dispersion of the 98-site order along certain
high-symmetry directions in the first Brillouin zone of the
honeycomb lattice in Fig. 4.

D. Thermal Hall conductivity

We calculate the thermal Hall conductivity due to magnons
[37–39],

κxy = −k2
BT

h̄V

∑
k

N∑
n=1

{
c2[ fBE(εk,n)] − π2

3

}
	k,n. (3)

Details of the calculation can be found in Appendix C.
Expressing the field in (1) as h = gμBμ0H, assuming the
g factor g = 2.3 [36,40] and the magnitude of the Kitaev

interaction |K| ≈ 80 K [19,21], the field μ0H = 12 T used
in the experiment of Ref. [19] roughly corresponds to h =
0.23. At this field and with the parametrization (K, �, �′) =
(−1, 0.5,−0.02), the system is in the 50-C3 order. We plot the
thermal Hall conductivity κxy as a function of temperature T ,
as shown in Fig. 5(a). We show only data below Tc ≈ 11 K,
defined as the temperature at which 〈SLSWT〉/S drops to zero,
i.e., the magnetic order is destroyed by thermal fluctuations
[see Fig. 5(c)]. We find that κxy is close to zero but slightly
negative at 10 K. It gradually develops a positive value as
T decreases and peaks at 5 K before diminishing again as
T → 0. Although the magnon thermal Hall conductivity does
not develop a wide plateau, the maximum value of κxy/T
is about 0.3×10−3 W/K2m, which is of the same order of
magnitude as the half-quantized value 0.826×10−3 W/K2m
measured in Ref. [20].

We also calculate the thermal Hall conductivity for another
large unit cell order, the 32-site order, at the field h = 0.82
(which would roughly correspond to μ0H = 43 T) and with
the same parametrization, as shown in Fig. 5(b). This time
Tc ≈ 6 K [see Fig. 5(c)] and κxy is negative. Starting from
zero temperature, κxy grows in magnitude as T increases,
and reaches −0.9×10−3 W/Km at 6 K. The trend and the
magnitude of κxy are similar to those reported in Ref. [19]
at lower fields (μ0H = 6, 12 and 15 T). Hence, the opposite
signs of κxy may indicate the presence of different magnetic
orders.

E. Frustrated ferromagnet

We notice that there is a window of h where the system is
a FM but not fully polarized, i.e., the spins align uniformly
but not in the direction of the [111] field. Such a phase is also
stabilized in the high field regime at other parametrizations
(K, �, �′) including the K� model, and the width of the win-
dow is usually larger for stronger �. The spin wave spectrum
is also gapless throughout this phase. In the following, we
attempt to derive some analytical understanding of why this
situation occurs.

We start from the K� model with K < 0, � > 0, and �′=0
in (1). Assuming a FM state, that is, Si = S for all sites i, the
Hamiltonian reduces to

H = NST(HK + H� )S − 2Nh · S, (4)

with the matrices

HK =

⎛
⎜⎝

K 0 0

0 K 0

0 0 K

⎞
⎟⎠, H� =

⎛
⎜⎝

0 � �

� 0 �

� � 0

⎞
⎟⎠, (5)

and N being the total number of unit cells. The Kitaev inter-
action becomes “isotropic” in the FM state, behaving like the
Heisenberg interaction. The � interaction still appears quite
anisotropic at this stage, but a change of basis will bring it
to a simpler and more illuminating form. Switching from the
cubic xyz coordinates to the crystallographic abc coordinates,
where the a, b, and c axes point in the directions [112̄], [1̄10],
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FIG. 5. Thermal Hall conductivity due to magnons as a function of temperature. (a) The 50-C3 order at the field h = 0.23 and (b) the 32-site
order at the field h = 0.82, both with the parametrization (K, �, �′) = (−1, 0.5, −0.02). We also indicate in panel (a) the half-quantized
thermal Hall conductivity κ2D

xy = κxyd = (1/2)(π/6)(k2
B/h̄)T , or κxy/T ≈ 0.826×10−3 W/K2m with the inter-plane distance d = 5.72 Å

[19,20]. (c) The averaged renormalization of ordered moments at finite temperatures calculated from the linear spin wave theory, for the
two magnetic orders in panels (a) and (b). The Kitaev interaction is assumed to have a magnitude of 80 K.

and [111] respectively [25,41], the spin is given by

S̃ =
⎛
⎝Sa

Sb

Sc

⎞
⎠ =

⎛
⎜⎜⎝

1√
6

1√
6

−
√

2
3

− 1√
2

1√
2

0
1√
3

1√
3

1√
3

⎞
⎟⎟⎠

⎛
⎝Sx

Sy

Sz

⎞
⎠ = RS. (6)

In the abc basis, the Kitaev interaction H̃K = RHK RT = HK

remains the same, while the � interaction assumes the form
of an XXZ model

H̃� = RH�RT =
⎛
⎝−� 0 0

0 −� 0
0 0 2�

⎞
⎠. (7)

We can then analyze (4) in the abc basis term by term. It can
be shown analytically that the energy of the classical Kitaev
model is K|S|2 per unit cell [42]. Thus, any FM phase will

FIG. 6. Energy of the � interaction in the FM phase. Plotted on
the northern hemisphere, where the numbers on the circles indicate
the zenith angle θ defined through

√
(Sa)2 + (Sb)2= sin θ, Sc= cos θ .

