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Kondo impurity at the edge of a superconducting wire
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Quantum impurity models are prevalent throughout many body physics, providing some prime examples of
strongly correlated systems. Aside from being of great interest in themselves, they can provide deep insight
into the effects of strong correlations in general. The classic example is the Kondo model wherein a magnetic
impurity is screened at low energies by a noninteracting metallic bath. Here we consider a magnetic impurity
coupled to a quantum wire with pairing interaction which dynamically generates a mass gap. Using Bethe ansatz,
we solve the system exactly finding that it exhibits both screened and unscreened phases for an antiferromagnetic
impurity. We determine the ground-state density of states and magnetization in both phases as well as the
excitations. In contrast to the well studied case of magnetic impurities in superconductors, we find that there
are no intragap bound states in the spectrum. The phase transition is not associated to a level crossing but with
quantum fluctuations.
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I. INTRODUCTION

The basic quantum impurity model describes a single
magnetic impurity coupled to a metallic electron bath. The
apparent simplicity of this model, the Kondo model, belies the
strongly correlated physics it describes: a dynamically gener-
ated energy scale TK and impurity screening at low energies
and asymptotic freedom at high energies. The physics of the
Kondo effect underpins our understanding of many disparate
systems ranging from quantum dots to heavy fermion mate-
rials [1,2] and provides a proving ground for many powerful
many-body techniques [3–7]. When the electrons in the bath
interact among themselves the Kondo effect needs to be reex-
amined. A case of great interest is the interplay of the Kondo
effect and superconductivity which has been intensely studied,
both the impact of magnetic impurities on superconductivity
[8–11] and more recently, the impact of superconductivity on
the Kondo effect [12,13].

In this work, we consider the latter issue, studying a
system consisting of a Kondo impurity placed at the edge
of an attractively interacting quantum wire, see Fig. 1. The
attractive interactions among left and right moving electrons
dynamically generate a superconducting mass gap �, but
as long-range order is not allowed in one dimension [14],
the rigid phase correlations and the charge sector decouple
from the gapped spin sector [15,16]. Using Bethe ansatz,
we solve exactly the model that describes the system and
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study its ground-state properties through its density of states
and magnetization. We find that for an antiferromagnatic
impurity and attractive bulk interactions the system exhibits
two phases: a Kondo screened phase wherein the ground state
is a spin singlet with odd fermion parity and an unscreened
local moment phase wherein the ground state is an even
parity spin doublet. The phase transition occurs at the ratio
of Kondo temperature to mass gap of TK/� ≈ 0.32. This is
reminiscent of a magnetic impurity in a three-dimensional
superconductor [17–23]. However, in contrast, we find that
there are no intragap bound states in the spectrum in either
phase and so the phase transition is not due to a level crossing
but to quantum fluctuations.

II. HAMILTONIAN

The Hamiltonian of our system is given
by H = H0 + Hint + Himp. The first term, H0 =∑

σ,a

∫ 0
− L

2
dx ψ†

σ,a(x){−iσ∂x}ψσ,a(x) is the kinetic energy

of the system, ψ†
σ,a(x) and ψσ,a(x) are the fermion creation

and annihilation operators with σ = +,− indicating the
chirality (right and left movers, respectively), a =↑,↓
indicating the spin. We have set h̄, vF = 1. The system is
restricted to the half line with the boundary condition at
x = 0 imposed by taking ψ+,a(0) = ψ−,a(0) and similarly
at x = −L/2. The next term describes attractive spin
exchange interactions between fermions of opposite chirality,
Hint = 2g1

∫ 0
− L

2
dx ψ

†
+,a(x)ψ+,b(x)ψ†

−,b(x)ψ−,a(x). To this
we couple the impurity which lives on the right edge,
x = 0. The right moving electrons may scatter off the
boundary, interact with the impurity via spin exchange
and become left movers. This interaction is described by
Himp = J �σab · �Sαβψ

†
−,a(0)ψ+,b(0). Here, �σab and �Sαβ are Pauli

matrices acting on the particle and impurity spin spaces,
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J ⇑ψ†
−,↑↓g1ψ†

+,↑↓

FIG. 1. (a) A schematic of our system. A semi-infinite, interact-
ing quantum wire is coupled to a magnetic impurity at the boundary.
The bulk interaction strength is g1 and the coupling to the impurity is
J . (b) The weak-coupling RG flow diagram of our system described
by (14), the flow is away from the noninteracting point J = g1 = 0.
The diagonal line is J = 2g1 corresponding to TK/� ≈ 0.32. Lines
above this (blue) correspond to the screened phase wherein the
impurity flows to strong coupling. Below the diagonal the lines (red)
correspond to the unscreened phase. We see that J no longer flows
toward strong coupling and no Kondo scale is generated. (Inset)
Impurity contribution to the density of states. The impurity enhances
the density of states in the screened (blue) phase and suppresses it in
the unscreened phase (red).

respectively. For g1 = 0, the system reduces to the Kondo
Hamiltonian, whilst when g1 �= 0 but J = 0, we recover the
Gross-Neveu Hamiltonian. In both limits, the model can be
solved exactly via Bethe ansatz [16,24,25]. We show here that
when both J, g1 �= 0, the system can also be solved exactly,
exhibiting different behavior that depends on the relative
values of the interaction strengths.

III. EIGENSTATES

The Hamiltonian commutes with total particle number,
N = ∫

ψ
†
+(x)ψ+(x) + ψ

†
−(x)ψ−(x) and so we can diagonal-

ize H by constructing the exact eigenstates in each N sector.
The N-particle eigenstate takes the standard Bethe ansatz form
of a plane wave expansion in different regions of coordinate
space. The state with energy E = ∑N

j=1 k j is given by

|{k j}〉 =
∑

{a j },{σ j}
Q

∫
d�x F {σ }

{a} (�x)
N∏

j=1

ψ†
σ j ,a j

(x j )|0〉 ⊗ |a0〉,

where F {σ }
{a} (�x) = θ (xQ)A{σ }

{a} [Q]ei
∑N

j σ j k j x j is the N-particle
wave function. Here the sum is over all different chirality and
spin configurations specified by {σ j} = {σ1, . . . , σN }, {a j} =
{a0, a1, . . . aN }, where σ j = ± and a j =↑,↓ are the chirality
and spin of the jth particle. a0 denotes the spin of the impurity
with |a0〉 being the state of the impurity and |0〉 is the vacuum

which contains no particles. We also sum over all different
orderings of the particles, labeled by Q which are elements
of the symmetric group Q ∈ SN . A{σ }

{a} [Q] are the amplitudes
for a particular spin and chirality configuration and ordering
of the particles while θ (xQ) is a Heaviside function which
is nonzero only for the ordering of particles labeled by Q.
These amplitudes are related to each other via application of
the various S matrices in the model which are determined by
the N-particle Schrödinger equation and the consistency of the
solution. The S matrices are derived in Appendix A,

Si j = 2ib Ii j + Pi j

2ib + 1
, S j0 = I j0 − icP j0

1 − ic
, (1)

where I i j is the identity operator and Pi j = (I i j + �σi · �σ j )/2 is
the permutation operator acting on the spin spaces of particles
i and j with 0 indicating the impurity. Furthermore we have

introduced the parameters b = 1−g2
1/4

2g1
and c = 2J

1−3J2/4 which
encode separately the bulk and impurity coupling constants.
S j0 is the impurity S matrix describing the interaction of the
electrons with the impurity. It relates amplitudes which differ
by changing the chirality of the right most particle + → −.
Similarly, amplitudes which are related by swapping the order
of particles with different chiralities are related by the particle-
particle S matrix, Si j . An additional S matrix, denoted by W i j ,
is also required. It relates amplitudes that differ by exchanging
particles of the same chirality. This is given by W i j = Pi j . The
consistency of the solution is then guaranteed as the S matrices
satisfy the Yang-Baxter and reflection equations [26–28].

