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Inertial bifurcation of the equilibrium position of a neutrally-buoyant circular
cylinder in shear flow between parallel walls
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The motion of a neutrally buoyant, rigid circular cylinder in simple shear flow of a Newtonian fluid between
parallel walls is calculated for various particle Reynolds numbers, Rep = Ga2/ν, via the lattice Boltzmann
method. Here, G is the velocity gradient of the ambient shear, a is the radius of the particle cross section,
and ν is the kinematic viscosity of the fluid. An inertial lift force perpendicular to the ambient shear has a
single zero crossing at the center of the channel below a critical Rep, corresponding to a single transverse
equilibrium position. Above this critical Rep, the equilibrium position undergoes a pitchfork bifurcation, with an
unstable zero-force equilibrium at the center and two equidistant stable equilibria off center. The trajectories of
a force- and torque-free particle reach the stable equilibria independently of the initial particle position, with the
exception of the aforementioned unstable equilibria. The critical Rep increases with increasing confinement ratio
κ (i.e., the ratio of the radius of the particle cross section to channel width) and occurs below the transition to
unsteady flow. Finally, we suggest how this inertial bifurcation could be used to develop novel particle separation
techniques.
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I. INTRODUCTION

Early observations of fluid inertia inducing particle migra-
tion across streamlines were reported by Segre and Silberberg
[1,2]. In their study, poly(methyl methacrylate), or PMMA,
spheres of density ρ were suspended in mixtures of water, 1,3-
butanediol, and glycerol, the combination of which also had
density ρ (such that the particles were neutrally buoyant) and
viscosity μ. The suspension flowed through a circular tube of
radius R at a characteristic speed Um. Their study showed that
for flows of channel Reynolds number Rec = ρUmR/μ be-
tween 1 and 30, particles migrated to an equilibrium position
approximately 0.6R from the axis, creating a “tubular pinch”
effect. The phenomenon was caused by fluid inertia creating
a force transverse to the flow, in what has become known
as “inertial lift.” This phenomenon only occurs at nonzero
Reynolds numbers, as the linearity and reversibility of the
Stokes equations prevents its occurrence in purely viscous
flows. Interest in this phenomenon has increased recently with
applications in microfluidic devices [3] due to the lack of
external forces necessary to induce particle motion transverse
to ambient flow. For example, inertial lift has been exploited
to selectively separate blood cells [4], cancer cells [5], E. coli
[6], and biodiesel-producing algae [7].

The experiments of Segre and Silberberg spurred many
attempts to quantify inertial lift through asymptotic analysis at
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small (particle-scale) Reynolds numbers. Rubinow and Keller
[8] investigated a sphere of radius a translating at velocity Up

and rotating at angular velocity �p in a quiescent fluid. This
study used matched asymptotic expansions about small trans-
lational particle Reynolds numbers Ret = ρUpa/μ, where
Up = |Up|, to calculate a leading-order force transverse to
the flow as FL ∼ πa3ρ�p×Up. Saffman [9] investigated a
sphere in unbounded simple shear (with velocity gradient G)
translating along the streamlines of the undisturbed flow, with
a “slip velocity” Us relative to the shear streamline passing
through its center. He used matched asymptotic expansions to
calculate that fluid inertia acts to deflect the particle toward
streamlines opposite to the particle translation with a lift force
of magnitude FL ∼ 6.46aμUs Re1/2