The north pole θ = 0 at the center corresponds to Sc = 1, while the
equator θ = π/2 intersects the ab plane. The energy possesses an
azimuthal or U (1) symmetry. The energy on the southern hemisphere
is given by the same density plot.

minimize the energy of the K term. On the other hand, the �

term attains maximum (minimum) when the spin points along
(lies on) the c axis (ab plane). The energy profile of the � term
is shown in Fig. 6.

Suppose that the field h̃ = (0, 0, h) is along the c axis or
the [111] direction. The h term wants to align the spin with
the c axis, but this will be costly in energy for the � term. The
competition between � and h tilts the spin away from the c
axis. Therefore, such a FM phase can be stabilized between
the fully polarized state and some other orders, e.g., ZZ and
18, in the high field regime. In contrast, if the field is along
any of the in-plane directions, then all the K , �, and h terms
in (4) can be minimized simultaneously.

The effective Hamiltonian (4) describing the FM but not
fully polarized phase has a U (1) or azimuthal symmetry,
which is manifest in the crystallographic abc basis. When
the spins choose to align in a particular direction among
the ground-state manifold, this continuous symmetry is spon-
taneously broken. Gapless excitation is then guaranteed by
Nambu-Goldstone theorem, which is why the lowest magnon
band touches the zero energy.

Now let us consider the K��′ model. A finite �′ term acts
similarly as �. One can easily show that, assuming a FM state,
H�′ has the same structure as H� in (5). Thus, a small �′ < 0
(�′ > 0) weakens (enhances) the effect of �. A similar FM
but not fully polarized phase due to the presence of a large �

interaction in the JK�J3 model under a [001] field was also
found and discussed in Ref. [43].

IV. DISCUSSION

Classcially, the pure Kitaev model is extremely sensitive to
an external magnetic field. It is polarized whenever the field
h 	= 0. From the result of our simulated annealing calculation,
a finite � interaction on top of K gives rise to a multitude of
ordered phases, many of which possess fairly large magnetic
unit cells, at finite fields. As � increases, the window of these
nontrivial magnetic orders becomes wider, and the system be-
comes polarized at greater value of h. Thus, the combination
of � and h effects like a prism that produce a rich and colorful
phase diagram. Adding a small �′ term stabilizes even larger
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cluster magnetic orders at intermediate fields. We successfully
demonstrate that the K��′ honeycomb model is a playground
for many exotic field induced magnetic orders, not simply the
zigzag (ZZ) order and the polarized state, as largely perceived
in the past.

We discuss the implications of these large unit cell orders.
First of all, the size of the system has to be sufficiently large
to host them. If the system is smaller than or incommensurate
with the magnetic order, the ground-state spin configuration
may appear like a disordered state. This calls for a seri-
ous reconsideration of the results from quantum calculations
on small systems where finite-size effect can be important,
such as ED on the 24-site cluster [27] and iDMRG on the
cylinder geometry [29], which report a quantum spin liquid
ground state. The large unit cell magnetic orders found in this
work cannot be captured by these and similar computations
[24–26,28] on quantum models with small system sizes. Nev-
ertheless, the possibility of a quantum spin liquid still exists,
especially in the vicinity of the large unit cell orders where
quantum fluctuations are strong. The large unit cell orders
are very close in energy in the parameter region where they
are stabilized. In addition, the average spin wave correction
to the ordered moments in the large unit cell orders for a
representative parametrization of α-RuCl3 is found to be more
than 50%. One can imagine that quantum fluctuations may
melt these competing orders and promote a spin liquid state,
but we will not know whether this is true until the magnetic
orders are explicitly taken into account in the quantum model.
If the large unit cell orders (partially) survive under quantum
fluctuations, the magnon bands are typically flat and very
close to each other such that they appear like the excitation
continuum seen in inelastic neutron scattering experiments,
which is often interpreted as fractionalized excitations in a
quantum spin liquid [16–18,44,45]. The resulting two magnon
excitations will also form a very broad continuum at low
energies. Moreover, we calculate the magnon thermal Hall
conductivity for two of the large unit cell orders and show that
it resembles the trend and/or the magnitude as that measured
in experiments [19,20] below the ordering temperature. In
contrast, as computed in Ref. [36], the magnon thermal Hall
conductivity in the ZZ order is in general quite small in
magnitude.

