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Measurement incompatibility and steering are necessary and sufficient for operational contextuality
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Contextuality is a signature of operational nonclassicality in the outcome statistics of an experiment. This
notion of nonclassicality applies to a breadth of physical phenomena. Here, we establish its relation to two
fundamental nonclassical entities in quantum theory; measurement incompatibility and steering. We show that
each is necessary and sufficient the failure of operational contextuality. We exploit the established connection to
contextuality to provide a novel approach to problems in measurement incompatibility and steering.
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I. INTRODUCTION

The nonclassical nature of quantum theory has a variety
of different manifestations. On the one hand, quantum theory
postulates theoretical entities with properties that lack a coun-
terpart in classical physics. On the other hand, the nonclas-
sicality of quantum theory is also present on the observable
level, i.e., in the outcome statistics of experiments. Evidently,
if an experiment takes the reality of the quantum formalism
for granted, every nonclassical entity of quantum theory can
be experimentally detected. However, if the assumption of
nature being quantum is dropped, the outcome statistics can
frequently be reproduced with some classical model. Matters
become more interesting when the nonclassicality of outcome
statistics can be operationally determined in the spirit of
device independence [1], that is, in experiments that demon-
strate nonclassicality while making weak assumptions on the
underlying physical nature.

The strongest form of operational inference is encountered
in tests of Bell inequalities [2]. These experiments statistically
analyze the correlations between the outcomes of measure-
ments performed in space-like separated events. If the corre-
lations violate a Bell inequality, it follows that the outcome
statistics cannot be explained by any classical (local hidden
variable) theory. Famously, by sharing entangled states and
performing incompatible measurements that together steer
the remote partner system, quantum theory can violate these
inequalities and therefore provide an unequivocal demon-
stration of nonclassicality [3,4]. Surprisingly however, not
all incompatible measurements, nor all steerable ensembles,
enable Bell inequality violations [5–7]. This motivates the
question: Is nonclassicality at the level of theoretical entities
both necessary and sufficient for some form of operational
nonclassicality?
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We focus on two fundamental theoretical entities in quan-
tum theory: the incompatibility of quantum measurements
and the ability to steer another system by local measure-
ments and classical communication (a feature of quantum
theory originating from Schrödinger’s remarks [8] on the
Einstein-Podolsky-Rosen paradox [9]). These two features
of quantum theory have been thoroughly researched, see,
e.g., Refs. [10–13] and Refs. [14,15] respectively. We show
that both measurement incompatibility and steering admit
a generally valid one-to-one connection with a family of
physical tasks which in turn correspond to tests of operational
contextuality.1 Contextuality in quantum theory has for long
been researched in its own interest and is closely related to,
e.g., advantages in quantum computation [19–22], advantages
in particular communication tasks [23–26], quantum zero-
error communication [27], and anomalous weak values [28].

The established general connection between the theoretical
entities of measurement incompatibility and steering on the
one hand and operational contextuality on the other, enables
us to approach relevant problems in the former ones using
tools originally developed for the latter. We exploit this to
present a family of noncontextuality inequalities and provide
numerical evidence that these are necessary and sufficient
conditions for certifying the incompatibility of any set of
binary qubit observables, and that they also constitute optimal
tests of the steerability of a pair of qubits in a singlet state
subject to noisy environments. Moreover, since our task-
oriented characterization of measurement incompatibility and
steering makes reasonably weak assumptions on the charac-
terization of physical devices, such applications make possible
more stringent experimental certificates of all incompatible
measurements and steerable states via experimental proofs of
contextuality.

1As originally introduced by Bell, Kochen, and Spekker [16,17],
contextuality is a property of projective measurements in quantum
theory. However, the concept has seen a generalization that applies
on the level of ontological models, and therefore to general opera-
tional theories used to model outcome statistics [18].
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II. CONTEXTUALITY

Contextuality in an operational theory [18] is devel-
oped within the framework of ontological models [29]. An
ontological model describes a preparation procedure P by
an ontic state (hidden variable) λ with a distribution p(λ|P).
When a measurement procedure M is applied, the ontological
model determines the probability of an outcome b with some
response function p(b|M, λ). Therefore, the outcome statistics
reads

p(b|P, M) =
∑

λ

p(λ|P)p(b|M, λ). (1)

Furthermore, ontological models are linear in the sense that
convex combinations of preparation and measurement proce-
dures are represented by convex sums of the relevant ontic
state distributions and response functions respectively. See
Ref. [18] for a discussion of this property.