p for small shear particle
Reynolds number Rep = ρGa2/μ. Cox and Brenner [10] con-
sidered particles of arbitrary shape (with characteristic linear
dimension a) translating in planar Poiseuille flow at low par-
ticle Reynolds number a distance d from the wall. A regular
perturbation expansion of the Navier-Stokes equations about
small particle Reynolds numbers and dimensionless particle
size, or confinement ratio, κ = a/d was used to develop an in-
tegral formula for the inertial lift force on a neutrally buoyant
sphere and an equation for its transverse migration velocity.
Ho and Leal [11] investigated neutrally buoyant spherical
particles in bounded planar shear and Poiseuille flows. An
analysis using the reciprocal theorem was conducted, expand-
ing the disturbance velocity and pressure fields caused by the
sphere in small Rep and small confinement ratio κ = a/R.
Calculations of the lift force acting on the particle revealed
a zero crossing, corresponding to a transverse equilibrium
position, at the center of the channel for shear flow and at
0.3 of the channel width from the center for Poiseuille flow.
The latter is in agreement with Segre and Silberberg [1,2],
although those experiments were in a tube Poiseuille flow.
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Schoenberg and Hinch [12] observed that while Ho and Leal
[11] assumed Rec � 1, the channel Reynolds number in the
experiments of Segre and Silberberg was not small; to recon-
cile these results, they investigated a sphere in Poiseuille flow
at Rec = O(1). They used a singular perturbation expansion
in the limit of small κ (and hence small Rep) to calculate
the lift force on the sphere, via a finite-difference solution of
the Fourier-transformed linearized Navier-Stokes equations,
which govern the inertially dominated flow at the channel
scale. Their results showed that the equilibrium position
moved toward the wall of the channel as Rec increased, in
agreement with Segre and Silberberg [1,2].

Altena and Belfort [13] employed similar perturbation
analyses to calculate the inertial lift on particles in channels
with permeate flow through one wall, using expansions in
terms of Rep, κ , and dimensionless permeate velocity rela-
tive to the pressure driven flow. Specifically, they calculated
particle trajectories and equilibrium positions as functions of
the dimensionless permeate velocity. Garcia et al. [14] also
considered the inertial lift on particles in the presence of a
permeate flow via numerical computations. Harding et al. [15]
developed a model for inertial lift on spheres in curved ducts
to predict the dependence of equilibrium positions of neutrally
buoyant particles on channel bend radius.

More recent computational studies have performed numer-
ical solutions of the Navier-Stokes equations to quantify the
behavior of particles beyond the small Rep regime. Feng et al.
[16] studied a neutrally buoyant circular cylinder in planar
shear flow between rigid walls. They used two-dimensional
finite-element computations to calculate the particle trajectory
at Rep = 0.625 and κ = 0.125. Their computations revealed
that the particle migrated to an equilibrium position at the
center of the channel. Pan et al. [17] also investigated a
neutrally buoyant circular cylinder in confined shear flow over
1 � Rep � 10. Their study used a fictitious domain method
with distributed Lagrange multipliers to compute the flow
around a cylinder. For Rep � 2 and κ = 0.125, the particle
migrated to an equilibrium position at the center of the chan-
nel. At Rep � 2 and κ = 0.125, the particle no longer mi-
grated to the center of the channel, instead reaching an equilib-
rium position between the wall and centerline of the channel.
This result showed that there exists a critical Reynolds number
beyond which the particle can be directed to an off-center
equilibrium position.

Here, we will investigate a neutrally buoyant cylinder in
simple shear flow between parallel walls over the expanded
regime 0.1 � Rep � 50 and 0.0625 � κ � 0.25. We will use
the lattice Boltzmann method to calculate the force acting on
the particle and its consequential inertial migration. First, by
fixing the transverse position of the particle, the lift force
acting on it will be calculated as a function of position at
κ = 0.125; this analysis will show that the inertial force acting
upon a particle has multiple zero crossings above a critical
Rep, resulting in an equilibrium position bifurcation. This
bifurcation occurs while the flow is steady in the frame of the
cylinder, i.e., below the Reynolds number at which transition
to unsteady flow occurs [18]. Next, the trajectory of a force-
and torque-free particle of κ = 0.125 will be calculated, con-
firming the equilibrium position bifurcation. Finally, we will
repeat this analysis for cylinders of κ = 0.0625 and κ = 0.25,

FIG. 1. A circular cylinder in two-dimensional shear flow be-
tween parallel walls. The behavior of the cylinder is determined
by the initial transverse position ỹ0 = y0/H , the confinement ratio
κ = a/H , and the particle Reynolds number Rep = Ga2/ν, where
G = 2Um/H is the velocity gradient. Here, θ is the angle of the
position vector in the plane of the particle cross section relative to
the imposed flow direction.

demonstrating that the critical Rep decreases with decreasing
κ . The remainder of this paper is organized as follows. In
Sec. II, we outline the flow problem and calculations to be per-
formed; in Sec. III, we describe the lattice Boltzmann method
and verify the validity of our computational technique; in
Sec. IV, we present results and discuss their implications; and
in Sec. V, we deliver concluding remarks.