Imposing the boundary condition at x = −L/2 quantizes
the single-particle momenta k j and allows us to determine the
spectrum of H . Relegating the details to Appendix B, we have

e−ik j L =
M∏

α=1

f (2bc, 2λα ), f (x, z) =
∏
σ=±

x + σ z + ic

x + σ z − ic
, (2)

where the newly introduced λα , α = 1, . . . , M are the Bethe
roots which satisfy the Bethe ansatz equations

[ f (2λα, 2bc)]N f (2λα, 2dc) =
M∏

α �=β

f (λα, λβ ) (3)

with d =
√

b2 − 2b/c − 1. The Bethe roots govern the spin
degrees of freedom of the system while M � (N + 1)/2 is
an integer related to the total z component of spin, 〈Sz〉 =
(N + 1)/2 − M. The solutions of (3) are well studied in the
literature [29] and allow for λα to be real or take complex
values in the form of strings and in order to have a nonva-
nishing wave function they must all be distinct, λα �= λβ . In
addition, the value λα = 0 will also result in a vanishing wave
function [30] and so any solution containing this root should
be removed.

IV. THE GROUND STATE

The model exhibits several different phases depending on
the values of b, c, and d . In the absence of the impurity,
b > 0 corresponds to the gapped phase of the model while
on the other hand when there are no bulk interactions but the
impurity is present c > 0 corresponds to the Kondo regime.
We consider here only b, c > 0 which allows us to study

013006-2



KONDO IMPURITY AT THE EDGE OF A … PHYSICAL REVIEW RESEARCH 2, 013006 (2020)

the interplay of these two effects. Within this regime d can
be either real or imaginary with the structure of the Bethe
equations dependent on this. We will see below that real and
imaginary d correspond to two different phases of the model
and the ground state needs to constructed separately in each
case.

We begin by constructing the ground state for d being real
which for reasons which will become evident we refer to as
the screened phase. In the ground state, all Bethe roots are
real [16]. Taking the logarithm of (3), we have that the Bethe
equations become∑

σ=±
N
(λα+ σbc, c/2) + 
(λα+ σdc, c/2) + 
(λα, c/2)

=
M∑

β=1

∑
σ=±


(λα + σλβ, c) + π I j, (4)

where 
(x, n) = arctan(x/n). And likewise taking the loga-
rithm of (2), we get

k j = 2πn j

L
+ 2

L

M∑
β=1

∑
σ=±


(bc + σλβ, c/2). (5)

Here, n j and I j are integers which arise from the logarithmic
branch, they serve as the quantum numbers of the system. The
quantum numbers n j are associated with the charge degrees
of freedom are arbitrary implying their decoupling from the
spin sector. They require the imposition of a cutoff such that
2π |n j |/L < πD, where D = 2N/L is the density. Similarly
the quantum numbers Iα correspond to the spin degrees of
freedom, and any allowed choice of these quantum numbers
correspond to an eigenstate. The ground state is given by
the choice n0

j and I0
α , where n0

j are consecutively filled from
the cutoff up and the integers I0

α also take consecutive values
which corresponds to taking only real values of λα [5,29].

The thermodynamic limit entails taking N, L → ∞, with
D held fixed. In this limit, the Bethe roots fill the real line
and the ground state can be described by a distribution, ρs(λ)
from which the properties of the ground state can be obtained.
This ground-state distribution is determined by the following
integral equation which is derived from (4):

gs(λ) = ρs(λ) +
∫

dμϕ(λ − μ, c)ρs(μ), (6)

where gs(λ)=∑
σ=± Nϕ(2λ+2σbc, c)+ϕ(2λ + 2σdc, c) +

ϕ(2λ, c) − (1/2)δ(λ) and ϕ(x, n) = (n/π )(n2 + x2)−1.

Solving (6) by Fourier transformation we get that the
Fourier transform of the ground-state distribution of Bethe
roots is

ρ̃s(ω) = 2N cos(bc ω) + 2 cos(dc ω) + 1 − e
c|ω|

2

4
√

2π cosh
(

cω
2

) , (7)

which governs the spin of the ground state. Each of the
terms here may be identified with a certain component
of the system. The term which is proportional to N is
the contribution of the left and right moving fermions of
the quantum wire, the next term which depends upon d is the
contribution due to the impurity while the remaining terms
can be associated with the boundaries at x = 0,−L/2. From

the density ρs(λ), we obtain the total z component of spin
in the ground state, 〈Sz〉 = (N + 1)/2 − ∫ ∞

−∞ dλ ρ(λ). Using√
2πρ̃(0) = ∫

dλ ρ(λ) along with (7) we find that 〈Sz〉 = 0
meaning that the ground state is a spin singlet. In addition,
defining the fermionic parity as P = (−1)N , we find P = −1.
Therefore the impurity spin has been completely screened by
the electrons in the wire, indicative of the Kondo effect. To
confirm this, we need to compute the density of states and
magnetization which we shall do below.

Considering now d = ia to be imaginary we shall find the
ground state in the unscreened phase. Repeating the same
analysis the Fourier transform of the ground-state distribution
of the Bethe roots turns out to be

ρ̃us(ω) = 2N cos(bc ω) + e−ac|ω| − e−(a−1)c|ω| + 1 − e
c|ω|

2

4
√

2π cosh
(

cω
2

) .

(8)

We note here that the bulk and boundary terms are the same as
in the screened phase however the impurity term is different.
This difference carries over to the total spin which can be
calculated as before, 〈Sz〉 = 1/2 meaning that there is an
unscreened spin half in the ground state of the system. This
state is the highest weight state in an SU (2) multiplet. There
exists a degenerate state with 〈Sz〉 = −1/2 which is obtained
by applying the spin lowering operator. Furthermore the parity
of these states is P = 1. The ground state in the unscreened
phase is therefore an even parity doublet.