In quantum theory, preparations are represented by density
matrices ρ and measurements are positive operator-valued
measures (POVMs) M = {Mb}, i.e., Mb � 0 and

∑
b Mb = 1.

Outcome statistics is given by the Born rule p(b|ρ, M ) =
tr [ρMb]. A state (measurement) can be realized in as many
ways as it can be decomposed into mixtures of other states
(decomposed into element-wise mixtures or coarse-graining
of other measurements). Different ways of preparing the same
state (performing the same measurement) are called contexts
for ρ (M). An ontological model is said to be preparation
noncontextual if the ontic state distribution is independent
of the context, i.e., if p(λ|P) = p(λ|ρ). Similarly, an on-
tological model is said to be measurement noncontextual
if the response functions are context independent, i.e., if
p(b|M, λ) = p(b|M, λ). These notions embody the idea that
if two laboratory procedures are indistinguishable, then they
are also indistinguishable on the level of ontic states. We
remark that to ensure that two procedures truly are indis-
tinguishable, one needs to be able to perform measurements
(prepare states) that span the measurement (state) space. In
contrast, if outcome statistics cannot be reproduced with any
preparation (measurement) noncontextual model, it is said to
be preparation (measurement) contextual. See Ref. [18] for a
detailed discussion of operational contextuality.

III. MEASUREMENT INCOMPATIBILITY

Measurement incompatibility [10–13] is the impossibility
of jointly measuring a set of (at least two) POVMs by employ-
ing only a single measurement and classical postprocessing of
its outcomes. More precisely, let {Aa|x} be a set of POVMs,
with a labeling the outcome and x labeling the measurement.
The set is called compatible (jointly measurable) if there exists
a POVM {Gλ} which allows us to recover the set {Aa|x} via
some postprocessing probability distribution p(a|x, λ):

Aa|x =
∑

λ

p(a|x, λ)Gλ. (2)

If such a model does not exist, the set {Aa|x} is called incom-
patible (not jointly measurable). This extends the textbook
concept of commutativity in the sense that mutually commut-
ing POVMs are jointly measurable, but the converse does not
hold in general. The converse holds, however, for textbook

observables, i.e., projective measurements. It is worth noting
that joint measurability can be characterized as the existence
of a common Naimark dilation in which the projective mea-
surements commute.

IV. STEERING

Steering [7] is a qualitative property of some entangled
quantum states regarding the set of ensembles that can be re-
motely prepared with local measurements and classical com-
munication. Specifically, one considers a pair of entangled
systems in state ρ and performs a set of measurements {Aa|x}
on the first system. Given the choice of x, this renders the sec-
ond system in the state ρa|x = trA [Aa|x ⊗ 1ρ]/ tr [Aa|x ⊗ 1ρ]
with probability p(a|x) = tr [Aa|x ⊗ 1ρ]. It is important to
underline the fact that classical communication is necessary
for the steered party to be able to distinguish between dif-
ferent local states ρa|x. These local states can be effectively
described with a set of unnormalized states (called an assem-
blage) {σa|x} where σa|x = trA [Aa|x ⊗ 1ρ]. Such assemblages
are no-signaling, i.e.,

∑
a σa|x = ∑

a σa|x′ . In this work all
assemblages are assumed to be no-signaling. We remark that
the Gisin-Hughston-Josza-Wootters theorem [30,31] ensures
that every assemblage can be prepared by a distant party’s
local measurements (supported by classical communication)
on a properly chosen entangled state. An assemblage is said
to be unsteerable if it admits a so-called local hidden state
model. Such models use (a, x) as information toward a post-
processing p(a|x, λ) of a set of local states ρλ appearing with
probability p(λ) to explain the assemblage {σa|x}. Hence, if
the state is unsteerable, it can be written as

σa|x =
∑

λ

p(λ)p(a|x, λ)ρλ. (3)

If no local hidden state model is possible, the assemblage is
called steerable.

V. MAIN RESULTS

We begin by proving a one-to-one relation between mea-
surement incompatibility and preparation contextuality.

Theorem 1. A set of measurements is compatible if and
only if their statistics admit a preparation noncontextual
model for all states.

