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Non-Abelian anomalies in multi-Weyl semimetals
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We construct the effective field theory for time-reversal symmetry-breaking multi-Weyl semimetals
(MWSMs), composed of a single pair of Weyl nodes of (anti)monopole charge n, with n = 1, 2, 3 in crystalline
environment. From both the continuum and lattice models, we show that a MWSM with n > 1 can be constructed
by placing n flavors of linearly dispersing simple Weyl fermions (with n = 1) in a bath of an SU(2) non-Abelian
static background gauge field. Such an SU(2) field preserves certain crystalline symmetry (fourfold rotational
or C4 in our construction), but breaks the Lorentz symmetry, resulting in nonlinear band spectra, namely,
E ∼ (p2

x + p2
y )n/2, but E ∼ |pz|, for example, where momenta p is measured from the Weyl nodes. Consequently,

the effective field theory displays U(1) × SU(2) non-Abelian anomalies, yielding the anomalous Hall effect, its
non-Abelian generalization, and various chiral conductivities. The anomalous violation of conservation laws is
determined by the monopole charge n and a specific algebraic property of the SU(2) Lie group, which we further
substantiate by numerically computing the regular and isospin densities from the lattice models of MWSMs.
These predictions are also supported from a strongly coupled (holographic) description of MWSMs. Altogether
our findings unify the field-theoretic descriptions of MWSMs of arbitrary monopole charge n (featuring n copies
of the Fermi arc surface states), predict signatures of non-Abelian anomaly in table-top experiments, and pave
the way to explore the structure of anomalies for multifold fermions, transforming under arbitrary half-integer
or integer spin representations.
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I. INTRODUCTION

Anomalies are traditionally studied in the realm of rela-
tivistic field theories that are pertinent in high-energy physics
[1–8]. They show up as the violation of symmetries of the
classical action upon quantization of chiral massless fermions.
An intrinsic feature of high-energy theories is that they are
Lorentz symmetric, stemming from the linear dispersion of
the chiral fermions. Also in the world of condensed-matter
systems an emergent relativistic symmetry results from the
quasiparticle spectra that are linear in momentum, but at low
energies. This is the quintessential feature of Weyl semimet-
als, a class of materials where quantum anomaly has been
studied theoretically [9–16] and its signature has possibly
been observed in experiments [17–27].

More intriguingly, condensed-matter systems offer unique
opportunities to further extend our understanding of anoma-
lies in quantum field theories and its connections with trans-
port. Recent developments have allowed us to go beyond the
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original paradigm of linearly dispersing chiral fermions, as
nowadays gapless chiral systems with finite band curvatures
can be found in various solid-state compounds. The main
motivation of our work is to pedagogically develop a compre-
hensive understanding of such systems, lacking the Lorentz
symmetry from their effective low-energy field theory and
anchor various field-theoretic predictions from concrete but
simple lattice models (on a cubic lattice). One representative
class of systems where such a theory should be applicable is
so-called the multi-Weyl semimetals. These systems possess
linear dispersion only along one component of the momen-
tum, while displaying finite band curvature along the remain-
ing two crystalline directions (see Fig. 1). The power-law
dependence of the band dispersion (n) is set by the charge n of
the corresponding pairs of (anti)monopole in the momentum
space that act as source and sink of Abelian Berry curvature
and in turn also determines the integer topological invariant of
the system. Therefore, the present discussion should allow us
to pave the way to connect the notion of quantum anomalies
with the topological invariant of gapless chiral systems.

Our main achievements are the following. We show that
multi-Weyl semimetals (with n > 1) generically exhibit non-
Abelian anomalies, leading to the nonconservation of isospin
density. We also show that both Abelian and non-Abelian
anomaly coefficients are solely determined by the topological
invariant (n) of the system. Notice that quantum field theories
depict three types of chiral anomalies: Abelian, non-Abelian,
and gravitational. While negative longitudinal magnetoresis-
tance, bearing the signature of Abelian anomaly, has been
observed in a number of Weyl materials [17–24] and some of
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them also show an indirect signature of mixed gauge-gravity
anomaly in the thermal transport [25,26,28,29], the presence
or signature of non-Abelian anomaly has remained illusive so
far. Also, the regime where high-energy systems may support
non-Abelian anomalous transport has been quite challenging
to access experimentally until now [6,30]. By contrast, we
show here that multi-Weyl semimetals constitute the ideal
platform to capture the signature of non-Abelian anomaly in
table-top experiments (from the nonconservation of isospin
density), (possibly) standing as the final milestone of anomaly
controlled transports. Further, as a collateral consequence, in
this work we liberate the notion of Abelian (or generically
any) anomaly from the burden of the Lorentz invariance.

Besides the genuine fundamental importance of our quest,
it should also be relevant for real materials, as Weyl points
with n = 2 (known as double-Weyl nodes) can be found in
HgCr2Se4 [31,32] and SrSi2 [33], whereas A(MoX )3 (with
A = Rb or Tl and X = Te) can accommodate Weyl points
with n = 3 (known as triple-Weyl nodes) [34]. Even though at
a formal level our conclusions hold for any arbitrary integer
value of n, crystalline environment forbids realization of
symmetry-protected Weyl nodes with n > 3 [35].

We note that a direct approach to construct an effective
field theory for multi-Weyl semimetals has been discussed
previously in Refs. [36,37], where a Lagrangian with an
anisotropic energy spectrum and the corresponding anoma-
lous violation of chiral symmetry was computed. We empha-
size that this approach is cumbersome and may even be prob-
lematic for the following reasons. First of all, we stress that
departure from the Lagrangian that is linear in (space-time)
four-momenta changes the structure of fermionic operators
and all the anomalies need to be calculated from the scratch.
Next, the Lagrangian corresponding to anisotropic dispersion
obscures the underlying symmetry structure (and may even
hinder additional features, about which more in a moment).
Finally, previous studies on Lorentz violating theories suggest
that certain ambiguities may appear in the formulation that
cannot be removed within the effective theory description
[11]. To circumvent these pitfalls and address the structure
of the anomaly in multi-Weyl systems in an unambiguous and
transparent fashion, we develop here a completely different
theoretical approach, highlighted below. For the sake of con-
creteness, we focus on the minimal model for time-reversal
symmetry-breaking Weyl semimetals, composed of only a
single pair of (anti)monopole of charge n.

Given this motivation, we construct an effective field the-
ory for multi-Weyl systems that is always linear in all mo-
menta, but accompanied by a Lorentz violating perturbation,
which ultimately leads to the multi-Weyl spectrum in the
low-energy limit (see Fig. 1). As we show, this formulation
has several advantages over the direct approach and improves
the analysis in every aspect mentioned above. For instance,
from a computational point of view, we do not need to
perform additional computations of anomalies, as the the-
ory is always linear. Furthermore, we find that the requisite
Lorentz symmetry-breaking perturbation yielding the multi-
Weyl spectra at low energy couples to linearly dispersing
chiral fermions as a SU(2) non-Abelian constant gauge field.
As a result, the structure of the anomaly is much richer
than the ones inferred from previous studies [36,37]. Namely,

FIG. 1. Energy dispersion εp for multi-Weyl fermions in the
(px, py ) plane for (a) n = 1, (b) n = 2, and (c) n = 3 around a Weyl
node. For n = 1, 2, and 3 the valence and conduction bands display,
respectively, linear, quadratic, and cubic touching in this plane.
However, the dispersion always scales linearly with pz irrespective
of n, as shown in (d). The momentum p is measured from the Weyl
nodes, placed at p = 0.

in addition to the usual (but generalized) U(1) anomalies,
we also unveil non-Abelian SU(2) anomalies for multi-Weyl
semimetals when n > 1. Due to the extensive nature of our
study, it is worth pausing at this point to offer an overview of
the main results, before delving into the details.

A. Extended summary

The minimal effective low-energy model for a multi-Weyl
semimetal can be described in terms of two-component chiral
(left or right) fermions (see Sec. II). The resulting quasi-
particle spectra in the vicinity of each Weyl node scale as
E ∼ |pz| and E ∼ pn

⊥, where p⊥ = [p2
x + p2

y]1/2 (see Fig. 1),
since in our construction the Weyl nodes are separated along
the z direction. Here n is an integer that determines the
(anti)monopole charge of the Weyl nodes and hence the
topological invariant of the system. Therefore, when n > 1
the energy dispersion in the xy plane displays nontrivial band
curvature. In Sec. II, we also show that such a nonlinear
dispersion for a multi-Weyl semimetal can be achieved at
low energies by coupling n copies of simple Weyl fermions
[with n = 1, possessing only linear dispersion (see Fig. 1)]
with a C4-symmetry-preserving perturbation (�). In the lan-
guage of effective field theory, such a perturbation breaks the
Lorentz invariance and couples with simple Weyl fermions
as an SU(2) non-Abelian constant gauge field. Consequently,
a multi-Weyl semimetal gets immersed in a constant non-
Abelian magnetic field B3 ∼ �2. Nonetheless, these two
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constructions are shown to be equivalent as they yield iden-
tical band dispersion at low energies and the topological in-
variant of the system. However, the latter construction allows
us to derive an effective field theory for generalized Weyl
systems with n > 1 in terms of simple Weyl fermions, subject
to Lorentz symmetry-breaking perturbation that enormously
simplifies the analysis and keeps the outcomes transparent.

In Sec. III A we introduce simple tight-binding models for
multi-Weyl semimetals on a cubic lattice. First, we present
effective two-band models for such systems with n = 1, 2, and
3 and argue that discrete fourfold rotational (C4) symmetry
protects such higher-order touching of Kramers nondegener-
ate valence and conduction bands at two Weyl nodes. There-
fore, multi-Weyl nodes are symmetry protected. The resulting
band structures are shown in Fig. 2. Moreover, we show that
multi-Weyl semimetals with n = 2 and 3 can be constructed
by coupling n copies of the lattice model for simple Weyl
semimetal (with n = 1) by the C4-symmetry-preserving per-
turbation. The resulting band structures of these two systems,
shown in Fig. 3, are identical to the ones obtained from their
corresponding two-band models [see Figs. 2(b) and 2(c)], but
only at low energies.