V. EXCITATIONS

In order to confirm that we have indeed found the true
ground state of the model in the screened and unscreened
phases we investigate other solutions to the Bethe equations
to check that they correspond to excitations which increase
the energy. Excitations arise from modifying the quantum
numbers, n j or Iα . Note that we can choose n j and Iα in-
dependently, meaning that the spin and charge degrees of
freedom are decoupled [15,16,31]. In the charge sector the
excitations are constructed by removing a number, nh < 0
from the sequence n0

j and adding an extra np > 0. The en-
ergy of this excitation is δE = 2π (np − nh)/L > 0. Gapless
excitations such as this are known as holons. The structure of
excitations in the spin sector is more complicated as they arise
from alternative solutions to the Bethe ansatz equations (3). In
Appendixes C and D, we provide a detailed analysis of
possible low-energy excitations of the models following the
method of Destri and Lowenstein [32]. We find that the
lowest energy excitations are of two spinons which form either
a triplet or singlet. The triplet excitation is constructed by
removing two, arbitrary Bethe roots, λh

1, λ
h
2 from the ground-

state distribution [16]. Each hole corresponds to a single
spinon with spin +1/2. In order to form a singlet one must add
to this a complex conjugate pair of Bethe roots at λs ± ic/2,
where λs =

√
([λh

1]2 + [λh
2]2)/2 + c2/4 [33]. The spin-1/2

spinons can thus be in total spin state S = 1, 0 respectively,
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while in both cases, the energy is

δE =
2∑

l=1

D arctan

[
cosh

(
πλh

l

/
c
)

sinh (bπ )

]
. (9)

From this, we find that the system has dynamically gen-
erated a superconducting mass gap in the spin sector
� = D arctan [sinh(πb)]−1.

Up to now we have kept a finite cutoff, however to obtain
universal answers we need to take the scaling limit, D → ∞
while holding the physical mass � fixed. In this limit, we
have that � = 2De−πb and the excitation energy of a single
spinon becomes ε(λ) = � cosh (λ) where we have absorbed
π/c into λ. These spinons and holons are bulk excitations
and are the same in both the screened and unscreened phases.
Furthermore it can be shown that there are no lower lying
excitations, in particular there are no intragap bound states.
This stands in contrast to the well studied case of a magnetic
impurity coupled to the BCS model where such bound states
do exist [17–20].1

VI. DENSITY OF STATES

We have shown that the model exhibits two different
phases which corresponds to a screened and unscreened spin
1/2 in the ground state. To study this further and confirm that
this is indeed Kondo screening, we calculate the ground-state
density of states in both phases. This is given by ρdos(ε) =
|ρgs(λ)/ε′(λ)| [34], where by ρgs we mean either the dis-
tribution of Bethe roots given in (7) or (8). This naturally
separates into contributions from the bulk, boundary and
impurity with the former two being the same in both phases,
ρdos = Lρbulk

dos + ρ
bdry
dos + ρ

imp
dos . The bulk contribution, per unit

length is ρbulk
dos (ε) = ε/π√

ε2−�2 with ε � �. The contribution
from the boundary is given by

ρ
bdry
dos (ε)

ρbulk
dos (ε)

= �

4ε2
− 1

4πε
R

[
�

(
iλ + 2

2

)
−�

(
iλ + 1

2

)]
,

where � is the digamma function and λ(ε) = arccosh(ε/�).
The impurity contribution shows an enhancement of the den-
sity of states in agreement with the well known Kondo peak
[1], it is given by

ρ
imp
dos (ε)

ρbulk
dos (ε)

= � cosh
[
ln

( 4T0
�

)]
2ε2 − �2 + �2 cosh

[
ln

( 4T0
�

)2] , (10)

where we have introduced 2T0 = De−π/c which is the strong-
coupling Kondo scale [35]. The form of this scale is chosen
so that in � → 0 limit, we recover the well known Lorentzian
density of states of the Kondo model [5]. At finite � this
density of states also exhibits a Kondo peak at ε = �, see
Fig. 1. In the scaling limit we can determine the transition
from the screened to the unscreened phase to be T0/� = 1/4.
The strong-coupling Kondo scale can be related to the weak-
coupling scale known as the Kondo temperature TK = W T0

1We note however that in our case the superconductivity as well
as the impurity are fully quantum fluctuating as opposed to the case
studied in Refs. [17–20].

where W ≈ 1.29 is Wilson’s number [4,5]. In terms of this. we
have that the system is in a screened phase for TK/� > 0.32
with a phase transition occurring at TK/� ≈ 0.32.

In the unscreened phase we find that the find that the
contribution of the impurity to the density of states is instead
given by

ρ
imp
dos (ε)

ρbulk
dos (ε)

= 1

4πε
R

[
�

(
iλ + a

2
+ 1

4

)
+ �

(
iλ + a

2
+ 3

4

)

−�

(
iλ + a

2
+ 1

2

)
− �

(
iλ + a

2

)]
, (11)

where in the scaling limit a > 1 which is an RG invariant. This
contribution is negative and so in the unscreened phase the
impurity contributes to a suppression of the density of states,
in line with the fact that there is an unscreened spin 1/2 in the
ground state.

VII. MAGNETIZATION

We may couple globally an external magnetic field to the
system via the addition of −μhSz term to the Hamiltonian.
This term is minimized by breaking pairs creating triplet
excitations in the system which come at energy cost of at
least 2�. For h < 2�/μ, the ground state is unchanged from
the expressions given previously, whereas for a large field,
h > 2�/μ, the system will become magnetized and the
ground state is changed. Resolving for the ground-state dis-
tribution in the screened phase we find that the total magneti-
zation, for small h − 2�/μ, is

〈Sz〉 = 1

2
√

2π

(
�L + 1 + 4(

�
4T0

+ 4T0
�

)
)(

μh − 2�

2�

)1/2

.

(12)

The first term here is the magnetization of the bulk which
agrees with the calculation in the Gross-Neveu model [36], the
next term is due to the presence of the boundary while the re-
mainder is the due to the impurity. We see here that the mag-
netization vanishes at h = 2�/μ and shows a square root
dependence on the magnetic field otherwise. Note that this is
in contrast to standard Kondo model in which the magnetiza-
tion is linear in the field [1].

In the unscreened phase, we find instead that

〈Sz〉 = 1

2
+ 1

2
√

2π

(
�L + 1 + I (a)

π

)(
μh − 2�

2�

)1/2

, (13)

where I (a) = �( a
2 − 1

4 ) + �( a
2 + 3

4 ) − 2�( a
2 + 1

4 ). We see
here the unscreened spin contribution as well as a modified
contribution from the impurity, the I (a) term which provides
a negative contribution to the magnetization. The impurity
thus provides a negative susceptibility. This can be understood
from the fact that the unscreened spin acts as a local magnetic
field with negative magnetic moment, due to the antiferromeg-
netic interactions, thereby reducing the local magnetization.

VIII. RENORMALIZATION GROUP

We now express our findings in the language of the
renormalization group. Using our solution we can derive the
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weak-coupling RG equations:

dJ

dl
= − 2

π
J (J − g1),

dg1

dl
= − 2

π
g2

1, (14)

where l = ln � is some energy scale with � > �. These
reduce to a single equation when J = 2g1 with the flow
changing either side of this, the flow diagram is plotted in
Fig. 1. We see that within the screened phase J flows to
strong coupling, whereas this is not the case in the unscreened
phase. Throughout the parameter regime considered g1 flows
to strong coupling.