Proof. Assume that the set of POVMs {Aa|x} when applied
to any quantum state ρ returns outcome statistics that is prepa-
ration noncontextual. We denote as Pρ the set of preparation
procedures (contexts) in which ρ can be prepared. Then, using
the label x to denote the measurement procedure, it holds that

∀ P ∈ Pρ : p(a|x, P) =
∑

λ

p(λ|ρ)p(a|x, λ). (4)

For each λ, the object p(λ|ρ) is a convexity-preserving map
from the space of quantum states to the interval [0,1]. The
Riesz representation theorem [13,32] asserts that such maps
can be written as an inner product p(λ|ρ) = tr [Gλρ] for
some unique operator 0 � Gλ � 1. Moreover, since ∀ ρ :∑

λ p(λ|ρ) = 1, it follows that
∑

λ Gλ = 1. Inserting this into
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Eq. (4), we have

∀ P ∈ Pρ : p(a|x, P) =
∑

λ

p(a|x, λ) tr [Gλρ]. (5)

We have recovered the outcome statistics obtained from mea-
suring ρ with a compatible set of POVMs.

Conversely, assume that {Aa|x} is a compatible set of
POVMs. Then, the statistics obtained from measuring any
state ρ prepared with a procedure P is given by Eq. (5).
By defining p(λ|ρ) = tr [Gλρ], we recover the definition of
outcome statistics being preparation noncontextual. �

It is interesting to note that tests of preparation contex-
tuality can be formulated as communication tasks between
two separated parties, in which the receiver is kept oblivious
about parts of the sender’s input [23–25]. Such oblivious-
ness corresponds to different contexts for the states. From
Theorem 1, we can therefore infer the following corollary:

Corollary. Every set of incompatible measurements en-
ables a quantum-over-classical advantage in an oblivious
communication task.

We remark that the advantages of all incompatible
sets of measurements have recently been shown in vari-
ous measurement-device-independent communication tasks
[33–36].

In a spirit similar to that of Theorem 1, we prove a one-to-
one relation between steering and measurement contextuality.

Theorem 2. An assemblage is unsteerable if and only if its
statistics admits a preparation and measurement noncontex-
tual model for all measurements.

Proof. Assume that the assemblage {σa|x} when measured
with any POVM M returns outcome statistics that is measure-
ment noncontextual. We denote the set of measurement pro-
cedures (contexts) in which M can be realized by MM . Due to
assemblages being no-signaling, we have that p(a, b|x, M) =
p(b|a, x, M)p(a|x) and that

∀ M ∈ MM : p(b|a, x, M)p(a|x)

= p(a|x)
∑

λ

p(λ|a, x)p(b|M, λ), (6)

where (a, x) labels the preparation procedure. For every λ,
the object p(b|M, λ) is a map from the space of POVMs to
the space of probability distributions. Such maps are charac-
terized by the works of Gleason [37] and Busch [38]. The
Gleason-Busch theorem asserts that p(b|M, λ) = tr [ρλMb]
for some unique state ρλ. Inserting this into Eq. (6), we have

∀ M ∈ MM : p(b|a, x, M)p(a|x)

= p(a|x)
∑

λ

p(λ|a, x) tr [ρλMb ]. (7)

Using Bayes’ rule and the fact that x and λ are inde-
pendent,2 one straightforwardly finds that p(a|x)p(λ|a, x) =
p(λ)p(a|x, λ). Inserting this in (7), we recover the outcome

2The independence of x and λ follows from the fact that λ cannot
carry information about the oblivious variable x (the obliviousness
comes from no-signaling), i.e., the assumption of preparation non-
contextuality. See, e.g., Refs. [23,25] for an elaboration.

FIG. 1. Orange arrows illustrate Theorems 1 and 2. Measurement
incompatibility and steering each enable a proof of a form of con-
textuality provided that one possesses a proper catalyst preparation
or measurement procedure. Conversely, having observed prepara-
tion contextuality, one infers measurement incompatibility. Simi-
larly, having observed measurement contextuality in a bipartite no-
signaling scenario, one infers steerability of the shared state. The
grey arrow indicates the previously known relation that a set of
measurements is incompatible if and only if it enables steering with
a proper catalyst state [39,40]. It is worth noting that this connection
can also be seen as a mapping between the problems in measurement
incompatibility and steerability [41].

statistics obtained from applying M to an unsteerable assem-
blage (3).

Conversely, if the assemblage has a local hidden state
model, then for every POVM the outcome statistics reads

∀ M ∈ MM : p(b|a, x, M)

= 1

p(a|x)

∑

λ

p(λ)p(a|x, λ) tr [ρλMb]. (8)

From Bayes’ rule and the independence of x and λ, we
have that p(λ)p(a|x, λ)/p(a|x) = p(λ|a, x). Note that said
independence implies preparation noncontextuality. Inserted
into Eq. (8) we find the outcome statistics obtained in a
measurement noncontextual model. �

We have illustrated the theorems in Fig. 1. Notice that
Theorems 1 and 2 give a characterization of the ontic vari-
ables using quantum theory. Whereas this characterization
is relevant for noncontextual models covering all states or
measurements, it would be interesting to see whether such
characterization exists in the case of fragments of quantum
theory, i.e., for noncontextual models covering subsets of
states and measurements.