The topological equivalence between these two construc-
tions for the multi-Weyl systems is then further substantiated
from the bulk-boundary correspondence, encoded through the
number of Fermi arc surface states (see Sec. III B). Note that
a multi-Weyl semimetal, consisting of an (anti)monopole of
charge n, supports n copies of the Fermi arcs. Indeed, we
find n copies of the Fermi arcs connecting two Weyl nodes of
charge n from the two-band models (see Fig. 4). Furthermore,
we also observe two and three copies of the arc states for
double- and triple-Weyl semimetals, respectively, when they
are constructed by coupling two and three copies of simple
Weyl fermions by a C4-symmetry-preserving perturbation
(see Fig. 5).

Upon constructing multi-Weyl semimetals by coupling
simple Weyl fermions with a static non-Abelian SU(2) gauge
field, we derive the effective field theory of these systems in
Sec. IV. The effective field theory for multi-Weyl semimetals
displays both Abelian U(1) and SU(2) non-Abelian (only for
n > 1) anomalies. To this end, we compute the Ward identities
for both covariant and consistent (related by the Bardeen-
Zumino polynomials) Abelian and non-Abelian currents. One
of our main results is the generalization of the anomalous Hall
effect for multi-Weyl semimetals and its non-Abelian varia-
tion, captured by, for example, the regular (ρe) and isospin
(ρ3) charge densities, respectively, given by

ρe = n
e2

2π2
(b · B), ρ3 = c(n)

2π2
(b · B3). (1)

In the above expressions, e is the electric charge, 2|b| is the
separation of left and right Weyl nodes, B is the external
Abelian magnetic field, B3 = (0, 0,�2) is the static non-
Abelian magnetic field (present only for n > 1), and c(n) is
a coefficient set by the representation of the SU(2) Lie group.
Specifically, c(n) = 1

2 and 2 for n = 2 and 3, respectively.
We also find that the chiral magnetic effect vanishes for both
vector Abelian and non-Abelian currents [see the discussion
in Sec. IV B, after Eq. (54)].

To test the validity of the field-theoretic predictions from
Sec. IV, we first compute the Abelian or U(1) charge density
ρe in the presence of a static external magnetic field from
all the lattice models for multi-Weyl systems, introduced in
Sec. III. The methodology is discussed in Sec. V and the
results are displayed in Fig. 6. We find that the field-theoretic
predictions [see Eq. (1)] show excellent agreement with the
scaling of the Abelian charge density with the external mag-
netic field flux, at least when it is small (cyclotron frequency
being much smaller than lattice momenta), irrespective of the
microscopic details. As a penultimate topic, we compute the
non-Abelian or isospin density ρ3, capturing the signature
of non-Abelian anomalies [see Eq. (1)], for the multi-Weyl
semimetals with n = 2 and 3, but only from their four- and
six-band lattice models, respectively. The results are shown in
Fig. 7, displaying excellent agreement with the field-theoretic
predictions.

The topological nature of anomalies in certain cases pro-
tects their associated transport, showing universalities even
when some symmetries are broken [38,39]. Therefore, the
microscopic details of different models become irrelevant,
as long as the anomalous structure does not differ between
them [40,41]. On the other hand, the computation of anomaly-
induced transport coefficients with standard quantum field
theory techniques can be plagued with subtleties and ambigu-
ities [9–15], which have been solved and understood with the
help of the holographic techniques [42,43]. Therefore, we ad-
dress the imprint of the symmetry-breaking parameter (�) in
various anomaly-induced transports from a simple toy model
for a (strongly) interacting multi-Weyl semimetal using the
holographic techniques (see Sec. VI). The particular model we
study is consistent with the predictions of the effective field
theory and shows a renormalization of the non-Abelian cur-
rent in the infrared regime, as expected due to the explicit
symmetry breaking introduced by �. The main outcome from
this section is the survival of the non-Abelian transport at
low energies, opening a possibility of observing non-Abelian
anomaly and the nonrenormalization of the Abelian anomaly-
induced transport in multi-Weyl semimetals. Therefore, al-
together the current discussion presents a comprehensive
study of anomalies in Lorentz symmetry violating multi-Weyl
semimetals, which in the future can be extended to address
similar issues for multifold fermions [44,45].

B. Outline

The rest of the paper is organized as follows. In the
next section we discuss the low-energy models for multi-
Weyl semimetals and compute their topological invariant.
Section III is devoted to the discussion on the lattice models
for these systems on a cubic lattice. In this section we also
establish the bulk-boundary correspondence by constructing
(numerically) the Fermi arc surface states for multi-Weyl
semimetals. The effective field theories, capturing the sig-
nature of quantum anomalies, for multi-Weyl semimetals
are derived in Sec. IV. The field-theoretic predictions from
this section are numerically anchored from the representative
tight-binding models in Sec. V. The holographic description
and transport coefficients are derived from the gauge-gravity
duality in Sec. VI. A discussion of our findings and some
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future directions are highlighted in Sec. VII. Additional tech-
nical details are relegated to the Appendixes.

II. MULTI-WEYL FERMIONS

We begin the discussion by focusing on the effective low-
energy models for multi-Weyl systems, consisting of a pair
of (anti)monopoles of charge n [31–36,46–52], where n is an
integer. The Hamiltonian operator describing such a system
takes the form

H±
n = αn pn

⊥[cos(nφp)τx + sin(nφp)τy] ± vpzτz, (2)

where p⊥ = (p2
x + p2

y )1/2 and ± correspond to two valleys
acting, respectively, as the monopole (source) and anti-
monopole (sink) of Abelian Berry curvature. Around these
two points low-energy excitations are described in terms of
left and right chiral fermions, respectively. Momentum p is
measured from the Weyl node. The set of Pauli matrices τ =
(τx, τy, τz ) operates on the pseudospin indices. The energy
spectra in the immediate vicinity of the Weyl nodes take the
form ±εp, where ± correspond to the conduction and valence
bands, respectively, and

εp =
√

α2
n p2n

⊥ + v2 p2
z . (3)

For n = 1 and 2 the parameter αn bears the dimension of
velocity and inverse mass, respectively, while v is the Fermi
velocity in the z direction. The energy dispersions along
various high-symmetry directions for n = 1, 2, and 3 are
shown in Fig. 1.

The topological invariant of Weyl systems is given by
the integer (anti)monopole charge, which can be computed
in the following way. For concreteness, we now focus near
one valley, hosting left chiral fermions, and introduce the
coordinate system

(px, py, pz ) =
(

p⊥ cos φ, p⊥ sin φ,
εp

v
cos θ

)
, (4)

where p⊥ = (εp sin θ/αn)1/n. The Berry curvature of the con-
duction band then takes the form [53]

�p = n2α2
n

2ε2
p

(
εp sin θ

αn

)2(n−1)/n

h1ε̂, (5)

where ε̂ is the unit-norm radial vector and

h1 = 1

v

[
cos2 θ + v2

n2ε2
p

(
εp sin θ

αn

)2/n
]1/2

. (6)

The integer monopole charge can then be obtained by inte-
grating the Berry curvature over a unit sphere (
), defined by
εp = 1, around the Weyl node, yielding

1

2π

∮



�p · dS = n. (7)

Even though the low-energy model for multi-Weyl
semimetals correctly captures the topological invariant of the
system, one can construct the Weyl models with n > 1 by
coupling n copies (hereafter referred to as flavor) of simple
Weyl fermions in the following way. This construction follows

the spirit of realizing higher-order band touching in multi-
layer graphenelike systems by introducing interlayer tunnel-
ing [33,54,55]. In addition, this construction opens an efficient
route to arrive at the effective field theoretic description for
Weyl systems with n > 1 (see Sec. IV). We focus near the left
chiral valley and introduce the Hamiltonian operator

H coup
n = [v⊥(pxτx + pyτy) + vpzτz] ⊗ 1n×n

+�
(
τx ⊗ sn

x + τy ⊗ sn
y

)
, (8)

where 1n×n, sn
x , and sn

y operate on the flavor index, while
the τ operate on the pseudospin index. Note that the first
term in H coup

n corresponds to n decoupled flavors of simple
Weyl fermions, while the term proportional to � introduces
nontrivial coupling between them.1 For any integer n, 1n×n is
an n-dimensional identity matrix and sn are the generators of
the spin-(n − 1)/2 representation of SU(2). In particular, for
n = 2, sn = σ/2, where σ are the Pauli matrices, while for
n = 3,

sn
x = λ1 + λ6√

2
, sn

y = λ2 + λ7√
2

, sn
z = λ3 + √

3λ8

2
,

and λ are the Gell-Mann matrices [56]. In principle, one can
generalize this construction for an arbitrary integer value of n;
however, in a crystalline environment only Weyl nodes with
n � 3 are symmetry protected. So we focus here on Weyl
systems with n = 1, 2, and 3. The derivation of the low-energy
Hamiltonian [see Eq. (2)] for multi-Weyl semimetals with
n = 2 and 3, starting from the above coupled models, is shown
in Appendix A.

For n = 2 the energy spectra are composed of four
branches, given by ±ε

q
p , where

εq
p =

⎡
⎣(√

�2

4
+ v2

⊥ p2
⊥ − (−1)q �

2

)2

+ v2 p2
z

⎤
⎦

1/2

(9)

for q = 0 and 1 and ± correspond to the conduction and
valence bands, respectively. Note that only the q = 0 branch
displays band touching at p = 0, while the q = 1 branch is
fully gapped for any � �= 0. Expanding ε0

p for large � and
small p⊥, we obtain

ε0
p =

[
v4

⊥ p4
⊥

�2
+ v2 p2

z + O

(
v6

⊥ p6
⊥

�4

)]1/2

, (10)

which agrees with the expression from Eq. (3) to the order
p4

⊥, with α2 = v2
⊥/�, bearing the dimension of inverse mass.