II. PROBLEM FORMULATION

Consider parallel walls at y = −H/2 and y = H/2, trans-
lating at speeds Uw and −Uw, respectively, in the x direction;
this induces a shear flow in the Newtonian liquid between
the walls with velocity gradient G = 2Uw/H . The fluid in
the channel has a kinematic viscosity ν. A neutrally buoyant
circular cylinder of radius a is placed within the channel at
an initial dimensionless transverse position ỹ0 = y0/H . The
dynamics of the cylinder are described by a particle shear
Reynolds number Rep = Ga2/ν, which characterizes the in-
ertia of the shear on the scale of the particle, and confinement
ratio κ = a/H . Figure 1 depicts the flow problem.

The effect of inertia on the particle motion is quantified
through two types of calculation. First, the cylinder is fixed
in the transverse y direction, but allowed to freely rotate and
translate in the flow x direction. The force per unit length
acting on the cylinder in the transverse direction is calculated
to determine the dimensionless lift force F̃L = FL/ρU 2

maκ2 at
that position, where ρU 2

maκ2 is the force per unit length scale.
We repeated this process for several transverse positions ỹ0

to ascertain the lift force at a given Rep. Locations where
F̃L vanishes correspond to transverse equilibrium positions;
positions where the the force is positive below the zero-force
location and negative above are stable equilibria, whereas
positions with the converse are unstable equilibria. In the
second type of calculation, the circular cylinder is force
and torque free, allowing free translation and rotation. We
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calculated the trajectory of the particle to determine its trans-
verse migration at a given Rep. The final position of the
particle is a stable equilibrium, and was used to confirm
observations of equilibrium bifurcation with increasing Rep

as found from the first type of calculation.

III. LATTICE BOLTZMANN CALCULATIONS

The inertial migration of the cylinder is quantified using
the lattice Boltzmann (LB) method, which is an iterative tech-
nique for solving the Navier-Stokes equations that discretizes
the fluid field into nodes [19]. At a given node, at position x
and time t , there exists a distribution of particles fσ i(x, t ) with
velocity eσ i in the σ i direction. The fluid particles move by
the dimensionless LB equation [20]

fσ i(x + eσ i, t + 1) = fσ i(x, t ) + 1

τ

[
fσ i(x, t ) − f (eq)

σ i (x, t )
]

+ gσ i(x, t ), (1)

describing the incremental time evolution of the fluid in the
system. The LB method consists of alternating steps of parti-
cle collision and translation. Particle collision is represented
by the second term on the right side of (1), wherein the
current distribution of particles, fσ i(x, t ), is compared to an
equilibrium distribution of the same macroscopic velocity,
f (eq)
σ i (x, t ), over a relation time τ = (6ν + 1)/2. Translation,

where the particles at each node translate to the next-nearest
nodes, is denoted by the left side of (1). The final term in
(1) represents an additional forcing due to the fluid-solid
interaction force [20], which will be discussed below. The
LB equation has been shown to reduce to the Navier-Stokes
equations at small Mach and Knudsen numbers [21–23], and
has been shown to accurately model transient problems [24].