We also discover the existence of a ferromagnetic (FM)
but not fully polarized state at high fields in the K��′ model
with zero or small �′, which can be understood through the
competition between the � and h terms. Here K < 0 and
� > 0 are assumed. While the field always wants to orient
the spins in its direction, the � interaction is only minimized
(maximized) when the spins are all lying on the ab plane
(pointing along the c axis). This may explain why the system
is more prone to polarization when the tilting angle of the
field from the [111] direction is larger. This also suggests that
frustration is stronger (weaker) when the field is along (in)
the c axis (ab plane). For instance, the simulated annealing
calculation on the classical JK�J3 honeycomb model in an
in-plane field [31] with the parametrization (J, K, �, J3) =
(−0.035,−1, 0.5, 0.035) only yields the 6-site order (termed
the X phase) at intermediate fields, between the ZZ order at
low fields and the polarized state at high fields, thus leading
to a relatively simple phase diagram.
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APPENDIX A: DETAILS OF SIMULATED ANNEALING

The simulated annealing calculation is performed on a
honeycomb lattice with L×L unit cells (or L×L×2 sites)
with periodic boundary conditions. Most of the computations
are done with L = 12, 15, 20, but sometimes other L is used
when the ground-state spin configuration is not obvious. The
procedure of simulated annealing is outlined as follows. In
the beginning, we generate a totally random spin configu-
ration on the honeycomb lattice and define a “temperature”
parameter T . We randomly select a site on the honeycomb
lattice and propose a random orientation for the spin on that
site. Next, we calculate the difference in energy and accept
the change with the probability min{1, exp(−�E/T )}. This
step is repeated for ≈107 times at a fixed T , which is then
decreased gradually. Once T < Tc for some critical tempera-
ture ≈10−8|K|, we update the spin at site i deterministically
by aligning it in the direction of the local field [32] defined as

Bi = −
∑

j

Hi jS j + h, (A1)

where Hi j is the three-dimensional matrix that encodes the
interaction between the spins at i and j. We ensure that the
energy converges and the spin configuration becomes stable
at the end of the iterations. If the sublattice structure of a
magnetic order is known (see Ref. [34]), we can carry out the
above procedure for a small number of spins and calculate
the energy to very high precision. This allows us to better
determine the phase boundary between competing orders.

In simulated annealing calculations, like any numerical
simulation of a physical system, we have to work with finite-
size systems. A valid concern is thus whether there are still
ordering patterns that can be realized in the thermodynamic
limit but cannot be captured by our simulations. We attempt to
reduce such finite-size effects through various strategies. The
most obvious and important one is to choose a considerably
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large system. For instance, the 20×20 unit cell lattice we
examine in this study is significantly greater than the 24-site
cluster used in exact diagonalization. For a sufficiently large
system, if some ordering pattern (e.g., incommensurate order)
that does not fit the size or geometry of the lattice is stabilized,
then we will see it occupy a finite portion of the large system,
if not over the entire system. In other words, there will still
be visible traces of such an ordering pattern in a large system
if it is the real ground state. Apart from the real space spin
configuration, we also examine the static spin structure factor
(see Ref. [34]) which peaks at the ordering wave vector.
There will be signals at incommensurate wave vectors if some
incommensurate order is (partially) realized.

Two other strategies to improve the accuracy of our phase
diagrams are described as follows. (i) If competing magnetic
orders show up simultaneously, we calculate the energies
of these orders separately and compare them. This is how
we know, for instance, that the 6-site and 18-site orders are
degenerate at zero field in the K� model. (ii) The parameter
space under study is sampled densely, especially in regions
where two or more magnetic orders are competing (e.g., phase
boundaries). We use a high resolution up to �� = 0.01 and
�h = 0.01 for the parameter space under investigation. Dif-
ferent initial conditions are tried if further ambiguity arises.
Having taken these steps, we strongly believe that our phase
diagrams in Figs. 1 and 2 have very high levels of confidence.