Shortly, we show that the pair of split-off bands are topolog-
ically trivial, while the band touching point within the q = 0
sector acts as a monopole of charge n = 2. On the other hand,
for n = 3, the energy spectra are composed of six branches

1Note that the form of such interflavor coupling is not unique.
One can choose it to be �(τy ⊗ sn

x − τx ⊗ sn
y ), which leaves all the

physical outcomes unchanged.
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FIG. 2. Band structure of (a) simple (n = 1), (b) double (n = 2), and (c) triple (n = 3) Weyl semimetals from the corresponding effective
two band models [see Eqs. (15)–(18)]. We set t = t0 = tz = 1 in the tight-binding model, and the lattice constant a = 1. We here take the path
K → � → W → R → K , where K , �, W , and R stand for (π, π, π/2), (0, 0, 0), (0, 0, π/2), and (π, 0, π/2), respectively. The energy E is
measured in units of t . Note that Weyl nodes are located at (0, 0, ±π/2), around which dispersion always scales linearly in the z direction.
The insets display linear, quadratic, and cubic dispersion in the (kx, ky ) plane, respectively. Due to the absence of particle-hole asymmetry, the
Weyl nodes are always pinned at zero energy. Realizations of double- and triple-Weyl systems from four- and six-band models, respectively,
are shown in Fig. 3.

±ε
q
p for q = 0, 1, 2, where

εq
p =

{
v2

⊥ p2
⊥ + v2 p2

z + 2�2

3
+ 2�

3

√
6v2

⊥ p2
⊥ + �2

× cos

[
1

3
cos−1

(
9v2

⊥ p2
⊥�−2�3

2(6v2
⊥ p2

⊥+�2)3/2

)
−2π (2 − q)

3

]}1/2

.

(11)

Note that only the q = 0 branch displays band touching at
p = 0, which acts as a monopole of charge n = 3, while the
remaining four bands are completely gapped and topologi-
cally trivial. Expanding ε0

p for large � and small p⊥, we obtain

ε0
p =

[
v6

⊥ p6
⊥

�4
+ v2 p2

z + O

(
v8

⊥ p8
⊥

�6

)]1/2

, (12)

which agrees with Eq. (3) to the order p6
⊥, with α3 = v3

⊥/�2.
The above construction of generating multi-Weyl systems by
coupling simple-Weyl fermions, however, is not an artifact
of low-energy approximation. In Sec. III we show that such
construction is operative even when we start from the lattice
regularized models.

Finally, we compute the Berry curvature for each band
for multi-Weyl systems with n > 1, obtained by coupling
n flavors of simple Weyl fermions. For n = 2, we perform
this exercise analytically, by introducing the nonorthogonal
curvilinear coordinate system

px = p⊥ cos φ, py = p⊥ sin φ, pz = ε0
p cos θ, (13)

where now p2
⊥ = ε0

p sin θ (ε0
p sin θ + �) and ε0

p is displayed in
Eq. (9). In this coordinate system, the Berry curvature for the
lower conduction band takes a compact form

� = − � sin 2θ

ε0
p

(
� + 2ε0

p sin θ
)3 eθ

+ 2�ε0
p + 2 sin θ

[
�2 + 2ε0

p� sin θ + 2
(
ε0

p

)2
sin2 θ

]
ε0

p

(
� + 2ε0

p sin θ
)3 eε,

(14)

where eε = ∂r/∂ε0
p and eθ = ∂r/∂θ are the covariant basis

vectors. From the above expression for the Berry curvature,
we can immediately compute the integer charge associated
with the band touching point from Eq. (7), yielding n = 2
for any � �= 0. The expression for the Berry curvature for
the gapped valence and conduction bands is quite lengthy and
not very instructive. However, when we integrate the Berry
curvature over a closed surface [see Eq. (7)], it yields a trivial
answer. Therefore, in the four-band construction for double-
Weyl fermions, only the two bands touching each other are
topologically nontrivial. For triple-Weyl fermions four gapped
bands are topologically trivial, while the monopole charge of
the band touching points, where valence and conduction bands
meet, is n = 3.

III. LATTICE MODEL, BULK-BOUNDARY
CORRESPONDENCE, AND FERMI ARCS

In this section we introduce effective tight-binding models
of a cubic lattice yielding multi-Weyl semimetals, possessing
only two Weyl nodes. Subsequently, we establish the bulk-
boundary correspondence for these systems by computing
the Fermi arc surface states. These analyses substantiate
our discussion from the preceding section. In addition, we
also subscribe to these lattice models to test the predictions
from the effective field theory for multi-Weyl semimetals
(see Sec. IV), discussed in Sec. V.

A. Lattice models

The lattice model for general Weyl fermions can compactly
be written as

HWeyl =
∑

k

�
†
k[N(k) · τ]�k, (15)

where ��
k = (ck,↑, ck,↓) is a two-component spinor, with

ck,τ the fermion annihilation operator with momentum k and
pseudospin projection τ =↑,↓. The effective two-band theory
emerging from the above tight-binding model gives rise to left
and right chiral Weyl fermions near (0, 0,± π

2a ), respectively,

013007-5



DANTAS, PEÑA-BENITEZ, ROY, and SURÓWKA PHYSICAL REVIEW RESEARCH 2, 013007 (2020)

if we choose

N3(k) = tz cos(kza) + t0[2 − cos(kxa) − cos(kya)]. (16)

For convenience, we set the lattice spacing a to be unity. Then
simple, double-, and triple-Weyl fermions are realized when
we set [57–59]

Nx(k) = t ×
⎧⎨
⎩

sin(kx ) for n = 1
cos(kx ) − cos(ky) for n = 2
sin(kx )[3 cos(ky) − cos(kx ) − 2] for n = 3

(17)
and

Ny(k) = t ×
⎧⎨
⎩

sin(ky) for n = 1
sin(kx ) sin(ky) for n = 2
sin(ky)[3 cos(kx ) − cos(ky) − 2] for n = 3.

(18)
The resulting band structures for n = 1, 2, and 3 are shown
in Fig. 2. Notice that the above tight-binding models produce
only a pair of Weyl nodes at (0, 0,±π/2), around which the
effective low-energy models assume the form announced in
Sec. II [see Eq. (2)].

The band touching points in multi-Weyl semimetals are
protected by the four-four or C4 rotation about the z axis, a
bona fide symmetry operation of the D4d point group. Under
such a C4 rotation (kx, ky, kz ) → (−ky, kx, kz ). When such
rotation in the momentum space is accompanied by a rotation
by an angle θn

SP = n π
2 in the pseudospin space, captured by

the unitary operator RSP(n π
2 ) = exp(iθn

SPτz ), the Hamiltonian
operator for n = 1 and 2 remains completely invariant. The
situation for n = 3 is slightly more subtle, as Nx,y(k) →
−Nx,y(k). Nonetheless, the monopole and antimonopole map
onto themselves under such C4 rotations, leaving the triple-
Weyl points symmetry protected. On the other hand, if we
take Nx(k) ↔ Ny(k) for n = 3, all the outcomes remain un-
changed, but the corresponding Hamiltonian operator remains
completely invariant under the C4 rotation. Hence, multi-Weyl
points are symmetry protected in a system possessing a D4d

symmetry.
The multi-Weyl semimetals with n > 1 can also be realized

by properly coupling n copies of simple Weyl semimetals.
We discussed this construction from the continuum or low-
energy models in Sec. II. We now test the validity of such a
construction, starting from the lattice models for n = 1 Weyl
fermions, given by

HSW = t[sin(kx )τx + sin(ky)τy] + {tz cos(kz )

+ t0[2 − cos(kx ) − cos(ky)]}τz. (19)

Following Eq. (8), we construct the lattice model for multi-
Weyl semimetals by coupling n copies of simple Weyl
semimetals according to

H coup
n,latt = HSW ⊗ 1n×n + �

(
τx ⊗ sn

x + τy ⊗ sn
y

)
. (20)

The notation is the same as in Sec. II. The resulting band struc-
tures for n = 2 and 3 are shown in Fig. 3. For n = 2 and 3, two
and four bands are completely gapped, respectively, while the
two remaining bands touch each other at (0, 0,±π/2). The
energy dispersions around these points are quadratic and cu-
bic, respectively, with the in-plane components of momenta,
but always scale linearly with their z component.

FIG. 3. Band structure of (a) double- and (b) triple-Weyl
semimetals from four- and six-band models, respectively [see
Eqs. (19) and (20)]. For numerical diagonalization we set t = t0 =
tz = � = 1 in the tight-binding models, and the lattice spacing a =
1. Note that these models also display quadratic [see (a)] and cubic
[see (b)] dispersion in the (kx, ky ) plane around the Weyl nodes
located at W = (0, 0,±π/2) [compare with Figs. 2(b) and 2(c)]. The
dispersion always scales linearly with kz.

B. Fermi arcs

Previously, in Sec. II, we showed that the four- and
six-band models for double- and triple-Weyl fermions, re-
spectively [see Eq. (8)], and their low-energy description in
terms of the two-band models [see Eq. (2)] yield identical
topological invariants (the monopole charge). The monopole
charge determines the integer topological invariant of the
system that in turn also dictates the number of topologically
protected Fermi arc surface states, connecting two Weyl nodes
of opposite chiralities. Therefore, equivalence between the
four- (six-) band model for the double- (triple-) Weyl fermions
[see Eq. (20)] and their two-band models [see Eqs. (15)–(18)]
can be established by comparing the number of Fermi arcs
for multi-Weyl systems from these two sets of tight-binding
models. The results are shown in Figs. 4 and 5.