We can compare this to the well studied case of a magnetic
impurity coupled to the BCS model. Therein also a phase
transition occurs between an odd parity, singlet ground state
and an even parity doublet. However, in that case, the phase
transition is first order and is the result of the presence
of intragap bound states. In our model, such states do not
occur and instead the phase transition is driven by quantum
fluctuations.
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APPENDIX A: CONSTRUCTION
OF N-PARTICLE EIGENSTATES

In this section, we show how to construct the eigenstates
of H . Since N is a good quantum number we may construct
the eigenstates by examining the different N particle sectors
separately. We start with N = 1 wherein we can write the
wave function as an expansion in plane waves,

|k〉 =
∑

a j=↑↓,σ=±

∫ 0

− L
2

dx eiσkxAσ
a1a0

ψ†
σ,a1

(x)|0〉 ⊗ |a0〉.

|0〉 is the drained Fermi sea and Aσ
a1a0

are the amplitudes
for an electron with chirality σ and spin a1 and the impu-
rity having spin a0. These amplitudes are fixed by single
particle Schrodinger equation. Applying the Hamiltonian to
|k〉, we find that it is an eigenstate of energy k provided
A−

a1a0
= S10

a1b1,a0b0
A+

b1b0
, where S10

a1b1,a0b0
is the impurity-

particle S matrix given by

S10
a1b1,a0b0

= eiγ

(
I10
a1b1,a0b0

− icP10
a1b1,a0b0

1 − ic

)
, (A1)

c = 2J

1 − 3J2/4
, eiγ = 2iJ − 1 + 3J2/4

iJ − 1 − 3J2/4
. (A2)

Here, P10 is the usual permutation operator P10
a1b1,a0b0

=
(I10

a1b1,a0b0
+ �σ 1

a1b1
· �σ 0

a0b0
)/2, which exchanges the spins of par-

ticle and impurity and I10 is the identity. The superscripts
refer to the particle space on which this operator acts, i.e., 1
refers to the particle and 0 to the impurity. This completes the
construction of eigenstates for N = 1.

We next consider the two particle sector, N = 2, were Hint

plays a role. Since the two particle interaction is point-like
we may divide configuration space into regions such that the
interactions only occur at the boundary between two regions.
Therefore away from these boundaries we write the wave
function as a sum over plane waves so that the most general
two particle state can be written

|k1, k2〉 =
∑
σ,a

∫ 0

− L
2

d2x F σ1σ2
a1a2a0

(x1, x2)e
∑2

j=1 iσ j k j x j ψ†
σ1a1

× (x1)ψ†
σ2a2

(x2)|0〉 ⊗ |a0〉, (A3)

where we sum over all possible spin and chirality configura-
tions and the two particle wave function, F σ1σ2

a1a2a0
(x1, x2) is split

up according to the ordering of the particles,

F σ1σ2
a1a2a0

= Aσ1σ2
a1a2a0

[12]θ (x2 − x1) + Aσ1σ2
a1a2a0

[21]θ (x1 − x2).

The amplitudes Aσ1σ2
a1a2a0

[Q] refer to a certain spin and chirality
configuration, specified by σ j , a j as well as an ordering of
the particles in configuration space denoted by Q. For Q = 12
particle 1 is to the left of particle 2, while for Q = 21 the order
of the particles are exchanged. Applying the Hamiltonian to
(A3), we find that it is an eigenstate with energy E = k1 + k2

provided that these amplitudes are related to each other via
application of S matrices. As in the single particle case, am-
plitudes which differ changing the chirality of the rightmost
particle are related by the impurity-particle S matrix,

Aσ1−[12] = S20Aσ1+[12], (A4)

A−σ2 [21] = S10A+σ2 [21], (A5)

where S j0 is given by (A1) acting on the jth particle space and
for ease of notation we have suppressed spin indices.

In addition there are two types of two particle S matrices
denoted by S12 and W 12 which arise due to the bulk inter-
actions and relate amplitudes which have different orderings.
The first relates amplitudes which differ by exchanging the
order of particles with opposite chirality:

A+−[21] = S12A+−[12], (A6)

A−+[12] = S12A−+[21], (A7)

where S12 acts on the spin spaces of particles 1 and 2.
Restoring the indices it is given by

S12
a1a2,b1b2

= eiφ

(
2ib I12

a1a2,b1b2
+ P12

a1a2,b1b2

2ib + 1

)
, (A8)

b = 4 − g2
1

8g1
, eiφ = 1 − g2

1/4 − ig1

1 + g2
1/4

. (A9)

Whilst the second type of S matrix relates amplitudes where
particles of the same chirality are exchanged,

A−−[21] = W 12A−−[12], (A10)

A++[12] = W 12A++[21]. (A11)

Once again the superscripts indicate the spin spaces on which
W 12 acts. Unlike (A8), W 12 is not fixed by the Hamiltonian but
rather by the consistency of the construction. This is expressed
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through the reflection equation [26,27]

S10S12S20W 12 = W 12S20S12S10, (A12)

which needs to be satisfied for the eigenstate to be consistent.
We take W 12 = P12 which can be explicitly checked to satisfy
(A12). The relations (A3)–(A11) provide a complete set of
solutions of the two particle problem.

We can now generalise this to the N-particle sector and find
that the eigenstates of energy E = ∑N

j=1 k j are of the form

|{k j}〉 =
∑

Q,�a,�σ

∫
θ (xQ)A{σ }

{a} [Q]
N∏
j

eiσ j k j x j ψ†
a jσ j

(x j )|0〉 ⊗ |a0〉.

(A13)

Here we sum over all spin and chirality configurations spec-
ified by {a} = {a1 . . . aN a0}, {σ } = {σ1 . . . σN } as well as dif-
ferent different orderings of the N particles. These different
orderings correspond to elements of the symmetric group
Q ∈ SN . In addition θ (xQ) is the Heaviside function which is
nonzero only for that particular ordering. As in the N = 1, 2
sectors the amplitudes A�σ

�a [Q] are related to each other by the
various S matrices in the same manner as before, i.e., ampli-
tudes which differ by changing the chirality of the rightmost
particle are related by the impurity S matrix, S j0, amplitudes
which differ by exchanging the order of opposite or same
chirality particles are related by Si j and W i j , respectively. The
consistency of this construction is then guaranteed by virtue
of these S matrices satisfying the following reflection and
Yang-Baxter equations [26–28]:

W jk W ik W i j = W i j W ik W jk, (A14)

S jk Sik W i j = W i j Sik S jk, (A15)

S j0 Si j Si0 W i j = W i j Si0 Si j S j0, (A16)

where W i j = Pi j and as before the superscripts denote which
particles the operators act upon.