APPENDIX B: DETAILS OF LINEAR SPIN WAVE THEORY

The content in this section is mainly derived from
Ref. [35]. For each sublattice i in the magnetic unit cell, we
first choose a local coordinates system in which the spin Si

aligns in the z direction. The amounts to a change of basis
characterized by the rotation matrix

Ri =

⎛
⎜⎝

cos θi cos φi − sin φi sin θi cos φi

cos θi sin φi cos φi sin θi sin φi

− sin θi 0 cos θi

⎞
⎟⎠, (B1)

where θi and φi are the two angles parametrizing the ori-
entation of Si in the cubic xyz coordinates, (Sx

i , Sy
i , Sz

i ) =
S(sin θi cos φi, sin θi sin φi, cos θi ). The third column of Ri is
precisely Si up to the factor S, while the first and second
columns are chosen such that the three columns are mutually
orthonormal and satisfy the right-hand rule. We define Si =
RiS̃i. Classically, we have S̃i = (0, 0, S). Quantum effects
on the ordered moments are introduced through spin wave
excitations (magnons),

S̃z
i = S − b†

i bi = S − ni, (B2a)

S̃x
i =

√
2S − nibi + b†

i

√
2S − ni

2
≈

√
S

2
(bi + b†

i ), (B2b)

S̃y
i =

√
2S − nibi − b†

i

√
2S − ni

2i
≈ −i

√
S

2
(bi − b†

i ), (B2c)

where we have used the linear spin wave approximation that
neglects the third and higher order terms in bi in the series
expansion of (B2b) and (B2c). Next, we rewrite the spin

Hamiltonian as

H =
∑

i j

ST
i Hi jS j − hT

∑
i

Si =
∑

i j

S̃T
i H̃i j S̃ j −

∑
i

h̃T
i S̃i,

(B3)
where H̃i j = RT

i Hi jR j and h̃i = RT
i h. Representing S̃i using

(B2a)–(B2c), keeping only terms quadratic in bi, and perform-
ing a Fourier transform

bk,s = 1√
N

∑
i

bi,se
k·Ri , (B4)

where, from now on, i denotes the position in the Bravais
lattice defined by the translational symmetries of the magnetic
order, s denotes the sublattice in the magnetic unit cell, and N
is the total number of magnetic unit cells, we then obtain the
spin wave Hamiltonian in momentum space

H =
∑

k



†
kDk
k, (B5)

where 
k = (bk,1, . . . , bk,N , b†
−k,1, . . . , b†

−k,N ) and N is the
total number of sublattices in the magnetic unit cell. Dk is a
2N -dimensional matrix of the form

Dk =
(

Ak Bk

B∗
−k AT

−k

)
, (B6)

where Ak and Bk are N -dimensional matrices. To obtain the
spin wave dispersion, we diagonalize Dk by a Bogoliubov
transformation in order to to preserve the canonical commu-
tation relation of the bosons,

T†
kDkTk = Ek, Tkσ

3T†
k = σ 3, (B7)

where Ek = diag(εk,1, . . . , εk,N , ε−k,1, . . . , ε−k,N ) and σ 3 is
a diagonal matrix with the first N entries equal to 1 and the
last N entries equal to −1. The average reduction of ordered
moments (B2a) at temperature T can be calculated from the
matrix elements of the Bogoliubov transformation,

1

Nsite

∑
is

〈b†
isbis〉 = 1

NN
∑

k

N∑
m,n=1

{T∗
k(m, n)Tk(m, n) fBE(εk,n)

+T∗
k(m, n + N )Tk(m, n + N )[1 + fBE(ε−k,n)]}, (B8)

where fBE is the Bose-Einstein distribution,

fBE(ε) = 1

eε/T − 1
. (B9)

APPENDIX C: CALCULATION OF THERMAL
HALL CONDUCTIVITY

We explain the various symbols that appear in the for-
mula (3) for the calculation of the thermal Hall conductivity
[38,39]. n is the magnon band index that runs from 1 to N .
The function c2 is given by

c2(x) =
∫ x

0
dt

(
ln

1 + t

t

)2

= (1 + x)

(
ln

1 + x

x

)2

− (ln x)2 − 2Li2(−x), (C1)
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where Li2 is the dilogarithm. fBE is the Bose-Einstein distri-
bution as defined in (B9). 	k,n is the Berry curvature defined
as

	k,n = iεμν

[
σ 3 ∂T†

k

∂kμ

σ 3 ∂Tk

∂kν

]
nn

, (C2)

where σ 3 and Tk are defined as in (B7). For the calculation
of the total volume V of the system, we use the interplane
distance 5.72 Å between the honeycomb layers in α-RuCl3

[19,20]. The exact value of the in-plane lattice constant does
not enter the calculation explicitly because, while 1/V con-
tributes two inverse factors of it, 	k,n contributes two factors,

so they cancel out. When performing the summation over
momenta in (3), we partition the first Brillouin zone (of the
magnetic order) evenly such that it contains a total number
of L×L k points. We check the convergence of κxy with
increasing L up to L = 800. We also ensure that the Chern
number of each magnon band,

Cn = 1

2π

∑
k

(2π )2

A
	k,n, (C3)

where A is the total area of the system, converges to an integer
with increasing L.
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