To compute the Fermi arc surface states we impose peri-
odic boundaries in the y and z directions such that ky and
kz can be treated as good quantum numbers. However, we
implement an open boundary in the x direction, along which
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FIG. 4. Topologically protected Fermi arc surface states for (a) simple (n = 1), (b) double- (n = 2), and (c) triple- (n = 3) Weyl semimetals,
obtained from their two-band models [see Eqs. (15)–(18)]. For numerical diagonalization we implement a mixed momentum (along ky and kz)
and real-space or Wannier (along x) representation. The linear dimensionality of the system along x is L = 60 (see Sec. III B for details).
Consequently, the Fermi arc surface states are localized on the top and bottom surfaces. We set t = tz = t0 = 1. We display here the square of
the amplitude of the low-energy states within an energy window �E = 0.1 for n = 1, �E = 0.08 for n = 2, and �E = 0.05 for n = 3 around
zero energy. The number of Fermi arcs is equal to n, anchoring the bulk-boundary correspondence for multi-Weyl semimetals. In addition,
the Fermi arcs from opposite surfaces (top and bottom) get connected through the bulk Weyl points (acting as defects, namely, monopole and
antimonopole, in the momentum space), where the band gap vanishes.

the linear dimensionality of the system is denoted by L
[60,61]. In such a mixed Bloch-Wannier representation, the
Fermi arcs are localized on the top and bottom surfaces, as
shown in Figs. 4 and 5. Specifically, in Fig. 4 we show the
topologically protected Fermi arcs for multi-Weyl semimet-
als, constructed from their two-band tight-binding models
[see Eqs. (15)–(18)]. We find that a multi-Weyl semimetal,
characterized by integer (anti)monopole charge n, supports
exactly n copies of Fermi arc surface states. This observation
establishes the bulk-boundary correspondence for this family
of gapless topological semimetals. On the other hand, in Fig. 5
we show the Fermi arcs for double- and triple-Weyl semimet-
als, but constructed from the four- and six-band models [see
Eqs. (19) and (20)], respectively. Once again we find that these
two systems host, respectively, two and three copies of the
Fermi arcs on the top and bottom surfaces. This outcome,
besides supporting the bulk-boundary correspondence, also
anchors the topological equivalence between the multiband
and two-band representations for the double- and triple-Weyl
semimetals on a lattice. To appreciate some additional salient
features of the arc states, next we consider their microscopic
origin.

Any general Weyl semimetal hosting an (anti)monopole
of charge n can be constructed by stacking two-dimensional
layers of quantum anomalous Hall insulators, occupying the
xy plane, in the momentum space along the kz direction
within the range −K0 � kz � K0, where K0 = π

2 in our lattice
construction. The first Chern number of each such anomalous
Hall insulator is n and it supports n copies of one-dimensional
chiral edge modes, with n states at precisely zero energy.
The collection of such zero-energy states within the range
−K0 � kz � K0 constitutes n copies of the Fermi arc surface
states, shown in Figs. 4 and 5. Also note that the localization

length of each zero-energy mode is inversely proportional to
the bulk gap of the underlying two-dimensional anomalous
Hall insulator for a given kz. In our lattice models, such
a gap is largest when kz = 0 and it vanishes at kz = ±π

2 .
Otherwise, this gap decreases smoothly as we approach kz =
±π

2 from the center of the surface Brillouin zone (kz = 0).
Consequently, the surface localization of each copy of Fermi
arcs decreases monotonically as we approach two Weyl points
from the center of the arcs. Ultimately, at kz = ±π

2 the arcs
are completely delocalized, and at these two points arcs from
the top and bottom surfaces get connected via the bulk Weyl
nodes. This feature can be seen from Figs. 4 and 5. Next we
proceed to derive the effective field theory of these systems.

IV. EFFECTIVE FIELD THEORY

All global symmetries, present in a classical action, do not
necessarily survive after quantization [1]. Possibly the best
known examples of this phenomenon are the ones related
to the chiral anomalies. In particular, the axial anomaly is
responsible for the celebrated decay of the pion into two pho-
tons [2,3]. Furthermore, it also leaves signatures on anomaly-
induced transports that have recently attracted ample attention
in the context of Dirac and Weyl semimetals in condensed-
matter systems, quark-gluon plasma in heavy-ion colliders,
and magnetized plasmas in cosmology, for example. In this
section we derive the effective field theory for multi-Weyl
semimetals, reveal the anomaly structure therein, and discuss
the imprints of the anomaly structure on various transports.

After establishing the Hamiltonian description for multi-
Weyl semimetals, we seek to formulate the corresponding
Lagrangian formalism, which allows us to derive the effective
field theory for these systems. Performing a Legendre
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FIG. 5. Fermi arc surface states for (a) double- (n = 2) and
(b) triple- (n = 3) Weyl semimetals, obtained, respectively, from
four- and six-band models [see Eqs. (19) and (20)]. For numerical di-
agonalization we follow the same approach, mentioned in the caption
of Fig. 4, and set t = tz = t0 = � = 1 and a = 1. We display here
the square of the amplitude of the low-energy states within an energy
window �E = 0.05 for n = 2 and �E = 0.04 for n = 3. Note that
double- and triple-Weyl semimetals support, respectively, two and
three copies of Fermi arc surface states, as we obtained from their
two-band representations [see Figs. 4(b) and 4(c)]. This observation
establishes the topological equivalence among these models and the
bulk-boundary correspondence in these gapless topological systems.
The color scale is the same as in Fig. 4.

transformation on the continuum Hamiltonian [see Eq. (8)],
we obtain the Lagrangian for left chiral fermions (ψL)

LL = iψ†
Lτμ

[
∂μ − i�

(
δx
μsx + δy

μsy
)]

ψL, (21)

where τμ = (1, �τ ). Einstein’s summation convention over
repeated indices is assumed throughout. The above expression
allows us to construct a generalized formalism for multi-
Weyl semimetals with a non-Abelian U(2)L flavor symmetry,
in the presence of a non-Abelian background gauge field
Aa

μsa = A0
μs0 + Ai

μsi according to

LL = iψ†
Lτμ

[
∂μ − iAa

μsa
]
ψL, (22)

where sa = (s0, si ) with i = x, y, z are the generators of
U(1)L × SU(2)L. In particular, the static background field
giving rise to nonlinear dispersion (in the xy plane) in multi-
Weyl systems can be written as

Aa
μ = �

(
δx
μδax + δy

μδay
)
. (23)

From now on, we denote the field strength associated with
Aμ by Fμν , the Abelian gauge field by Fμν , and the SU(2)
gauge field by Gμν . Note that the non-Abelian field, giving
rise to the multi-Weyl semimetals, picks a preferred direction
and reduces the initial SO(3, 1) × SU(2)L symmetry group of
n decoupled copies of simple Weyl fermions to the diagonal
SO(1, 1) × U(1)3L symmetry.

Let us assume that we have a theory for left chiral fermions,
transforming in some representation R(G) of the Lie group G.
The corresponding generators sa of the Lie algebra satisfy

[sa, sb] = i f abcsc, (24)

where f abc is the structure factor of the Lie group G. For the-
ories with such a flavor symmetry, the associated anomalous
currents Jμ

a satisfy the Ward identities in their covariant form

DμJμ
a = dabc

32π2
εμνρλF b

μνF c
ρλ + ba

768π2
εμνρλRα

βμνRβ
αρλ, (25)

∇μT μ
ν = F a

νμJμ
a + ba

384π2
Dμ

(
εσκρλF a

κσ Rνμρλ

)
, (26)

where Dμ is the covariant derivative containing the gauge
and metric connections, ∇μ is the curved space covariant
derivative, Rνμρλ is the Riemann curvature tensor, T μν is
the stress-energy tensor, and the anomalous coefficients are
dabc = 1

2 Tr[{sa, sb}sc] and ba = Tr[sa] [1,43].2 The currents
Jμ

a cannot be obtained by varying an action with respect to the
background fields Aa

μ and normally they are called covariant
currents. Nonetheless, there exist the consistent currents J̃μ

a
related to Jμ

a by the addition of a Chern-Simons polyno-
mial. The consistent currents can be defined as a functional
derivative of the action with respect to the background field
according to J̃μ

a = δW/δAa
μ, where Jμ

a = J̃μ
a + Kμ

a , with

Kμ
a = − 1

48π2
εμνρλTr[sa({Aν, Fρλ} − AνAρAλ)]. (27)

Thus, the consistent Ward identity reads

DμJ̃μ
a = 1

24π2
εμνρσ Tr

[
sa∂μ

(
Aν∂ρAσ + 1

2
AνAρAσ

)]

+ ba

768π2
εμνρλRα

βμνRβ
αρλ. (28)

To illustrate the applicability of the general theoretical
framework discussed so far, we now focus on a theory with
one copy of left- and right-handed fermions, coupled to
Abelian gauge fields. The Ward identities for the consistent
current J̃μ

e = J̃μ
L + J̃μ

R that couples to the gauge field Aμ =
1
2 (AL

μ + AR
μ) and the axial current, defined as J̃μ

5 = J̃μ
L − J̃μ

R ,
read, respectively,

∇μJ̃μ
e = 1

32π2
εμνρλFμνF5

ρλ, (29)

∇μJ̃μ

5 = 1

48π2
εμνρλ

(
FμνFρλ + F5

μνF5
ρλ

)
+ 1

768π2
εμνρλRα

βμνRβ
αρλ. (30)

The conservation of electric charge requires that the combina-
tion U(1)L + U(1)R ≡ U(1)e should be conserved. However,
in Eq. (29) the vector current J̃μ

e is not conserved.3 Nonethe-
less, this issue can be resolved by noting that the theory is not
gauge invariant. Hence, one can add a counterterm, known as

2For right chiral fermions dabc=− 1
2 Tr[{sa, sb}sc] and ba = −Tr[sa].

3Notice that Eq. (29) is an operator equation. Therefore, even
though at the fundamental level axial gauge fields do not exist, the
three-point function 〈∂μJ̃μ

e J̃ν
e J̃ρ

5 〉 �= 0 spoils the consistency of the
theory.
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the Bardeen counterterm

WBCT = − 1

12π2

∫
d4x εμνρλAe

μA5
νFρλ, (31)

to the original action, which reestablishes the U(1)e gauge
invariance. After introducing this local polynomial, the Ward
identities for the newly defined consistent currents

je = J̃e + δWBCT

δAe
μ

, j5 = J̃5 + δWBCT

δA5
μ

(32)

read, respectively,

∇μ jμe = 0, (33)

∇μ jμ5 = 1

16π2
εμνρλ

(
FμνFρλ + 1

3
F5

μνF5
ρλ

)

+ 1

768π2
εμνρλRα

βμνRβ
αρλ. (34)

Only after such a redefinition, the current jμe associated with
the U(1)e electric charge is conserved, while the axial current
jμ5 remains anomalous. The above construction has a natural
generalization to the theories with non-Abelian anomalies,
which we discuss next.