A LB code was developed in this study. The fluid field was
discretized into a computational domain of Eulerian nodes
nx×ny, where ni is the number of nodes in the i direction,
with a channel aspect ratio of AR = nx/ny = 4. A standard
bounce-back boundary condition was used to simulate the
translating walls [19], and a periodic boundary condition was
used on the open ends. The particle was simulated with a
series of Lagrangian nodes arranged regularly over its bound-
ary. The force F and torque T per unit length acting on
the particle were calculated using an external boundary force
(EBF) method [20], which calculates a fluid-solid interaction
force acting on the fluid gσ i(x, t ) and a corresponding force
acting on the nodes at the surface of the particle. The particle
velocity Up and angular velocity �p were calculated from
Newton’s equations of rigid-body motion [19],

M
dUp(t )

dt
= F(t ) and I

d�p(t )

dt
= T (t ), (2)

where M is the mass per unit length of the cylinder and I is the
moment of inertia per unit length. The computational method
proceeds iteratively. The fluid begins in a quiescent state, and
the simulation initiates with the walls being set into motion.
The EBF method calculates the force acting between fluid
and particle nodes, from which the total force and torque per
unit length on the particle can be determined via a summation
over the particle cross section. The particle translational and
angular velocities are calculated, after which the particle is
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FIG. 2. (a) Rotation rate 	̃p of a circular cylinder with κ = 0.25
at the center of the channel as a function of Rep. (b) Transverse
trajectory of a circular cylinder with κ = 0.125 and Rep = 0.625 as
a function of time. Relevant results from [16,17,25] were digitized
for replotting here.

translated and rotated. The fluid then undergoes collision and
propagation, as previously discussed, and the iterative process
repeats. This cycle continues until the force acting on the
particle remains constant in the fixed ỹ0 studies or the particle
reaches a constant ỹ in the free particle studies.

To validate the accuracy of our computational technique,
a neutrally buoyant circular cylinder with κ = 0.25 was sim-
ulated in shear flow at an initial position ỹ0 = 0, so that no
lateral migration occurs. The particle is free to rotate, and the
dimensionless rotation rate 	̃p = 	p/G, where 	p = |�p|, is
calculated at varying Rep. The results are compared to the
computations of Ding and Aidun [25] and Pan et al. [17]. As
shown in Fig. 2(a), our simulations compare favorably with
those previous studies. The final angular velocity of these
calculations reached a fixed value at all Rep and showed no
time dependence, indicating that we are below the transition
to unsteady flow. Our method was further validated by exam-
ining the migration of a circular cylinder with ỹ0 = −0.25,
κ = 0.125, and Rep = 0.625; these conditions match those
studied by Feng et al. [16]. As shown in Fig. 2(b), our
calculated trajectory matches their results. A channel aspect
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FIG. 3. Dimensionless lift force F̃L on a circular cylinder of
κ = 0.125 as a function of transverse position, with a magnification
of the lift force just below the center of the channel in the inset. The
finite particle radius precludes the center of the particle from entering
the size excluded region.

ratio of AR = 4 was used in both verification studies; higher
AR simulations were found to produce little change in the
results.

IV. RESULTS AND DISCUSSION

A. Inertial lift force on a transversely fixed circular cylinder

The inertial lift force per unit length on a circular cylinder
of κ = 0.125 in shear flow was calculated by fixing the
transverse position ỹ0 of the particle. The particle was allowed
to freely translate along the flow direction and rotate as the
system evolved from its initial quiescent state. This process
was repeated for various ỹ0 and Rep, and the results are
shown in Fig. 3. Mikulencak and Morris [18] computed a
transition to unsteady flow occurring at Rep = 85 for a freely
rotating circular cylinder of κ = 0.125 at ỹ0 = 0; the flows in
our simulations are at lower Rep, and only steady flow was
observed in the frame of the translating cylinder. Inertial lift
in unsteady flow, while undoubtedly interesting, is beyond
the scope of this study. At Rep = 1, the force decreases
monotonically across the channel with increasing ỹ, and the
force has a single zero crossing at the center ỹ = 0. This zero
crossing corresponds to a single stable equilibrium, due to
the upward-driving force below (ỹ < 0) and vice versa. At
Rep = 3, the lift force no longer varies monotonically with
increasing ỹ. In addition to the zero crossing at the center, two
additional zero crossings occur at ỹ ≈ −0.10 and 0.10. The
zero crossing at the center is now an unstable equilibrium,
due to the downward-driving force below (−0.10 � ỹ < 0)
and upward-driving force above (0 < ỹ � 0.10); the new zero
crossings correspond to stable equilibria. Thus, the system
has undergone a pitchfork bifurcation between Rep = 1 and
Rep = 3. By increasing the Reynolds number to Rep = 10,
the stable equilibria move closer to the walls at ỹ ≈ −0.23
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FIG. 4. Streamlines around circular cylinders of κ = 0.125 at
stable equilibrium positions in confined simple shear at (a) Rep = 1
and (b) Rep = 10. (c), (d) The lift force distribution and cumulative
lift force about the cylinders.

and 0.23; the equilibrium positions shift further outward to
ỹ ≈ −0.27 and 0.27 at Rep = 20.