Also, it is worth noting that a number of works have (in dif-
ferent ways) shown that outcome statistics that violate a Bell
inequality is proof of preparation contextuality [18,23,24,42].
In Appendix A, we note that this fact follows immediately
from ontological models and the no-signaling principle (see
also Ref. [43] for similar results).3

VI. NONCONTEXTUALITY INEQUALITIES FOR QUBIT
MEASUREMENT INCOMPATIBILITY AND STEERING

We proceed to use the established connection to con-
textuality to address two relevant problems in measurement

3This result was shown originally in the unpublished note Ref. [44].
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incompatibility and steering: (i) Can one find a preparation
noncontextuality inequality whose violation is both neces-
sary and sufficient for certifying measurement incompatibility
for interesting families of measurements? Note that despite
Theorem 1 this is a nontrivial matter since any single test
of preparation contextuality is only a sufficient condition
for measurement incompatibility (and the full characteriza-
tion of all tests of preparation contextuality is a demanding
problem). (ii) Can one find a measurement noncontextuality
inequality (in a no-signaling scenario) that for an interesting
class of states optimally certifies their steerability? In analogy
to the previous, this is nontrivial since any single test of
measurement contextuality in a no-signaling scenario is only
a sufficient condition for steering.

To answer these questions, we present a family of correla-
tion inequalities (parametrized by an integer n � 2) inspired
by the works of Refs. [25,45,46]. Consider a Bell-like (no-
signaling) experiment in which two separated observers, Alice
and Bob, share parts of a physical system. Alice (Bob) per-
forms measurements labeled by her (his) uniformly random
input x ∈ {0, 1}n−1 (y ∈ {1, . . . , n}). The outcome is denoted
by a ∈ {0, 1} (b ∈ {0, 1}). Alice’s measurement procedures
are constrained by operational equivalences. That is, her out-
come statistics always upholds suitable indistinguishability
relations which enable us to consider the statistics of different
contexts for her measurements. Specifically, for every bit
string r ∈ {0, 1}n, we require that the measurement procedures
Mr,0 and Mr,1 corresponding to a uniform mixing of all (a, x)
satisfying r · x̄ = 0 and r · x̄ = 1 respectively [where x̄ =
(a, x + a)], are indistinguishable from each other. In quantum
theory, this means that

∑

a,x|r·x̄=0

Ma|x =
∑

a,x|r·x̄=1

Ma|x. (9)

Note that whenever r has an even number of ones, this
condition is always satisfied since M0|x + M1|x = 1. For odd
strings r, Eq. (9) is a nontrivial constraint. Now, let Alice and
Bob play a game in which they aim to maximize the probabil-
ity of finding a + b = x̄y mod 2. When Alice is considered
the sender of Bob’s remotely prepared local states, we can
consider the scenario as a test of preparation contextuality.
In contrast, when Bob is considered the sender of Alice’s
remotely prepared local states, we can consider the scenario
as a test of preparation and measurement contextuality. In
the case of either being noncontextual, the average success
probability is bounded by

An ≡ 1

n2n−1

∑

x,y

p(a + b = x̄y|x, y) � n + 1

2n
. (10)

The proof of this result is a simple modification of the
arguments presented in Ref. [25] and is discussed in
Appendix B. A violation of the inequality (10) means that
Bob’s measurements (which are unconstrained) are incom-
patible (by Theorem 1) and that Alice’s local assemblage
(prepared by Bob) is steerable (by Theorem 2). We now
study the usefulness of the inequality (10) for certifying qubit
measurement incompatibility and two-qubit steerability.

For the case of n = 2 the inequality (10) reduces to the
Clauser-Horne-Shimony-Holt Bell inequality [4] for which it

is known that all pairs of incompatible measurements enable a
violation [47]. For n > 2 (specifically studying n = 3, . . . , 7)
we have numerically obtained support (10 000 examples for
each n) for the following conjecture:

Conjecture 1. Every set of n incompatible two-outcome
qubit measurements enable a proof of preparation contextu-
ality by a violation of the inequality (10).

In Appendix C, we describe the numerical procedure em-
ployed to motivate this conjecture.