A. Theory with U(1) × SU(2) flavor symmetries

Now we consider multi-Weyl semimetals, in which the
left- and right-handed fermions transform under an SU(2)L/R

representation. In this case, the (covariant) anomalous Ward
identities [see Eq. (25)] read

∇μJμ
e = n

8π2
εμνρλFμνF5

ρλ + c(n)

8π2
εμνρλGi

μνG5i
ρλ, (35)

∇μJμ

5 = n

16π2
εμνρλ

(
FμνFρλ + F5

μνF5
ρλ

)
+ c(n)

16π2
εμνρλ

(
Gi

μνGi
ρλ + G5i

μνG5i
ρλ

)
+ n

384π2
εμνρλRα

βμνRβ

αρλ, (36)

DμJμ
i = c(n)

8π2
εμνρλ

(
FμνG5i

ρλ + F5
μνGi

ρλ

)
, (37)

DμJμ

i,5 = c(n)

8π2
εμνρλ

(
FμνGi

ρλ + F5
μνG5i

ρλ

)
, (38)

where c(n) is defined via the relation Tr(sis j ) = c(n)δi j for
n > 1. For our choices of the generators, c(2) = 1

2 and
c(3) = 2. As discussed in the preceding section, the covariant
current cannot be obtained by differentiating any functional of
the gauge fields. Therefore, they do not couple to the gauge
fields. However, Bardeen computed the proper counterterm
to construct conserved vector consistent currents [7].4 Com-
bining the Bardeen counterterms with the Bardeen-Zumino
polynomial [see Eq. (27)] [29,62], we can write the Chern-
Simons current, relating the covariant and consistent currents

4We impose the conservation of the vector non-Abelian current be-
cause the continuum version of the lattice C4 symmetry corresponds
to U(1)3e = U(1)3L + U(1)3R , discussed in the preceding section.

according to

Jμ
a = jμa + Pμ

a , (39)

where

Pμ
a = 1

8π2
εμνρλTr

[
sa

(
A5

νFρλ + FρλA5
ν + 8

3
iA5

νA5
ρA5

λ

)]
, (40)

Pμ

a,5 = 1

24π2
εμνρλTr

[
sa
(
A5

νF 5
ρλ + F 5

ρλA5
ν

)]
. (41)

Having understood the anomalous structure of the effective
field theory, we now extract the anomaly-induced transport
coefficients for multi-Weyl systems.

B. Anomaly-induced transport

Chiral fermions exhibit nondissipative transport at finite
temperature T and density μ, which are intimately related to
the chiral anomalies discussed in the previous sections. In par-
ticular, the covariant currents within the linear-response ap-
proximation were computed in Refs. [40,41,63–69] and read5

Jμ
a = σ B

abBμ

b + σV
a ωμ, (42)

T μν = σ ε,B
a u(μBν)

a + σ ε,V u(μων), (43)

where A(μCν) = (AμCν + AνCμ)/2. The magnetic and vortic-
ity fields are defined, respectively, as

Bν
a = εμνρλuν∇ρAa

λ, ωμ = εμνρλuν∇ρuλ (44)

and uμ is a unit-norm timelike vector. The nondissipative
currents give rise to (a) chiral magnetic conductivities (σ B

ab
and σ ε,B

a ) and (b) chiral vortical conductivities (σV
a and σ ε,V ).

In the absence of dynamical gauge fields, these quantities are
universal and solely determined by the anomaly. In addition,
they are given by

σ B
ab = 1

4π2
dabcμ

c, (45)

σV
a = σ ε,B

a = 1

8π2
dabcμ

bμc + T 2

24
ba, (46)

σ ε,V = 1

12π2
dabcμ

aμbμc + T 2

12
baμ

a, (47)

where μa = (μ,μi ), with μ and μi denoting the regular and
flavor chemical potentials, respectively.

For a theory with U(1)e × U(1)5 symmetry (describing
a simple Weyl semimetal with n = 1), the vector and axial
covariant currents are given, respectively, by

Je = μ5

2π2
B + μ

2π2
B5 + μμ5

2π2
ω, (48)

J5 = μ

2π2
B + μ5

2π2
B5 +

(
μ2 + μ2

5

4π2
+ T 2

12

)
ω. (49)

5These expressions assume linear response; therefore, in the defini-
tion of the non-Abelian magnetic fields, only the linear terms in the
gauge fields are considered.
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On the other hand, the covariant current arising from the
energy-momentum tensor, Ji

ε = T i0, is

Jε = μμ5

2π2
B +

(
μ2 + μ2

5

4π2
+ T 2

12

)
B5

+
(

μ5

6π2

(
3μ2 + μ2

5

) + μ5T 2

6

)
ω. (50)

In the above expressions, we introduce the quantities μ =
μR + μL, μ5 = μL − μR, AL

μ = Aμ+A5
μ, and AR

μ=Aμ−A5
μ.

However, as discussed in Sec. IV, the covariant electric cur-
rent does not couple to the electromagnetic field. The proper
conserved current that couples to the photon is the consistent
current, obtained after including the contribution from the
Bardeen-Zumino polynomial and Bardeen counterterm [see
Eq. (40)], leading to the expressions

ρe = 1

2π2
b · B, (51)

je = μ

2π2
B5 + μμ5

2π2
ω + 1

2π2
E × b, (52)

ρ5 = 1

6π2
b · B5, (53)

j5 = μ

2π2
B + μ5

3π2
B5 +

(
μ2 + μ2

5

4π2
+ T 2

12

)
ω

+ 1

6π2
E5 × b. (54)

While arriving at the final expression, we have used A5
μ =

(μ5, b), in order for the model to describe a time-reversal
symmetry-breaking Weyl semimetal. In this construction, the
separation of two Weyl nodes is 2|b|. Note that the covariant
current Je has a contribution ∼μ5B, which captures the static
chiral magnetic effect. However, the Chern-Simons current
contains a contribution −A5

0B ≡ −μ5B, which exactly can-
cels such a contribution in the conserved current. Therefore,
Weyl systems do not exhibit any static chiral magnetic effect
in the vector current je [70].

After establishing the current operators for the Abelian
field theory with U(1)e × U(1)5 symmetry, we now construct
both the Abelian and non-Abelian currents from the field-
theoretic description of the multi-Weyl systems, possessing a
U(1)e × U(1)5 × SU(2)e × SU(2)5 symmetry. At this stage,
we introduce the notion of the isospin chemical potentials
μ3 = μ3

L + μ3
R and μ35 = μ3

L − μ3
R, respectively, and the cor-

responding vector and axial gauge fields A3,L
μ = A3

μ + A35
μ

and A3,R
μ = A3

μ − A35
μ . The covariant Abelian currents now

read

Je = n

2π2
(μ5B + μB5) + c(n)

2π2

(
μ35 B3 + μ3B35

)
,

J5 = n

2π2
(μB + μ5B5) + c(n)

2π2

(
μ3B3 + μ35 B35

)
. (55)

For the sake of simplicity, we ignore here the contribu-
tion from the vortical conductivities and the energy current,
which we show in Appendix B. To arrive at the consistent
currents, we need to evaluate the Chern-Simons polynomial
[see Eq. (40)] and add it to the above covariant currents. In
particular, for the Abelian charge densities and currents we

obtain

ρe = n

2π2
b · B, (56)

je = n

2π2
μB5 + c(n)

2π2
μ3B35 + n

2π2
E × b, (57)

ρ5 = n

6π2
b · B5 (58)

j5 = n

2π2
μB + n

3π2
μ5B5 + c(n)

2π2
μ3B3 + c(n)

3π2
μ35 B35

+ n

6π2
E5 × b. (59)

On the other hand, the non-Abelian densities and currents take
the forms

ρ3 = c(n)

2π2
b · B3, (60)

j3 = c(n)

2π2
μB35 + c(n)

2π2
μ3B5 + c(n)

2π2
E3 × b, (61)

ρ35 = c(n)

2π2
b · B35 + c(n)

6π2
b · B35 , (62)

j35 = c(n)

2π2
μ3B + c(n)

3π2
μ35 B5 + c(n)

2π2
μB3

+ c(n)

3π2
μ5B35 + c(n)

6π2
E35 × b. (63)

In order to relate these currents with the multi-Weyl semimetal
we need to take into account the presence of the non-Abelian
background field A = �(0, sx, sy, 0). The presence of such
a background field introduces a non-Abelian magnetic field
B3 = (0, 0,�2).

However, there are two issues associated with such a
background field that we should address. The first one is
associated with the fact that the transport coefficients shown
before were computed using the linear-response theory and
the actual magnetic field corresponds to a nonlinear con-
tribution; second, the parameter � also breaks the SU(2)
symmetry, spoiling the anomaly protection of the current,
shown in Eqs. (60)–(63). We deal with this subtlety in Sec. VI.
Prior to that, we proceed to anchor some of the predictions
from the effective field theory for multi-Weyl semimetals to
their lattice realizations.

V. ANOMALOUS RESPONSES FROM LATTICE MODELS

In the previous sections, we established the low-energy
models (both in the continuum and from the tight-binding
models on a cubic lattice) and the effective field theoretic
description for multi-Weyl semimetals. We now test the pre-
dictions from the effective field theory (see Sec. IV) by
computing some specific observables or expectation values
of some operators from the lattice regularized models, intro-
duced in Sec. III A. We first focus on the Abelian sector, for
which the anomalous Hall effect yields the relations between
the charge (ρe) and current (je) densities

ρe = n
e2

2π2
(b · B), je = n

e2

2π2
(b × E), (64)
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FIG. 6. Charge density δQ, measured in units of e/π , in the vicinity of the flux tubes placed at x = L/4 (yielding δQ > 0) and x = −L/4
(yielding δQ < 0) [see Eq. (65)] for simple Weyl (SW), double Weyl (DW), and triple Weyl (TW) semimetals. Results for simple Weyl
semimetal are always obtained from the two-band model. By contrast, for the double- (triple-) Weyl semimetals, we compute δQ from (a) four-
(six-) and (b) two-band models. Here � is the magnetic flux, measured in units of the flux quanta �0 = 2π/e (in natural units h̄ = c = 1). For
numerical analysis, we always set t = tz = t0 = 1 and Lz = 200, where Lz is the number of points in the momentum space along the kz direction.
Specifically, for (a) we set � = 0.2 and L = 24, while for (b) L = 48, where L is the linear dimension of the system in the x and y directions.
The dots correspond to numerically computed values of δQ, whereas the straight lines follow the relation δQ = n e

2π
(b · B) ≡ nb(�/�0 ), where

n is the monopole charge of the Weyl nodes, located at b = (0, 0, ±b), and b = π/2. This analysis establishes excellent agreement between
the field-theoretic predictions and the scaling of the corresponding observable computed from the lattice models.

where n is the monopole charge, e is the Abelian electric
charge, B(E) is the external magnetic (electric) field, and
the Weyl points are located at b = (0, 0,±b). In our lattice
models, b = π/2a, where a is the lattice spacing, set equal to
unity for convenience.