Unsurprisingly, from Fig. 3 the force F̃L at a fixed ỹ
generally decreases in magnitude with increasing Rep, due to
inertial screening of the velocity disturbance caused by the
particle. Specifically, by “inertial screening” we mean that the
velocity disturbance is confined to closer to the particle sur-
face with increasing Rep, thereby reducing the particle-wall
hydrodynamic interaction and lift force. For example, as Rep

increases from 1 to 20, the dimensionless lift force decreases
from 29 to 4.9 close to a wall at ỹ = −0.35. That screening
reduces the wall-induced inertial lift force that drives the
particle to the center of the channel; therefore, the F̃L vs ỹ
curves appear flatter as Rep increases. What is surprising,
however, is that these curves have a zero crossing at off-
center transverse positions beyond a critical Rep, leading to
the center switching from a stable to an unstable equilib-
rium position. Asmolov [26] demonstrated through matched
asymptotic expansions that a neutrally buoyant sphere in
linear shear flow bounded by a single wall would experi-
ence a lift force only directed away from the wall with no
equilibrium position; the observed equilibrium position in our
computations must therefore be caused by a second bounding
wall.

To further understand the stable equilibria, the flow about
the particle and nodal lift force distribution over its surface
are shown in Fig. 4. Through the EBF method, the fluid-solid
interaction force occurring at each node inscribing the particle
surface is calculated. The force on each node in the ỹ direction
is averaged over 1 000 iterations to reduce discretization-
induced noise, producing a nodal lift force distribution as
a function of surface angle f̃L(θ ) (Fig. 1); additionally, the
cumulative lift force

∑θ
θ ′=0 f̃L(θ ′) was plotted over the surface

of the cylinder. While the distribution of the lift force changes,
the sum of the y component of the force acting on the sur-
face of the particle at the equilibria, i.e., F̃L = ∑2π

θ ′=0 f̃L(θ ′),
remains zero in both instances.
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FIG. 5. Trajectories for a free circular cylinder of κ = 0.125,
showing change of transverse position as a function of time.

B. Inertial migration of a free circular cylinder

The migration of a circular cylinder of κ = 0.125 was
computed by allowing the particle to freely translate and
rotate in the shear flow. The particle was placed at initial
positions of ỹ0 = −0.25 and −0.1, and allowed to migrate
to an equilibrium position; the exercise was repeated for
several Rep. The results are shown in Fig. 5; the trajectory
at Rep = 0.625 was shown previously in Fig. 2. At Rep = 1
the equilibrium position remains at the center of the channel,
consistent with our calculations of the lift force showing a
single stable equilibrium at ỹ = 0. At Rep = 3 the equilib-
rium position again bifurcates, reaching a stable position at
ỹ ≈ −0.10. The unstable equilibrium position is unobserved
as the particle begins away from the center; simulations with
the particle beginning at ỹ0 = 0 show the cylinder remaining
at the center. This result is in agreement with our calculations
of lift force in Sec. IV A, demonstrating the same stable
and unstable equilibria. At Rep = 10 the equilibrium position
shifts to ỹ ≈ −0.23 again per Fig. 3. The equilibrium position
in all cases is independent of initial position, with the sole
exception of the unstable equilibrium.