Consider now the case of steering. For simplicity, let Alice
and Bob share the noisy singlet state ρv = v|ψ−〉〈ψ−| + (1 −
v)1/2, where |ψ−〉 = (|01〉 − |10〉)/

√
2 for some visibility

v ∈ [0, 1]. What is the critical value of v = vn so that Bob
can steer Alice using n projective measurements? Although
this question is well studied (see, e.g., Refs. [48–50]) an ana-
lytical formula is lacking. However, Ref. [48] presented nearly
matching upper and lower bounds on vn for n = 2, . . . , 13 and
n = 2, . . . , 5 respectively. Using our inequality (10), we have
numerically implemented alternating convex searches to find
an upper bound on the critical vn (below which we can no
longer find a quantum violation). This returns

v2 = 0.7071, v3 = 0.5774, v4 = 0.5547,

v5 = 0.5422, v6 = 0.5270, v7 = 0.5234. (11)

Interestingly, these numbers coincide precisely with those
presented in Ref. [48] (up to the number of decimals presented
in Ref. [48]). This motivates the conjecture

Conjecture 2. The inequality (10) is a tight steering in-
equality for the noisy singlet state under n projective measure-
ments.

Finding a conclusive proof of Conjectures 1 and 2 would be
interesting. We remark that although the above considerations
are straightforwardly analyzed with a computer, the criterion
(10) can be treated in a fully analytical manner.

VII. DISCUSSION

We have shown that every set of incompatible measure-
ments and every steerable assemblage can be operationally
certified as nonclassical in a test of operational contextuality,
and that the latter also implies the formers. A direct conse-
quence is that problems of joint measurability and steering can
be viewed through the lens of contextuality, as we illustrated
through our conjectures. In this sense, our results bridge the
two research directions of quantum measurements and quan-
tum steering with the line of research focused on quantum
contextuality.

Moreover, since tests of operational contextuality only
rely on weak characterization of the experimental devices
[51], our results can also be considered as semi-device-
independent certificates of measurement incompatibility and
steering. Naturally, fully device-independent certificates are
found by violating a Bell inequality. However, in addition to
such tests being experimentally demanding, it is importantly
also the case that not all incompatible measurements nor all
steerable ensembles violate any Bell inequality [5–7]. This
makes tests of operational contextuality relevant for practical
considerations when no fully device-independent certificate is
either possible or known.
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APPENDIX A: BELL NONLOCALITY IMPLIES
PREPARATION CONTEXTUALITY

We give a simple argument for every probability distri-
bution that violates a Bell inequality also being a proof of
preparation contextuality (see also Ref. [43]). We show this
immediately from ontological models supplemented with the
no-signaling principle encountered in Bell inequality tests.

To see this, we write a general ontological model for a Bell
experiment as

p(a, b|x, y) =
∑

λ

p(a|x, y)p(λ|a, x)p(b|y, λ). (A1)

If we also impose no-signaling, then Alice’s local marginals
are independent of Bob’s input. Therefore,

p(a, b|x, y) =
∑

λ

p(a|x)p(λ|a, x)p(b|y, λ). (A2)

Bayes’ rule together with the independence of x and λ

gives that p(a|x)p(λ|a, x) = p(λ)p(a|x, λ). Inserting this into
Eq. (A2), we obtain

p(a, b|x, y) =
∑

λ

p(λ)p(a|x, λ)p(b|y, λ). (A3)

This is a local hidden variable model, i.e., the notion of classi-
cality in Bell inequality tests. The assumption of preparation
noncontextuality is enforced due to the assignment of the
same ontic-state distribution for the preparation procedures
corresponding to the remotely prepared state on Bob’s side
when averaged over Alice’s outcomes, i.e., the principle of
no-signaling. Therefore, whenever p(a, b|x, y) has no local
hidden variable model, it also has no preparation noncontex-
tual model.

APPENDIX B: NONCONTEXTUAL BOUND

In the main text, we considered a scenario in which sepa-
rated parties Alice and Bob share a state and perform local
measurements with binary outcomes a, b ∈ {0, 1}. Alice’s
measurement settings are labeled by a bit string x ∈ {0, 1}n−1

and Bob’s measurement settings are labeled by y ∈ {1, . . . , n}.
Alice and Bob aim to satisfy the relation a + b = x̄y mod 2
where x̄ = (a, a + x) is an n-bit string. The notation x̄y labels
the yth bit in the string x̄. Their average success probability is

An ≡ 1

n2n−1

∑

x,y

p(a + b = x̄y|x, y). (B1)