Since the charge and current densities arise, respectively,
from the temporal and spatial components of the same Chern-
Simons current, we only compute ρe from the lattice model.
To this end, we consider a cubic lattice, with L sites in the x
and y directions, and preserve translational invariance along
the z direction (leaving kz as a good quantum number). We
impose periodic boundaries in the x and y directions. The
effect of the magnetic field can be incorporated via the Peierls
substitution: Hopping terms between lattice sites at ri and r f

acquire the phase exp[ 2π i
�0

∫ r f

ri
A · dr], where A is the Abelian

vector potential and �0 = hc/e is the flux quantum. In what
follows, the magnetic field assumes the profile [71]

B = �

[
δ

(
x − L

4

)
− δ

(
x + L

4

)]
δ(y)ẑ, (65)

where � is the flux produced by the external magnetic field
and δ is the Dirac delta function. For convenience, we work in
the Landau gauge, given by

A = �

[
�

(
x − L

4

)
− �

(
x + L

4

)]
δ(y)ŷ, (66)

where � is the Heaviside step function.
Upon numerically diagonalizing the tight-binding model in

the presence of such a singular magnetic field, we compute
the charge accumulation at a given point (x, y) from the
expression

ρe(x, y) = e
∑
Ei<0

∑
α

∑
kz

|�α (x, y, kz, Ei )|2, (67)

where α is the pseudospin and flavor multi-index,
�α (x, y, kz, Ei ) is the eigenstate with energy Ei, and the
summation is performed over the ground-state configuration,
hence Ei < 0. In order to perform the summation over kz,
we discretize the interval kz ∈ (−π, π ) into Lz points. The
accumulated charge density around the flux tube located at
x = L/4 is given by

δQ =
L/2∑
x=1

L∑
y=1

ρe(x, y)

Lz
. (68)

The scaling of δQ with � for multi-Weyl semimetals is shown
in Fig. 6.

We now compare the outcomes with the field-theoretic
predictions. In natural units (h̄ = c = 1), the flux quantum is
�0 = 2π/e, and when we measure the accumulated charge
density in units of e/π , the anomaly equation for ρe or δQ
from Eq. (64) becomes

δQ = nb

(
�

�0

)
. (69)

Note that, in numerical analysis, ρ or δQ is measured with
respect to its expectation value in the absence of the exter-
nal magnetic field. For simple Weyl semimetals we always
compute this quantity from the two-band model. However,
for double- (triple-) Weyl semimetals we compute this quan-
tity from the four- (six-) [see Fig. 6(a)] and two-band [see
Fig. 6(b)] models. From Fig. 6 we find that the slope of the
straight lines in the (�/�0, δQ) plane is given by nπ/2 for
weak enough magnetic fields (Ba2 � 1), irrespective of the
microscopic details. These results establish excellent agree-
ment with the field-theoretic predictions.
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FIG. 7. Non-Abelian or isospin density ρ3 as a function of the
non-Abelian magnetic field �2, computed numerically from the four-
and six-band models for the double-Weyl and triple-Weyl semimet-
als, respectively. For numerical analysis we set t = tz = t0 = 1 and
discretize each momentum direction into 41 points in the Brillouin
zone. In our construction, |B3| = �2 and b = π/2.

Next we focus on the anomalous Hall effect for the non-
Abelian density (ρ3) and current (J3), given by

ρ3 = c(n)

2π2
(b · B3), j3 = c(n)

2π2
(E3 × b), (70)

where B3 (E3) is the non-Abelian magnetic (electric) field,
pointing in the z direction in the flavor/isospin space, and
c(n) = 1

2 (2) for n = 2 (3). Recall that the above set of non-
Abelian anomaly equations are only germane for multi-Weyl
semimetals with n > 1. To test the validity of the field-
theoretic predictions, we compute the non-Abelian or isospin
density ρ3 from the lattice models for double- and triple-Weyl
fermions. Note that the presence of the non-Abelian field is
transparent only in the four- (six-) band models for double
(triple) Weyl semimetals, and in particular B3 = (0, 0,�2).
Thus, we compute ρ3 from these models only. Since B3 is an
intrinsic homogenous field, the computation is performed in
the momentum space representation of the corresponding lat-
tice models. In particular, ρ3 is computed from the expression

ρ3 = 1

LxLyLz

∑
Ei<0

∑
k

〈�(Ei, k)|τ0 ⊗ sn
3|�(Ei, k)〉, (71)

where Lj is the number of sites in the k j direction in the
momentum space, where j = x, y, z. The results are displayed
in Fig. 7.

Numerically evaluated ρ3 is compared with �2 (strength
of the non-Abelian magnetic field B3), and we find an ex-
cellent linear dependence of ρ3 on �2 for n = 2 and 3 for
small �2 such that �a � 1. The slopes of the linear fits are
given, respectively, by b/4π2 ≡ 1/8π3 and b/π2 ≡ 1/2π3

for n = 2 and 3, since in our lattice construction b = π/2.
This observation establishes excellent agreement between the
field-theoretic predictions on the non-Abelian anomaly for
multi-Weyl semimetals and the numerical findings from the
lattice models.

In the context of non-Abelian anomaly, a comment is
due at this stage. We note that the isospin density operator

τ0 ⊗ sn
3 defined in the four- (six-) band models for double-

(triple-) Weyl semimetal reduces to σ3 in their low-energy
sector (emergent two-band description). In principle, we can
compute the expectation value for this operator σ3 from the
two-band models for the double- and triple-Weyl semimet-
als. However, note that the operator σ3 can be obtained by
projecting multiple operators defined in the four- or six-
band model. Hence, the inverse of the projection operation is
not unique. Consequently, even though the expectation value
of σ3, namely, 〈σ3〉, is finite, we find that in general it is
much larger than the pure non-Abelian anomaly contribution.
Presently, there is no known procedure to isolate the contri-
bution in 〈σ3〉 arising purely from the non-Abelian anomaly.
This is the reason we do not display the results on the scaling
of 〈σ3〉 with |B3| = �2.

VI. ANOMALOUS TRANSPORT FROM HOLOGRAPHY

As discussed in Sec. IV, the presence of the background
non-Abelian gauge field breaks the original global symmetry
group. For the sake of simplicity, we consider only left-
handed matter fields. In this case, the starting symmetry group
is SO(3, 1) × SU(2)L × U(1)L, which gets broken down to
SO(1, 1) × U(1)3L × U(1)L by the background gauge field.
This explicit symmetry breaking generates a renormalization-
group (RG) flow from a conformal field theory in the ultra-
violet (UV) to an anisotropic system in the infrared (IR), as
the one described by the effective multi-Weyl Hamiltonian in
Eq. (2). Therefore, along the RG trajectory the anomalous
conductivities are not necessarily anomaly protected. How-
ever, in some cases the IR conductivities show a universal
behavior [38,39].

In order to understand the one-point functions of the cur-
rents at very low energies, it is necessary to select a specific
model. We focus on a strongly coupled theory with a holo-
graphic dual, considering the simplicity of the computations
of one-point functions in this case. A second reason for se-
lecting a holographic model is associated with the ambiguities
we may encounter related to different regularization schemes
[11,13] in perturbative quantum field theories. Fortunately,
in holography these ambiguities are not present due to the
existence of a natural regulator [location of the anti–de Sitter
(AdS) boundary]. As a matter of fact, holography has been
a vital tool for the understanding of the anomaly-induced
transport [12,42,72,73], and our main goal is to qualitatively
demonstrate whether the predicted transport coefficients sur-
vive along the RG flow.

As our first approach to the problem, and for simplicity,
we consider only the response of the charged current to
external gauge fields. We leave the study of chiral vortical
conductivities and the response in the energy momentum
tensor for future investigation. That allows us to make the
probe approximation, in which the bulk gauge fields do not
backreact on the geometry. As a consequence, the mixed
gauge-gravitational anomaly decouples. However, as already
seen in previous sections, the mixed anomaly is relevant for
the chiral vortical or chiral magnetic effects in the energy
current.

In holography, the problem of quantum anomalies is well
understood and their presence is realized via the introduction
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of Chern-Simons terms in the bulk action. Our perspective is
completely phenomenological, i.e., bottom up. We assume the
existence of a large Nc (color number) and strongly coupled
gauge theory with a holographic dual and with the same
anomaly structure as in our multi-Weyl system. Therefore, the
simplest holographic model we can construct has the form

S = −
∫

Tr

[
1

2n
F ∧ �F + 1

2c(n)
G ∧ �G

+ λ

(
A ∧ (dA)2 + 3

2
A3 ∧ dA + 3

5
A5

)]
, (72)

where the gauge fields are defined as

A = A0s0, A = Aisi, A = A + A, (73)

with sa = (s0, si ) the identity and SU(2) generators introduced
in Sec. II. The corresponding field strengths associated with
the gauge fields are

F = dA, G = dA − iA2, F = F + G. (74)

We seek to compute the anomalous currents at finite tem-
perature. To do so, we need a finite-temperature background
geometry, which we choose to be the Schwarzschild-AdS
black hole

ds2 = 1

r2

(
−u(r)dt2 + 1

u(r)
dr2 + dx2 + dy2 + dz2

)
, (75)

with the horizon at rh = 1 and the blackening factor u(r) =
1 − r2. In these units the Hawking temperature is given by
T = π−1.