APPENDIX B: BETHE EQUATIONS

In this section, we derive the Bethe equations (3). Enforc-
ing the boundary condition at x = −L/2 on the eigenstate
(A13) we obtain the following eigenvalue problem which
constrains the k j :

e−ik j LA{σ }
{a} [1] = (Zj )

{σ },{σ }′
{a},{a}′ A[1]�σ ′

�a′ . (B1)

Here, 1 denotes the identity element of SN , i.e., 1 = 12, . . . , N
and the operator Zj is the transfer matrix for the jth particle
given by

Zj = W j j−1 . . .W j1S j1 . . . S j j−1S j j+1

. . . S jN S j0W jN . . .W j j+1, (B2)

where the spin indices have been suppressed. This operator
takes the jth particle from one side of the system to the other
and back again, picking up S matrix factors along the way as
it moves past the other N − 1 particles, first as a right mover
and then as a left mover. Using the relations (A14)–(A16), one
can prove that all the transfer matrices commute, [Zj, Zk] = 0
and therefore are simultaneously diagonalizable. In order to
determine the spectrum of H , we must therefore diagonalize
Zj, ∀ j. Here we choose to diagonalize Z1. To do this, we use
the method of boundary algebraic Bethe ansatz [26,27,30]. In
order to use this method we need to embed the bare S matrices
in a continuum that is, we need to find the matrices R(λ) and
K (λ) such that for certain values of the spectral parameter λ,
we obtain the bare S matrices of our model. R(λ) turns out to
be the R matrix of the XXX spin chain which is given by

Ri j
ab(λ) = 1

iλ + 1

(
iλI i j

ab + Pi j
ab

)
. (B3)

We can see that Ri j (0) = W i j and Ri j (2b) = Si j . We have ig-
nored the unimportant constant eiφ . The K matrix is K j0(λ) =
R j0(λ + d )R j0(λ − d ), d =

√
b2 − 2b/c − 1, so that S j0 =

K j0(b). These R and K matrices form the reflection algebra
[30] and so pertain to an integrable model. The transfer matrix
Z1 is related to the Monodromy matrix �τ (λ) as Z1 = t (b) =
Trτ�τ (b), where

�τ (λ) = R1τ (λ + b) . . . RNτ (λ + b)R0τ (λ + d )R0τ (λ − d )

× RNτ (λ − b) . . . R1τ (λ − b). (B4)

Here, τ represents an auxiliary space and Trτ represents the
trace in the auxiliary space. Using the properties of the R
matrices one can prove that [t (λ), t (μ)] = 0 [30] and by
expanding t (μ) in powers of μ, obtain infinite set of con-
served charges which guarantees integrability. By following
the boundary algebraic Bethe ansatz approach [30], we obtain
the Bethe equations

(
λα − b̃ + ic/2

λα − b̃ − ic/2

)N(
λα + b̃ + ic/2

λα + b̃ − ic/2

)N(
λα − d̃ + ic/2

λα − d̃ − ic/2

)(
λα + d̃ + ic/2

λα + d̃ − ic/2

)
= �M

α �=β

(
λα − λβ + ic

λα − λβ − ic

)(
λα + λβ + ic

λα + λβ − ic

)
, (B5)

e−ik j L = �M
α=1

(
b̃ + λα + ic/2

b̃ + λα − ic/2

)(
b̃ − λα + ic/2

b̃ − λα − ic/2

)
. (B6)

These are the equations presented in the main text. Here we have renamed the parameters b̃ = bc, d̃ = dc.

APPENDIX C: REDUCED BETHE EQUATIONS

In order for us to understand the excitation spectrum which consists of holes and complex Bethe roots, we need to reduce the
above Bethe equations into a set of constraint equations for the positions of holes and complex Bethe roots [32].
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The solutions to the Bethe equations can be categorized into three types: (1) real solutions λk , k = 1, 2, . . . , Mr ; (2) closed
pairs ηc

μ ± iζ c
μ, μ = 1, 2, . . . , Mcp, ζ c

μ < c; and (3) wide pairs ηw
ρ ± iζw

ρ , ρ = 1, 2, . . . , Mwp, ζw
ρ > c. The Bethe equations are

now expressed in terms of the above three different types of solutions and then the density distribution of the real λα solutions is
found in the presence of the holes (which correspond to the omitted Iα in the ground-state sequence I0) and the above complex
Bethe roots. The obtained density distribution is then used to integrate out the real λα solutions from the Bethe equations which
is equivalent to integrating out the Fermi sea. This transforms the Bethe equations into the reduced Bethe equations.

The Bethe equations for the real solutions are

(
λα − b̃ + ic/2

λα − b̃ − ic/2

)N(
λα + b̃ + ic/2

λα + b̃ − ic/2

)N(
λα − d̃ + ic/2

λα − d̃ − ic/2

)(
λα + d̃ + ic/2

λα + d̃ − ic/2

)

= �M
α �=β

(
λα − λβ + ic

λα − λβ − ic

)(
λα + λβ + ic

λα + λβ − ic

)
�

Mcp

l

(
λα − ηc

l + i
(
c − ζ c

l

)
λα − ηc

l − i
(
c − ζ c

l

)
)(

λα − ηc
l + i

(
c + ζ c

l

)
λα − ηc

l − i
(
c + ζ c

l

)
)

×
(

λα + ηc
l + i

(
c − ζ c

l

)
λα + ηc

l − i
(
c − ζ c

l

)
)(

λα + ηc
l + i

(
c + ζ c

l

)
λα + ηc

l − i
(
c + ζ c

l

)
)

�
Mwp
r

(
λα − ηw

r − i
(
ζw

r − c
)

λα − ηw
r + i

(
ζw

r − c
)
)

×
(

λα − ηw
r + i

(
ζw

r + c
)

λα − ηw
r − i

(
ζw

r + c
)
)(

λα + ηw
r − i

(
ζw

r − c
)

λα + ηw
r + i

(
ζw

r − c
)
)(

λα + ηw
r + i

(
ζw

r + c
)

λα + ηw
r − i

(
ζw

r + c
)
)

. (C1)

Bethe equations for the closed pairs are(
ηc

μ + b̃ + i
(
ζ c
μ + c/2

)
ηc

μ + b̃ + i
(
ζ c
μ − c/2

)
)N(

ηc
μ − b̃ + i

(
ζ c
μ + c/2

)
ηc

μ − b̃ + i
(
ζ c
μ − c/2

)
)N(

ηc
μ + d̃ + i

(
ζ c
μ + c/2

)
ηc

μ + d̃ + i
(
ζ c
μ − c/2

)
)(

ηc
μ − d̃ + i

(
ζ c
μ + c/2

)
ηc

μ − d̃ + i
(
ζ c
μ − c/2

)
)

= �
Mr
β

(
ηc

μ − λβ + i
(
c + ζ c

μ

)
ηc

μ − λβ − i
(
c − ζ c

μ

)
)(

ηc
μ + λβ + i

(
c + ζ c

μ

)
ηc

μ + λβ − i
(
c − ζ c

μ

)
)

�
Mcp

ν �=μ

(
ηc

μ − ηc
ν + i

(
c + ζ c

μ − ζ c
ν

)
ηc

μ − ηc
ν − i

(
c − ζ c

μ + ζ c
ν

)
)(

ηc
μ − ηc

ν + i
(
c + ζ c

μ + ζ c
ν

)
ηc

μ − ηc
ν − i

(
c − ζ c

μ − ζ c
ν

)
)