Alice and Bob are restricted by two constraints. First, they
obey the no-signaling principle. This means that the prepa-
rations of Alice on Bob’s side (denoted Pa,x), effectively
achieved by a local measurement on her system, realize the
same preparation in different contexts. That is, the following

operational equivalences hold:
∑

a Pa,x ∼ ∑
a Pa,x′ . The anal-

ogy holds in the other direction, i.e., by the preparations of
Bob on Alice’s side achieved by him locally measuring his
system. Second, Alice’s measurements are required to uphold
certain operational equivalences. In quantum theory, these are
written

∑

a,x|r·x̄=0

Ma|x =
∑

a,x|r·x̄=1

Ma|x, (B2)

for every n-bit string r ∈ {0, 1}n with at least two instances
of ′1′. For clarity, we give as an example the case of n = 3.
There exists eight three-bit strings of which four have at least
two instances of ′1′. Those are r = 011, r = 101, r = 110,
and r = 111. For each r we have the relation in Eq. (B2). In
the case of, for example, r = 011 we find

M0|00 + M1|00 + M0|11 + M1|11

= M0|01 + M1|01 + M0|10 + M1|10. (B3)

However, this is trivially satisfied since ∀ x : M0|x + M1|x = 1.
Similarly, one finds that the constraint (B2) is trivial also for
r = 101 and r = 110. However, for r = 111 we obtain

M0|00 + M0|11 + M1|01 + M1|10

= M0|01 + M0|10 + M1|00 + M1|11, (B4)

which is a nontrivial constraint.
Imagine now that instead of performing local measure-

ments on a shared state, Alice directly prepares the would-
have-been post-measurement states of Bob’s system [labeled
by the pair (a, x)] and sends them to Bob, who then measures
the system and records b ∈ {0, 1}. This represents a prepare-
and-measure scenario in which Alice has 2n inputs (a, x) with
some prior distribution p(a, x) = p(a|x)/2n−1. Alice’s prepa-
rations are required to satisfy the operational equivalence
which in quantum theory reads

∀ r :
∑

a,x|r·x̄=0

p(a|x)ρa,x =
∑

a,x|r·x̄=1

p(a|x)ρa,x. (B5)

Notice first that in the original scenario, every assemblage
prepared by Alice on Bob’s side can also be directly sent
in this prepare-and-measure model; simply define ρa,x =
trA [Ma|x ⊗ 1ρ]/ tr [Ma|x ⊗ 1ρ], and the prior distribution as
p(a|x) = tr [Ma|x ⊗ 1ρ]. Conversely, every ensemble that
Alice can communicate to Bob in the prepare-and-measure
scenario can also be realized in the original scenario via local
measurements on an entangled state and classical communi-
cation. This follows from the Gisin-Hughston-Josza-Wootters
theorem [30,31] and the fact that Eq. (B5) enforces a no-
signaling-like preparation ensemble.

In Ref. [25] it was shown that when p(a|x) = 1/2, the con-
sidered prepare-and-measure scenario serves as the following
test of preparation contextuality: the inequality

1

n2n−1

∑

a,x,y

p(a|x)p(b = (a, x)y|a, x, y) � n + 1

2n
(B6)

holds for every preparation noncontextual model. Moreover, it
is a trivial modification of the arguments of Ref. [25] to show
that the same bound holds regardless of the prior distribution
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p(a|x). Therefore, due to the connection between the prepare-
and-measure scenario and the original scenario, it also holds
that

An � n + 1

2n
(B7)

in a preparation noncontextual model, in which we view Alice
as effectively preparing the local states of Bob.

Moreover, in the original scenario, we can equally well
consider Bob as the effective sender of Alice’s local states.
If we impose measurement noncontextuality, the response
function of Alice takes no regard of the different contexts
of her measurement (related to r). Note that preparation
noncontextuality is still present due to Alice and Bob being
no-signaling.

APPENDIX C: NUMERICAL EVIDENCE
IN SUPPORT OF CONJECTURE 1

The numerical evidence behind Conjecture 1 was obtained
as follows. We used the prepare-and-measure variant (dis-
cussed in Appendix B, based on Ref. [25]) for the numerics.
We sample a set of n random two-outcome qubit POVMs
M = {Bb|y}n

y=1. The sampling is done by using the Bloch
sphere parametrization of the most general two-outcome qubit
measurement, i.e.,

∀ y : B0|y = αy1 + ηy�ny · �σ
2

, (C1)

B1|y = (2 − αy)1 − ηy�ny · �σ
2

(C2)

for some random unit vectors �ny, some random numbers ηy ∈
[0, 1], and some random numbers ηy � αy � 2 − ηy.