To connect the Chern-Simons term in the action (72) with
the anomaly, we use the fact that the gauge-gravity dual-
ity establishes that the on-shell action S corresponds to the
boundary quantum field theory effective action W [A], with

W [A] = Son-shell[A]. (76)

Therefore, after performing a bulk gauge transforma-
tion δθAM = −DMθ , where M = 0, 1, . . . , 4 and xM =
(t, x, y, z, r), we reproduce the expression

δθW (A) =
∫

d4x θaGa[A], (77)

where Ga is the anomaly [see the right-hand side of Eq. (28)].
This computation shows how the anomaly is realized within
the holographic setup and allows us to set the coupling λ,

λ = Nc

24π2
. (78)

As the next step we define the holographic one-point functions
by taking functional derivatives of Eq. (76). In particular,
derivatives with respect to the gauge fields generate the
(unrenormalized) consistent charged currents

J̃μ
a = δS

δAa
μ

= √−g
(
2F rμ

a − Kμ
a [A]

)∣∣
boundary, (79)

where

Kμ
a [A] = −λ

2
εμνρσ Tr[sa({Aν, Fρσ } − AνAρAσ )] (80)

FIG. 8. Renormalization of the background non-Abelian gauge
field for different chemical potentials (see the inset) as a function
of �̄. The IR values correspond to �̄ → ∞. The dashed line corre-
sponds to a linear fit Z = �̄.

is precisely the Bardeen-Zumino polynomial. Consequently,
we can read from Eq. (79) the holographic definition of the
(unrenormalized) covariant current

Jμ
a = 2

√−gF rμ
a

∣∣
boundary. (81)

After defining the model, we introduce the bulk gauge
field ansatz, which is dual to the boundary field theory
at finite density and temperature. Furthermore, in order to
study the anomaly-induced currents, we introduce an external
background magnetic field B = (0, 0, B) and the symmetry-
breaking non-Abelian gauge field responsible for the multi-
Weyl spectrum in the weakly coupled model. Thus, the bulk
gauge field at the boundary has to take the value

A(rb) = (μs0 + μ3sz )dt + �(sxdx + sydy) + xBs0dy. (82)

With all these ingredients, the simplest ansatz we need to
consider takes the form

A(r) = [
At (r)s0 + A3

t (r)sz
]
dt + Q(r)(sxdx + sydy)

+ [
Az(r)s0 + A3

z (r)sz
]
dz + xBs0dy. (83)

This ansatz needs to be plugged into the equations of motion
and solved by imposing the boundary conditions (82) at the
boundary and regularity in the interior of the space-time
except for the fields At and A3

t , which has to vanish. In
Appendix C we show the explicit form of the equations of
motion.

The first conclusion we make after writing down the equa-
tions of motion is that the Abelian covariant current can be
obtained analytically and takes its universal form

Jz = n

4π2
μB + c(n)

4π2
μ3�

2. (84)

On the other hand, the non-Abelian sector needs to be solved
numerically.

Before showing the results for the non-Abelian current we
discuss some aspects of the boundary sources μ, μ3, and �.
They introduce a deformation of the UV conformal field
theory as

L = LCFT + μQ + μ3Q3 + �
(
δμ

x j1
μ + δμ

y j2
μ

)
. (85)
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FIG. 9. Isospin chiral magnetic conductivity as a function of �̄

for vanishing chemical potential μ.

In particular, the charge Q remains conserved (modulo the
anomaly). However, by the presence of �, all the charges
Qi are not conserved, because the SU(2) group is explicitly
broken. Hence, � has to be understood as a coupling con-
stant, which gets renormalized along the RG flow, since no
symmetry protects its value. For that reason, we define the IR
renormalized � as

�IR = Q(rh). (86)

At this point it is convenient to introduce the set of adimen-
sional variables

�̄ = �

T
, μ̄ = μ

T
, μ̄3 = μ3

T
. (87)

In Fig. 8 we show the renormalized �IR for several values
of the chemical potentials and find it to be independent of μ̄

and μ̄3. Therefore, we infer that �IR = T Z (�̄), with

Z (�̄) ≈
{
�̄ for �̄ � 1
5.7584 for �̄ � 1.

(88)

From the above dependences, we conclude that �IR ∼ 5.8T
for small enough temperatures.

We now compute the isospin current (Jz
3) in the presence

of either the isospin chemical potential (μ3) or chemical
potential (μ). In the former case, we find the generic behavior

Jz
3 = ZB(�̄)

c(n)μ3

4π2
B, (89)

and the function ZB appears to be independent of μ3, as can
be seen in Fig. 9. Numerical analysis suggests that ZB(�̄) has
the functional form

ZB(�̄) ≈
{

1 for �̄ � 1
0.506 for �̄ � 1,

(90)

which implies that at low temperatures the isospin chiral
magnetic effect is reduced by a factor of 2 (approximately),
yielding

Jz
3 ≈ 0.5

n

4π2
μ3B. (91)

Next we study the system only in the presence of the Abelian
chemical potential μ. In this case, the isospin current takes the

FIG. 10. Isospin current as a function of �̄ for vanishing isospin
chemical potential μ3. The dashed line corresponds to a quadratic
fitting Z� = �̄2.

form

Jz
3 = Z�(�̄)

c(n)

4π2
μT 2. (92)

The functional dependence of Z� on �̄ is shown in Fig. 10
and it depends only on the symmetry-breaking parameter �̄.
In the two asymptotic regimes, it is characterized as

Z�(�̄) ≈
{
�̄2 for �̄ � 1
21.762 for �̄ � 1.

(93)

As expected, at high enough temperatures the current takes
the universal value set by the anomaly

Jz
3 ≈ c(n)

4π2
μ�2. (94)

However, at very low temperatures it has a different behavior,
given by

Jz
3 ≈ 21.8

c(n)

4π2
μT 2, (95)

which is set by the temperature instead of the parameter �.
Since the renormalized IR value of the non-Abelian gauge
field is �IR ≈ 5.8T [see Eq. (88)], the current can alterna-
tively be written as

Jz
3 ≈ 0.6

c(n)

4π2
μ�2

IR. (96)

At this point a comment is due regarding the probe approxi-
mation. Ignoring the backreaction of the gauge fields on the
space-time geometry is a valid approximation, as long as
the temperature is not “too low.” Therefore, some numerical
deviations of the coefficients [see Eqs. (91) and (96)] can be
expected for the IR conductivities.

Therefore, at this point we cannot conclude regarding the
universalities associated with the conductivities. Nonetheless,
the important fact is that their coefficients are of order one,
which strongly suggests that even in the IR low-energy model
the anomalous transport survives in the isospin current, which
is directly connected to the SO(2) rotational invariance of the
low-energy sector.
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VII. DISCUSSION AND FUTURE DIRECTIONS

The primary goal of the present work was to develop a
comprehensive understanding of anomalies in multi-Weyl
semimetals. The lack of Lorentz symmetry (stemming from
the nonlinear band dispersion) yields a complex and rich
structure in the theory, which motivated us to find a suitable
generalization of these models in order to shed light on the
desired physical phenomena. The appropriate formulation
was presented in Sec. II, revealing the presence of an
underlying non-Abelian symmetry and associated anomalies.
This construction is based on n copies of simple Weyl
fermions, coupled via a particular spin-orbit coupling that
preserves certain discrete crystalline symmetry, but breaks
the Lorentz invariance and couples with linearly dispersing
chiral fermions as a static SU(2) gauge field. As a result,
the multi-Weyl spectra are recovered at low energies. Our
study aimed at a systematic analysis of mixed Abelian and
non-Abelian anomalies and associated transport, which we
achieved by employing various approaches available in
condensed-matter and high-energy physics.

We introduced both two-band models for general Weyl
semimetals (with n = 1, 2, 3) and the four- (six-) band model
for the double- (triple-) Weyl semimetals on a cubic lattice
in Sec. III A. These models produced the correct low-energy
descriptions for multi-Weyl semimetals (compare Figs. 2 and
3), as well as the bulk-boundary correspondence, encoded in
the number (n) of topologically protected Fermi arc surface
states (see Sec. III B and Figs. 4 and 5). At this point we
recessed the lattice simulations to construct an effective field
theory for multi-Weyl systems.

The key observation while arriving at the effective field
theory is the presence of a non-Abelian U(2) flavor symmetry,
which is controlled by a background field and responsible for
the multi-Weyl dispersion at low energies. This representation
allowed us to write a Lagrangian in the form of free fermions
coupled to a non-Abelian background field. Subsequently,
we employed powerful techniques of quantum field theory
to identify Abelian and non-Abelian currents that exhibit
anomalous nonconservation due to pertinent gauge and gravi-
tational anomalies. Such an elegant formulation allowed us to
relate the anomaly structure in multi-Weyl semimetals to the
ones previously known for Lorentz symmetric systems and
at the same time to bypass cumbersome computational steps.
Most importantly, we managed to extract possible transport
contributions that stem from anomalies (such as non-Abelian
generalization of anomalous Hall conductivity) and are unique
to multi-Weyl systems.

We confirmed some of the field theoretic predictions from
the lattice models and the gauge-gravity duality. In particular,
we numerically computed the regular and isospin charge
accumulations as a function of the Abelian and non-Abelian
magnetic fields, respectively, for both double- and triple-Weyl
semimetals. Remarkably, the numerical outcomes displayed
excellent agreement with the field theory, at least when the
field strengths were sufficiently weak (see Figs. 6 and 7).
Finally, we employed the holographic techniques to study
a strongly coupled version of multi-Weyl semimetals. From
holography, we analyzed the corresponding renormalization-
group flow in a particular theory that is dual to the
Maxwell-Einstein system with a non-Abelian Chern-Simons

term and showed that the non-Abelian anomalous transport
coefficients, even though they get renormalized, remain finite
in the infrared regime.

There are many interesting possible future outgrowths of
the present investigation. We now highlight some of the
most exciting ones. Our theoretical analysis suggests possible
experimental ramifications of non-Abelian anomaly in mag-
netotransport. In order to capture its signatures on magnetore-
sistance, one needs to systematically develop a semiclassical
framework by taking into account the non-Abelian currents
(see, for example, Refs. [74,75]).