×
(

ηc
μ + ηc

ν + i
(
c + ζ c

μ − ζ c
ν

)
ηc

μ + ηc
ν − i

(
c − ζ c

μ + ζ c
ν

)
)(

ηc
μ + ηc

ν + i
(
c + ζ c

μ + ζν

)
ηc

μ + ηc
ν − i

(
c − ζ c

μ − ζ c
ν

)
)

�
Mwp
σ

(
ηc

μ − ηw
σ + i

(
ζ c
μ − ζw

σ + c
)

ηc
μ − ηw

σ + i
(
ζ c
μ − ζw

σ − c
)
)

×
(

ηc
μ − ηw

σ + i
(
ζ c
μ + ζw

σ + c
)

ηc
μ − ηw

σ + i
(
ζ c
μ + ζw

σ − c
)
)(

ηc
μ + ηw

σ + i
(
ζ c
μ − ζw

σ + c
)

ηc
μ + ηw

σ + i
(
ζ c
μ − ζw

σ − c
)
)(

ηc
μ + ηw

σ + i
(
ζ c
μ + ζw

σ + c
)

ηc
μ + ηw

σ + i
(
ζ c
μ + ζw

σ − c
)
)

. (C2)

Bethe equations for the wide pairs are(
ηw

ρ + b̃ + i
(
ζw
ρ + c/2

)
ηw

ρ + b̃ + i
(
ζw
ρ − c/2

)
)N(

ηw
ρ − b̃ + i

(
ζw
ρ + c/2

)
ηw

ρ − b̃ + i
(
ζw
ρ − c/2

)
)N(

ηw
ρ + d̃ + i

(
ζw
ρ + c/2

)
ηw

ρ + d̃ + i
(
ζw
ρ − c/2

)
)(

ηw
ρ − d̃ + i

(
ζw
ρ + c/2

)
ηw

ρ − d̃ + i
(
ζw
ρ − c/2

)
)

= �
Mr
β

(
ηw

ρ − λβ + i
(
c + ζw

ρ

)
ηw

ρ − λβ − i
(
c − ζw

ρ

)
)(

ηw
ρ + λβ + i

(
c + ζw

ρ

)
ηw

ρ + λβ − i
(
c − ζw

ρ

)
)

�
Mcp
ν

(
ηw

ρ − ηc
ν + i

(
ζw
ρ − ζ c

ν + c
)

ηw
ρ − ηc

ν + i
(
ζw
ρ − ζ c

ν − c
)
)(

ηw
ρ − ηc

ν + i
(
ζw
ρ + ζ c

ν + c
)

ηw
ρ − ηc

ν + i
(
ζw
ρ + ζ c

ν − c
)
)

×
(

ηw
ρ + ηc

ν + i
(
ζw
ρ − ζ c

ν + c
)

ηw
ρ + ηc

ν + i
(
ζw
ρ − ζ c

ν − c
)
)(

ηw
ρ + ηc

ν + i
(
ζw
ρ + ζ c

ν + c
)

ηw
ρ + ηc

ν + i
(
ζw
ρ + ζ c

ν − c
)
)

�
Mwp

σ �=ρ

(
ηw

ρ − ηw
σ + i

(
ζw
ρ − ζw

σ + c
)

ηw
ρ − ηw

σ + i
(
ζw
ρ − ζw

σ − c
)
)

×
(

ηw
ρ − ηw

σ + i
(
ζw
ρ + ζw

σ + c
)

ηw
ρ − ηw

σ + i
(
ζw
ρ + ζw

σ − c
)
)(

ηw
ρ + ηw

σ + i
(
ζw
ρ − ζw

σ + c
)

ηw
ρ + ηw

σ + i
(
ζw
ρ − ζw

σ − c
)
)(

ηw
ρ + ηw

σ + i
(
ζw
ρ + ζw

σ + c
)

ηw
ρ + ηw

σ + i
(
ζw
ρ + ζw

σ − c
)
)

. (C3)

Applying logarithm to (C1), we obtain∑
σ=±

N
(λα + σ b̃, c/2) + 
(λα + σ d̃, c/2) + 
(2λα, c)

= π Iα +
∑
σ=±

Mr∑
β


(λα + σλβ, c) +
Mcp∑
ν

[



(
λα + σηc

ν, c − ζ c
ν

) + 

(
λα + σηc

ν, c + ζ c
ν

)]

+
Mwp∑
ρ

[



(
λα + σηw

ρ , ζw
ρ + c

) − 

(
λα + σηw

ρ , ζw
ρ − c

)]
. (C4)
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Introducing the counting function ν(λ) such that ν(λα ) = Iα and differentiating with respect to λα and noting that d
dλ

ν(λ) = ρ(λ),
we obtain

ρ(λ) + 1

2
δ(λ) +

n∑
j

1

2
δ(λ − θ j ) + 1

2
δ(λ + θ j ) +

∫
ρ(μ)ϕ(λ − μ, c) = ϕ(2λ, c) +

∑
σ=±

{
Nϕ(2λ + 2σ b̃, c) + ϕ(2λ + σ d̃, c) (C5)

−
Mcp∑
ν=1

1

2

[
ϕ
(
λ + σηc

ν, c − ζ c
ν

) + ϕ
(
λ + σηc

ν, c + ζ c
ν

)] −
Mwp∑
ρ=1

1

2

[
ϕ
(
λ + σηw

ρ , ζw
ρ + c

) − ϕ
(
λ + σηw

ρ , ζw
ρ − c

)]}
(C6)

where we have added n holes at positions θ j , j = 1, . . . , n. Taking the Fourier transformation we obtain

ρ̃(ω) = 1

4
√

2π

1

cosh
(

cω
2

)[
2N cos(bω) + 2 cos(dω) + 1 − e

c|ω|
2 −

n∑
j=1

2 cos(θ jω)ec|ω|/2 (C7)

− 4
Mcp∑
ν=1

cos
(
ηc

νω
)

cosh
(
ζ c
ν ω

)
e−c|ω|/2 + 4

Mwp∑
ρ=1

cos
(
ηw

ρ ω
)

sinh(c|ω|)e−(ζw
ρ −c/2)|ω|

]
. (C8)

The value of the Fourier transformed density at the origin gives the following relation:

M = Mr + 2Mcp + 2Mwp = N + 1

2
− n

2
+ Mcp + 2Mwp, (C9)

from which we get

sz = N + 1

2
− M = n

2
− Mcp − 2Mwp. (C10)

Consider the following term in the Bethe equations corresponding to wide pairs (C3):

�Mr
α

(
ηw

ρ − λα + i
(
c + ζw

ρ

)
ηw

ρ − λα − i
(
c − ζw

ρ

)
)(

ηw
ρ + λα + i

(
c + ζw

ρ

)
ηw

ρ + λα − i
(
c − ζw

ρ

)
)

= exp

{∫
dλ ρ(λ)

[
ln

(
i
(
λ − ηw

ρ

) + (
ζw
ρ + c

)
i
(
λ − ηw

ρ

) + (
ζw
ρ − c

)
)

+ ln

(
i
(
λ + ηw

ρ

) − (
ζw
ρ + c

)
i
(
λ + ηw

ρ

) − (
ζw
ρ − c

)
)]}

. (C11)