C. Effect of confinement ratio on equilibrium
position of circular cylinder

To demonstrate the effect of the confinement ratio, the
equilibrium position was calculated as a function of Rep

for three values of κ . The equilibrium position was com-
puted by developing force-position plots at several Rep,
per Sec. IV A, and was repeated for confinement ratios of
κ = 0.0625, 0.125, and 0.25; the results are displayed in
Fig. 6. The computations for κ = 0.125 correspond to those
discussed in Sec. IV A. At the smallest confinement ratio
κ = 0.0625, the equilibrium position bifurcation occurs when
Rep ≈ 0.4, lower than that of κ = 0.125. While Rep is small
in this case, the channel Reynolds number at the bifurcation is
not small: Rec = κ−2Rep ≈ 102. Increasing the confinement
ratio to κ = 0.25 requires a higher Rep to induce the equilib-
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FIG. 6. Equilibrium position of a circular cylinder in confined
shear flow as a function of Rep for three confinement ratios.

rium position bifurcation. These results show that the particle
equilibrium bifurcation is dependent on the confinement ratio.

V. CONCLUSIONS

In this study, the behavior of a neutrally buoyant circu-
lar cylinder in confined shear flow was quantified. The LB
method was used to calculate the lift force and trajectories
of a cylinder over 0.1 � Rep � 50 and 0.0625 � κ � 0.25.
The stable equilibrium position of the cylinder undergoes
a pitchfork bifurcation on increasing Rep beyond a critical
value dependent on κ . This is surprising given the geometric
symmetry inherent to the problem. Specifically, below this
value, the centerline is the sole equilibrium position; above,
the centerline is an unstable equilibrium and two new off-
center equilibria emerge at equal distances above and below
the center. The bifurcation occurs before the transition to
unsteady flow, but is presumably the first in a cascade of
events as Rep is increased further. The critical Rep required
to induce the bifurcation increases with particle size, over the
range of κ examined.

Although in this study we considered an infinitely long
cylinder, our preliminary computations on spherical particles
suggest that the inertial bifurcation persists in three dimen-
sions. This ongoing work will be reported in a future study.
Importantly, such three-dimensional computations could be
verified through laboratory experimentation using a parallel
band apparatus [27,28]. Further studies would then consider
the behavior of shape anisotropic particles, such as oblate
and prolate spheroids. The asymmetry of these shapes in-
troduce additional physics through orientation dynamics not
seen for a cylinder or sphere. Spheroidal particles experience
complex rotational dynamics, from Jeffery orbits at Rep = 0
[29] to tumbling and rolling states at finite Rep for prolate
and oblate spheroids, respectively [30–32]. These additional
physics would lead to more complex translational dynamics
and would introduce additional factors impacting equilibrium
position.
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Finally, equilibrium position bifurcations in shear flow
present an opportunity for novel particle-particle separation
techniques. Many current size-based inertial lift separation
devices use pressure-driven flows to force particles to off-
center equilibrium positions, which can be weakly dependent
on Rep and κ [14,33]. For example, Kuntaegowdanahalli et al.
[34] designed a device to segregate two neural stem cells,
SH-SY5Y neuroblastoma (a = 8 μm) and C6 glioma cells
(a = 4 μm); the total separation of these cells is necessary
for properly identifying their individual functions and appli-
cations. Using a spiral microchannel, they were able to sepa-
rate the cells at 80% efficiency. As the pitchfork bifurcation
in shear flow occurs above a critical Rep dependent on κ ,
performing a separation at a given Rep would cause particles
with critical Rep below this value to segregate off center. By
selecting the appropriate operating conditions, particles below
a selected size would be separated from the larger ones, lead-
ing to a precise size-based separation. Using a parallel band

device similar to that designed by Birkhofer et al. [35], a shear
flow may be created that, assuming an equilibrium position
bifurcation occurs, can be used to completely separate these
cells. By operating with band speed of 0.9 m/s and a gap
width of 64 μm, the SH-SY5Y neuroblastoma cells (Rep =
0.45 and κ = 0.063) would be moved off center by the shear
flow, while the C6 glioma cells (Rep = 1.8 and κ = 0.125)
would remain at the centerline of the shear channel. Such
a separation would offer high selectivity due to the strong
dependence of equilibrium position on Rep, arising from the
inertial bifurcation studied here.
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