For the sampled M, we evaluate the largest possible value
of the witness An via a semidefinite program optimizing over
the state ensemble of Alice. This returns the maximal value
of An(M) attainable with M. We denote the optimal en-
semble returned by the semidefinite program by P . Provided
that An(M) violates the noncontextuality inequality (in its
prepare-and-measure form), we construct new measurements
B′

b|y = vBb|y + (1 − v)1/2 where v ∈ [0, 1]. We write M′ =
{B′

b|y}. For the states P we have that

An(M′,P ) = vAn(M) + (1 − v)An({1/2},P ). (C3)

We choose the value of v for which An(M′,P ) saturates the
noncontextual bound, i.e.,

v = Cn − An({1/2},P )

An(M) − An({1/2},P )
, (C4)

where Cn = (n + 1)/(2n) is the noncontextual bound. Then,
via a semidefinite program, we check whether M′ is jointly
measurable. Evidently, any perturbation of v to the positive
renders M′ incompatible since it implies a violation of the
preparation noncontextuality inequality. We have repeated the
procedure 10 000 times ]postselected on the cases in which
An(M) constitutes a proof of preparation contextuality] for
n = 3, 4, 5, 6, 7 respectively. Without exception, we have
found that M′ is jointly measurable.

[1] S. Pironio, V. Scarani, and T. Vidick, Focus on device indepen-
dent quantum information, New J. Phys. 18, 100202 (2016).

[2] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.
Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).

[3] J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics 1,
195 (1964).

[4] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Proposed Experiment to Test Local Hidden-Variable Theories,
Phys. Rev. Lett. 23, 880 (1969).

[5] E. Bene and T. Vértesi, Measurement incompatibility does not
give rise to Bell violation in general, New J. Phys. 20, 013021
(2018).

[6] F. Hirsch, M. T. Quintino, and N. Brunner, Quantum mea-
surement incompatibility does not imply Bell nonlocality,
Phys. Rev. A 97, 012129 (2018).

[7] H. M. Wiseman, S. J. Jones, and A. C. Doherty, Steering,
Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen
Paradox, Phys. Rev. Lett. 98, 140402 (2007).

[8] E. Schrödinger, Discussion of probability relations between
separated systems, Proc. Cambridge Philos. Soc. 31, 555
(1935).

[9] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-
mechanical description of physical reality be considered com-
plete? Phys. Rev. 47, 777 (1935).

[10] T. Heinosaari, T. Miyadera, and M. Ziman, An invitation to
quantum incompatibility, J. Phys. A: Math. Theor. 49, 123001
(2016).

[11] P. Busch, P. J. Lahti, and P. Mittelstaedt, The Quantum Theory
of Measurement (Springer, New York, 1996).

[12] P. Busch, M. Grabowski, and P. J. Lahti, Operational Quantum
Physics (Springer, New York, 1995).

[13] P. Busch, P. Lahti, J-P. Pellonpää, and K. Ylinen, Quantum
Measurement (Springer, New York, 2016).

[14] D. Cavalcanti and P. Skrzypczyk, Quantum steering: A review
with focus on semidefinite programming, Rep. Prog. Phys. 80,
024001 (2017).

[15] R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, Quantum
steering, arXiv:1903.06663.

[16] J. S. Bell, On the problem of hidden variables in quantum
mechanics, Rev. Mod. Phys. 38, 447 (1966).

[17] S. Kochen and E. P. Specker, The problem of hidden variables
in quantum mechanics, J. Math. Mech. 17, 59 (1967).

[18] R. W. Spekkens, Contextuality for preparations, transforma-
tions, and unsharp measurements, Phys. Rev. A 71, 052108
(2005).

[19] R. Raussendorf, Contextuality in measurement-based quantum
computation, Phys. Rev. A 88, 022322 (2013).

[20] M. Howard, J. Wallman, V. Veitch, and J. Emerson, Contextual-
ity supplies the ‘magic’ for quantum computation, Nature 510,
351 (2014).

[21] N. Delfosse, P. A. Guerin, J. Bian, and R. Raussendorf,
Wigner Function Negativity and Contextuality in Quan-
tum Computation on Rebits, Phys. Rev. X 5, 021003
(2015).