Consider the integral in the exponential

J =
∫

dλ ρ(λ)

[
ln

(
i
(
λ − ηw

ρ

) + (
ζw
ρ + c

)
i
(
λ − ηw

ρ

) + (
ζw
ρ − c

)
)

+ ln

(
i
(
λ + ηw

ρ

) − (
ζw
ρ + c

)
i
(
λ + ηw

ρ

) − (
ζw
ρ − c

)
)]

. (C12)

To perform the integral we use the following formulas:∫
dλ f (λ) ln

[
i(λ − ξ ) + a

i(λ − ξ ) + b

]
=

√
2π

∫ ∞

0

dω

ω
f̃ (ω)eiξω(e−bω − e−aω ),

∫
dλ f (λ) ln

[
i(λ − ξ ) + a

i(λ − ξ ) − b

]
=

√
2π

∫ ∞

0

dω

ω
( f̃ (−ω)e−bω−iξω − f̃ (ω)e−aω+iξω )) − iπ f̃ (0), (C13)

where f (λ) is a real valued function and a, b > 0. Using these formulas in (C12), we get

J = 2
√

2π

∫ ∞

0

(
1

ω

)
eiηw

ρ ωe−ζw
ρ ω sinh (c ω) (ρ̃(ω) + ρ̃(−ω)). (C14)

Using the form of ρ̃(ω) (C7) and using the above formulas (C13) again with f̃ (ω) = 1, we obtain

exp {J } =
(

ηw
ρ + b̃ + i

(
ζw
ρ + c/2

)
ηw

ρ + b̃ + i
(
ζw
ρ − c/2

)
)N(

ηw
ρ − b̃ + i

(
ζw
ρ + c/2

)
ηw

ρ − b̃ + i
(
ζw
ρ − c/2

)
)N(

ηw
ρ + d̃ + i

(
ζw
ρ + c/2

)
ηw

ρ + d̃ + i
(
ζw
ρ − c/2

)
)(

ηw
ρ − d̃ + i

(
ζw
ρ + c/2

)
ηw

ρ − d̃ + i
(
ζw
ρ − c/2

)
)

×
(

ηw
ρ + i

(
ζw
ρ + c/2

)
ηw

ρ + i
(
ζw
ρ − c/2

)
)(

ηw
ρ + i

(
ζw
ρ − c

)
ηw

ρ + iζw
ρ

)
�n

j=1

(
ηw

ρ + θ j + i
(
ζw
ρ − c

)
ηw

ρ + θ j + iζw
ρ

)(
ηw

ρ − θ j + i
(
ζw
ρ − c

)
ηw

ρ − θ j + iζw
ρ

)

×�
Mcp

ν=1

(
ηc

ν + ηw
ρ + i

(
ζw
ρ − ζ c

ν

)
ηc

ν + ηw
ρ + i

(
ζw
ρ − ζ c

ν + c
)
)(

ηc
ν − ηw

ρ − i
(
ζw
ρ − ζ c

ν

)
ηc

ν − ηw
ρ − i

(
ζw
ρ − ζ c

ν + c
)
)(

ηc
ν + ηw

ρ + i
(
ζw
ρ + ζ c

ν

)
ηc

ν + ηw
ρ + i

(
ζw
ρ + ζ c

ν + c
)
)
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×
(

ηc
ν − ηw

ρ − i
(
ζw
ρ + ζ c

ν

)
ηc

ν − ηw
ρ − i

(
ζw
ρ + ζ c

ν + c
)
)

�
Mwp

σ �=ρ

(
ηw

ρ + ηw
σ + i

(
ζw
ρ + ζw

σ

)
ηw

ρ + ηw
σ + i

(
ζw
ρ + ζw

σ + c
)
)(

ηw
ρ + ηw

σ + i
(
ζw
ρ + ζw

σ − c
)

ηw
ρ + ηw

σ + i
(
ζw
ρ + ζw

σ − 2c
)
)

×
(

ηw
ρ − ηw

σ + i
(
ζw
ρ + ζw

σ

)
ηw

ρ − ηw
σ + i

(
ζw
ρ + ζw

σ + c
)
)(

ηw
ρ − ηw

σ + i
(
ζw
ρ + ζw

σ − c
)

ηw
ρ − ηw

σ + i
(
ζw
ρ + ζw

σ − 2c
)
)

.

Using this in the Bethe equations corresponding to the wide pair and using the selection rule ηc
ν �= 0, ζ c

ν �= 0, we obtain

�
Mcp

ν=1,ηc
ν �=0,ζ c

ν �=0

(
η + ηc

ν + i
(
ζ − ζ c

ν

)
η + ηc

ν + i
(
ζ − ζ c

ν − c
)
)(

η − ηc
ν + i

(
ζ − ζ c

ν

)
η − ηc

ν + i
(
ζ − ζ c

ν − c
)
)(

η + ηc
ν + i

(
ζ + ζ c

ν

)
η + ηc

ν + i
(
ζ + ζ c

ν − c
)
)(

η − ηc
ν + i

(
ζ + ζ c

ν

)
η − ηc

ν + i
(
ζ + ζ c

ν − c
)
)

×�
Mwp

σ=1

(
η + ηw

σ + i
(
ζ + ζw

σ

)
η + ηw

σ + i
(
ζ + ζw

σ − 2c
)
)(

η − ηw
σ + i

(
ζ + ζw

σ

)
η − ηw

σ + i
(
ζ + ζw

σ − 2c
)
)(

η − ηw
σ + i

(
ζ − ζw

σ + c
)

η − ηw
σ + i

(
ζ − ζw

σ − c
)
)(

η + ηw
σ + i

(
ζ − ζw

σ + c
)

η + ηw
σ + i

(
ζ − ζw

σ − c
)
)

×�n
j=1

(
η + θ j + i(ζ − c)

η + θ j + iζ

)(
η − θ j + i(ζ − c)

η − θ j + iζ

)
= 1. (C15)

Here the obvious selection rule ηw
σ �= η and ζw

σ �= ζ is implied. These are the reduced Bethe equations corresponding to wide
pairs.