Yet another avenue to explore is to demonstrate or ver-
ify field-theoretic predictions from concrete lattice models.
In this work we introduced only the simple setup with a
background non-Abelian field and computed the regular and
isospin charge accumulation in the system. For example,
in the same setup one can also introduce chiral chemical
potential by adding a term μ5 sin(kza) in the lattice model.
Furthermore, one can perform detailed numerical investiga-
tions in the presence of axial magnetic fields (obtained via
local deformations of hopping parameters) or gravitational
fields in multi-Weyl semimetals.

We also note that the transport coefficients associated
with the non-Abelian current get renormalized and thus are
generically different in the infrared and ultraviolet regimes.
Therefore, a detailed field-theoretic analysis leading to the
renormalization-group flow of these coefficients using the
Feynman diagrammatic expansion is due, which we leave for
future investigation.

Our field-theoretic analysis can be extended for
multifold fermions [44,45], for which the irreducible band
representation transforms under a spin-S representation,
where S can be a half-integer or an integer. At the
Hamiltonian level this can be accomplished by replacing
two-dimensional Pauli matrices (τ) by (2S + 1)-dimensional
spin-S matrices [61]. A systematic derivation of the
effective field theory for multifold fermions is left for
future investigation. Finally, we can extend the holographic
studies of a multi-Weyl systems to compute the vortical
conductivities and energy current, for which the backreaction
from the gauge field on the metric should accounted for.
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APPENDIX A: LOW-ENERGY HAMILTONIAN
FOR MULTI-WEYL FERMIONS

We devote this Appendix to deriving the low-energy
Hamiltonian for double- and triple-Weyl semimetals [see
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Eq. (2)] starting from two and three coupled copies of simple Weyl fermions [see Eq. (8)], respectively. Accordingly, we
introduce four- and six-component spinors

��(p)DW = [c1,↑, c1,↓, c2,↑, c2,↓](p),

��(p)TW = [c1,↑, c1,↓, c2,↑, c2,↓, c3,↑, c3,↓](p) (A1)

for these two systems, where c j,τ (p) is the fermionic annihilation operator with pseudospin projection τ =↑,↓, flavor index
j = 1, 2, 3, and momentum p, measured from the Weyl node, located at p = 0. In this basis, the Hamiltonian operators yielding
double- and triple-Weyl fermions at low energies take, respectively, the forms

HDW =
[

v⊥(τ⊥ · p⊥) + vτz pz �(τ1 − iτ2)/2
�(τ1 + iτ2)/2 v⊥(τ⊥ · p⊥) + vτz pz

]
, (A2)

HTW =
⎡
⎣ v⊥(τ⊥ · p⊥) + vτz pz �(τ1 − iτ2)/2 0̂2×2

�(τ1 + iτ2)/2 v⊥(τ⊥ · p⊥) + vτz pz �(τ1 − iτ2)/2
0̂2×2 �(τ1 + iτ2)/2 v⊥(τ⊥ · p⊥) + vτz pz

⎤
⎦, (A3)

where p⊥ = (px, py), τ⊥ = (τ1, τ2), and 0̂2×2 represents a two-dimensional null matrix. Note that for p = 0, c1,↓ and c2,↑ degrees
of freedom are gapped and placed at energies ±� for the double-Weyl system. For the triple-Weyl system c1,↓ and c3,↑ (c2,↑
and c3,↓) are placed at energy +� (−�). Hence, these degrees of freedom do not participate (approximately) in the low-
energy dynamics of the multi-Weyl systems. We therefore integrate them out in order to arrive at the effective low-energy
models. If we denote the spinor bases for low- and high-energy degrees of freedom for the double- (triple-) Weyl system by
�DW,L(p) [�TW,L(p)] and �DW,H(p) [�TW,H(p)], respectively, then

��
DW,L(p) = [c1,↑, c2,↓](p), ��

TW,L(p) = [c1,↑, c3,↓](p),

��
DW,H(p) = [c1,↓, c2,↑](p), (A4)

��
TW,H(p) = [c1,↓, c2,↑, c2,↓, c3,↑](p).

One can integrate out the split-off bands in the path-integral formalism in the following way. The imaginary-time partition
function for the multi-Weyl system reads

Za =
∫

D�
†
a,LD�a,L exp

[
−
∫

dτ�
†
a,L

(
∂τ + Ha

LL

)
�a,L

] ∫
D�

†
a,HD�a,H

× exp

[
−
∫

dτ
{
�

†
a,H

(
∂τ + Ha

HH

)
�a,H + �

†
a,LHa

LH�a,H + �
†
a,H Ha

HL�a,L
}]

, (A5)

where a = DW, TW, and

HDW
LL =

[
vpz 0
0 −vpz

]
= HTW

LL , HDW
HH =

[−vpz �

� vpz

]
, HDW

LH =
[

f (p⊥) 0
0 f ∗(p⊥)

]
, HDW

HL = (
HDW

LH

)†
,

HTW
HH =

⎡
⎢⎣

−vpz � 0 0
� vpz f (p⊥) 0
0 f ∗(p⊥) −vpz 0
0 0 � vpz

⎤
⎥⎦, HTW

LH =
[

f (p⊥) 0 0 0
0 0 0 f ∗(p⊥)

]
. (A6)

In the above expressions f (p⊥) = v(px − ipy). Upon integrating out the high-energy degrees of freedom, we arrive at the
renormalized partition function for the low-energy modes

ZL
a =

∫
D�

†
a,LD�a,L exp

[
−
∫

dτ �
†
a,L

(
∂τ + Ha

LL − HaGa
HH (iωn)Ha

HL

)
�a,L

]
, (A7)

where Ga
HH (iωn) = (iωn − Ha

HH )−1 and ωn is the Matsubara frequency. Setting ωn = 0, from the above expression we arrive at
the renormalized Hamiltonian (Ha,Ren

LL ) in terms of the low-energy modes

Ha,ren
LL = Ha

LL − HaGa
HH (0)Ha

HL. (A8)

After some lengthy but straightforward algebra we find

HDW,ren
LL = vpzτ3 − v2

⊥�

�2 + v2 p2
z

[(
p2

x − p2
y

)
τ1 + 2px pyτ2

] + vpz

[
v2

⊥k2
⊥

�2 + v2 p2
z

]
τ0, (A9)
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HTW,ren
LL = vpzτ3 + v3

⊥�3[(
�2 + v2 p2

z

)2 − v2v2
⊥k2

z k2
⊥
] [px

(
p2

x − 3p2
y

)
τ1 + py

(
p2

y − 3p2
x

)
τ2
]

+ vpz

[
v2

⊥ p2
⊥

v2
⊥ p2

⊥ − v2
z p2

z − �2(
�2 + v2 p2

z

)2 − v2v2
⊥k2

z k2
⊥

]
τ0. (A10)

Note that the particle-hole asymmetric terms (proportional to τ0) vanish at the Weyl nodes, located at p = 0. Then for � �
v⊥|p⊥|, vpz we arrive at the low-energy Hamiltonian for double- and triple-Weyl semimetal with αn = vn

⊥/�n−1 for n = 2 and
3, respectively (see Sec. II).

APPENDIX B: CHIRAL VORTICAL CONDUCTIVITIES

In this Appendix we display the transport coefficients
omitted in Sec. IV. In particular, the chiral vortical effect in
the Abelian currents is given by

Je =
[

n

2π2
μμ5 + c(n)μ3μ35

]
ω, (B1)

J5 =
[

n

4π2

(
μ2 + μ2

5 + π2T 2

3

)
+ c(n)

4π2

(
μ2

3 + μ2
35

)]
ω,

(B2)

whereas in the non-Abelian currents it takes the form

J3 = c(n)

2π2
(μμ35 + μ3μ5)ω, (B3)

J35 = c(n)

2π2
(μμ3 + μ35μ5)ω. (B4)

On the other hand, the energy current generated by the chiral
magnetic and vortical effects reads

Jε = 1

2π2
[c(n)μ3μ35 + nμμ5]B + c(n)

2π2
[μμ35 + μ3μ5]B3

+ 1

4π2

[
c(n)

(
μ2

3 + μ2
35

) + n
(
μ2 + μ2

5

) + nπ2T 2

3

]
B5

+ c(n)

2π2
[μμ3 + μ5μ35 ]B35

+ n

6π2

[
μ5

(
3μ2 + μ2

5

) + μ5π
2T 2

]
ω

+c(n)

2π2

[
2μμ3μ35 + μ5

(
μ2

3 + μ2
35

)]
ω. (B5)

APPENDIX C: EQUATIONS OF MOTION

In this Appendix we show the equations of motion for
the holographic theory, introduced in Eq. (72). The Maxwell-
Yang-Mills-Chern-Simons equations on the curved back-
ground are

∇μFμν − 6λενραβγ Tr(FραFβγ ) = 0, (C1)

DμGa,μν − 3
2λενραβγ Tr(saFραFβγ ) = 0. (C2)

After evaluating the ansatz (83), we find a set of equations
for the Abelian and non-Abelian fields. First we show the
equations of motion for the Abelian sector(

A′
t

r
+ 24λ

[
c(n)Q2A3

z + nBAz
])′

= 0, (C3)

(
u(r)A′

z

r
+ 24λ

[
c(n)Q(r)2A3

t + nBAt
])′

= 0, (C4)

where the prime stands for ∂r . Notice that these equations can
be integrated once, leading to

A′
t

r
= 4ρ − 24λ

[
c(n)Q2A3

z + nBAz
]
, (C5)

u(r)A′
z

r
= −24λ

[
c(n)Q(r)2A3

t + nBAt
]
, (C6)

where ρ is an integration constant and the regularity at the
horizon for Az forbids the presence of an extra integration
constant. Now we show the equations for the non-Abelian
sector, where the symmetry-breaking field Q(r) satisfies

(
u(r)Q′

r

)′
+

((
A3

t

)2

ru(r)
−

(
A3

z

)2

r
− Q2

r

)
Q = 0. (C7)

The rest of the equations read(
u(r)A3′

z

r

)′
− 2Q2A3

z

r
+ 24λc(n)

[
Q2A′

t (r) + BA3′
t

] = 0,

(C8)(
A3′

t

r

)′
− 2Q2A3

t

ru(r)
+ 24λc(n)

[
Q2A′

z(r) + BA3′
z

] = 0.

(C9)
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