013011-6

https://doi.org/10.1088/1367-2630/18/10/100202
https://doi.org/10.1088/1367-2630/18/10/100202
https://doi.org/10.1088/1367-2630/18/10/100202
https://doi.org/10.1088/1367-2630/18/10/100202
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1088/1367-2630/aa9ca3
https://doi.org/10.1088/1367-2630/aa9ca3
https://doi.org/10.1088/1367-2630/aa9ca3
https://doi.org/10.1088/1367-2630/aa9ca3
https://doi.org/10.1103/PhysRevA.97.012129
https://doi.org/10.1103/PhysRevA.97.012129
https://doi.org/10.1103/PhysRevA.97.012129
https://doi.org/10.1103/PhysRevA.97.012129
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1017/S0305004100013554
https://doi.org/10.1017/S0305004100013554
https://doi.org/10.1017/S0305004100013554
https://doi.org/10.1017/S0305004100013554
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1088/1751-8113/49/12/123001
https://doi.org/10.1088/1751-8113/49/12/123001
https://doi.org/10.1088/1751-8113/49/12/123001
https://doi.org/10.1088/1751-8113/49/12/123001
https://doi.org/10.1088/1361-6633/80/2/024001
https://doi.org/10.1088/1361-6633/80/2/024001
https://doi.org/10.1088/1361-6633/80/2/024001
https://doi.org/10.1088/1361-6633/80/2/024001
http://arxiv.org/abs/arXiv:1903.06663
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1512/iumj.1968.17.17004
https://doi.org/10.1512/iumj.1968.17.17004
https://doi.org/10.1512/iumj.1968.17.17004
https://doi.org/10.1512/iumj.1968.17.17004
https://doi.org/10.1103/PhysRevA.71.052108
https://doi.org/10.1103/PhysRevA.71.052108
https://doi.org/10.1103/PhysRevA.71.052108
https://doi.org/10.1103/PhysRevA.71.052108
https://doi.org/10.1103/PhysRevA.88.022322
https://doi.org/10.1103/PhysRevA.88.022322
https://doi.org/10.1103/PhysRevA.88.022322
https://doi.org/10.1103/PhysRevA.88.022322
https://doi.org/10.1038/nature13460
https://doi.org/10.1038/nature13460
https://doi.org/10.1038/nature13460
https://doi.org/10.1038/nature13460
https://doi.org/10.1103/PhysRevX.5.021003
https://doi.org/10.1103/PhysRevX.5.021003
https://doi.org/10.1103/PhysRevX.5.021003
https://doi.org/10.1103/PhysRevX.5.021003


MEASUREMENT INCOMPATIBILITY AND STEERING ARE … PHYSICAL REVIEW RESEARCH 2, 013011 (2020)

[22] J. Bermejo-Vega, N. Delfosse, D. E. Browne, C. Okay, and R.
Raussendorf, Contextuality as a Resource for Models of Quan-
tum Computation with Qubits, Phys. Rev. Lett. 119, 120505
(2017).

[23] A. Hameedi, A. Tavakoli, B. Marques, and M. Bourennane,
Communication Games Reveal Preparation Contextuality,
Phys. Rev. Lett. 119, 220402 (2017).

[24] D. Saha, and A. Chaturvedi, Preparation contextuality: The
ground of quantum communication advantage? Phys. Rev. A
100, 022108 (2019).

[25] R. W. Spekkens, D. H. Buzacott, A. J. Keehn, B. Toner,
and G. J. Pryde, Preparation Contextuality Powers Parity-
Oblivious Multiplexing, Phys. Rev. Lett. 102, 010401
(2009).

[26] D. Schmid and R. W. Spekkens, Contextual Advantage for State
Discrimination, Phys. Rev. X 8, 011015 (2018).

[27] T. S. Cubitt, D. Leung, W. Matthews, and A. Winter, Improv-
ing Zero-Error Classical Communication with Entanglement,
Phys. Rev. Lett. 104, 230503 (2010).

[28] M. F. Pusey, Anomalous Weak Values Are Proofs of Contextu-
ality, Phys. Rev. Lett. 113, 200401 (2014).

[29] N. Harrigan and R. W. Spekkens, Einstein, incompleteness, and
the epistemic view of quantum states, Found. Phys. 40, 125
(2010).

[30] N. Gisin, Stochastic quantum dynamics and relativity, Helv.
Phys. Acta 62, 363 (1989).

[31] L. P. Hughston, R. Jozsa, and W. K. Wootters, A complete
classification of quantum ensembles having a given density
matrix, Phys. Lett. A 183, 14 (1993).

[32] T. Heinosaari and M. Ziman, The Mathematical Language of
Quantum Theory (Cambridge University, New York, 2011).
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