Let us now examine the following term in the Bethe equations corresponding to the closed pair (C2):

�
Mr
β

(
ηc

μ − λβ + i
(
c + ζ c

μ

)
ηc

μ − λβ − i
(
c − ζ c

μ

)
)(

ηc
μ + λβ + i

(
c + ζ c

μ

)
ηc

μ + λβ − i
(
c − ζ c

μ

)
)

= exp

{∫
dλ ρ(λ)

[
ln

(
ηc

μ − λ + i
(
c + ζ c

μ

)
ηc

μ − λ − i
(
c − ζ c

μ

)
)

+ ln

(
ηc

μ + λ + i
(
c + ζ c

μ

)
ηc

μ + λ − i
(
c − ζ c

μ

)
)]}

. (C16)

Consider the integral inside the exponential,

I =
∫

dλ ρ(λ)

[
ln

(
ηc

μ − λ + i
(
c + ζ c

μ

)
ηc

μ − λ − i
(
c − ζ c

μ

)
)

+ ln

(
ηc

μ + λ + i
(
c + ζ c

μ

)
ηc

μ + λ − i
(
c − ζ c

μ

)
)]

. (C17)

Using the formulas (C13), we get

I = 2
√

2π

∫ ∞

0

(
1

ω

)
e−cω sinh

[(
ζ c
μ − iηc

μ

)
ω

]
(ρ̃(ω) + ρ̃(−ω)). (C18)

Using the form of ρ̃(ω) (C7) and using the above formulas (C13) again with f̃ (ω) = 1, we obtain

N exp {I} =
(

ηc
μ − b̃ + i

(
ζ c
μ + c/2

)
ηc

μ − b̃ + i
(
ζ c
μ − c/2

)
)N(

ηc
μ + b̃ + i

(
ζ c
μ + c/2

)
ηc

μ + b̃ + i
(
ζ c
μ − c/2

)
)N(

ηc
μ − d̃ + i

(
ζ c
μ + c/2

)
ηc

μ − d̃ + i
(
ζ c
μ − c/2

)
)(

ηc
μ + d̃ + i

(
ζ c
μ + c/2

)
ηc

μ + d̃ + i
(
ζ c
μ − c/2

)
)

×
(

ηc
μ + i

(
ζ c
μ + c/2

)
ηc

μ + i
(
ζ c
μ − c/2

)
)(

1

ηc
μ + iζ c

μ

)(
1(

ηc
μ − θ j + iζ c

μ

)(
ηc

μ + θ j + iζ c
μ

)
)

×�
Mcp

ν �=μ

(
1(

ηc
ν− ηc

μ− i
(
ζ c
μ− ηc

ν + c
))(

ηc
ν− ηc

μ− i
(
ζ c
μ + ηc

ν + c
))(

ηc
ν + ηc

μ + i
(
ζ c
μ + ηc

ν + c
))(

ηc
ν + ηc

μ+ i
(
ζ c
μ− ηc

ν+ c
))

)

×�
Mwp
σ

(
ηc

μ + ηw
σ + i

(
ζw
σ + ζ c

μ

)
ηc

μ + ηw
σ − i

(
ζw
σ − ζ c

μ

)
)(

ηc
μ − ηw

σ + i
(
ζw
σ + ζ c

μ

)
ηc

μ − ηw
σ − i

(
ζw
σ − ζ c

μ

)
)(

ηc
μ + ηw

σ − i
(
ζw
σ − ζ c

μ + c
)

ηc
μ + ηw

σ + i
(
ζw
σ + ζ c

μ + c
)
)

×
(

ηc
μ − ηw

σ − i
(
ζw
σ − ζ c

μ + c
)

ηc
μ − ηw

σ + i
(
ζw
σ + ζ c

μ + c
)
)

× N exp
{
I ′(ηc

μ, ζ c
μ

)}
, (C19)

where

I ′(ηc
μ, ζ c

μ

) =
{

I ′
1

(
ηc

μ, ζ c
μ

) + I ′
2

(
ηc

μ, ζ c
μ

) + I ′
h

(
ηc

μ, ζ c
μ

) + I ′
cp

(
ηc

μ, ζ c
μ

)
, ζ c

μ < c/2

I ′′
1

(
ηc

μ, ζ c
μ

) + I ′′
2

(
ηc

μ, ζ c
μ

) + I ′
h

(
ηc

μ, ζ c
μ

) + I ′
cp

(
ηc

μ, ζ c
μ

)
, ζ c

μ > c/2
, (C20)

I ′
1

(
ηc

μ, ζ c
μ

) = −
∫ ∞

0

(
N sinh

[(
ζ c
μ − iηc

μ + ib̃
)
ω

] + N sinh
[(

ζ c
μ − iηc

μ − ib̃
)
ω

] + sinh
[(

ζ c
μ − iηc

μ + id̃
)
ω

] + sinh
[(

ζ c
μ − iηc

μ − id̃
)
ω

])
ω cosh

(
cω
2

) ,

(C21)
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I ′′
1

(
ηc

μ, ζ c
μ

) =
∫ ∞

0

(
N sinh

[(
ζ c
μ−iηc

μ+ib̃−c
)
ω

]+ N sinh
[(

ζ c
μ− iηc

μ− ib̃− c
)
ω

] + sinh
[(

ζ c
μ− iηc

μ+ id̃ − c
)
ω

]+ sinh
[(

ζ c
μ− iηc

μ− id̃ − c
)
ω

])
ω cosh

(
cω
2

) ,

(C22)

I ′
2

(
ηc

μ, ζ c
μ

) = −
∫ ∞

0

sinh
[(

ζ c
μ − iηc

μ

)
ω

]
ω cosh

(
cω
2

) −
∫ ∞

0

cosh
[(

ζ c
μ − iηc

μ − c/2
)
ω

]
ω cosh

(
cω
2

) , (C23)

I ′′
2

(
ηc

μ, ζ c
μ

) =
∫ ∞

0

sinh
[(

ζ c
μ − iηc

μ − c
)
ω

]
ω cosh

(
cω
2

) −
∫ ∞

0

cosh
[(

ζ c
μ − iηc

μ − c/2
)
ω

]
ω cosh

(
cω
2

) , (C24)

I ′
h

(
ηc

μ, ζ c
μ

) =
n∑

j=1

∫ ∞

0

cosh
[(

ζ c
μ − c/2 − i

(
ηc

μ − θ j
))

ω
] + cosh

[(
ζ c
μ − c/2 − i

(
ηc

μ + θ j
))

ω
]

ω cosh
(

cω
2

) , (C25)

I ′
cp

(
ηc

μ, ζ c
μ

) = −
Mcp∑
ν �=μ

∫ ∞

0

e−cω

ω cosh
(

cω
2

)(
cosh

[(
ζ c
μ − ζ c

ν − c/2 + i
(
ηc

ν − ηc
μ

))
ω

] + cosh
[(

ζ c
μ + ζ c

ν − c/2 + i
(
ηc

ν − ηc
μ

))
ω

]
(C26)

+ cosh
[(

ζ c
μ − ζ c

ν − c/2 − i
(
ηc

ν + ηc
μ

))
ω

] + cosh
[(

ζ c
μ + ζ c

ν − c/2 − i
(
ηc

ν + ηc
μ

))
ω

])
. (C27)

Using this in the Bethe equations corresponding to the closed pair (C2), we get

F (ηc, ζ c) ≡ exp{I ′(ηc, ζ c)}
(

1

ηc + iζ c

)(
1

(ηc − θ j + iζ c)(ηc + θ j + iζ c)

)

×�
Mcp

ν=1

(
1(

ηc− ηc
ν+i

(
ζ c−ζ c

ν − c
))(

ηc − ηc
ν + i

(
ζ c + ζ c

ν − c
))(

ηc + ηc
ν + i

(
ζ c + ζ c

ν − c
))(

ηc + ηc
ν + i

(
ζ c − ζ c

ν − c
))

)

×�
Mwp

σ=1

(
ηc + ηw

σ + i
(
ζw
σ + ζ c

)
ηc + ηw

σ − i
(
ζw
σ − ζ c

)
)(

ηc − ηw
σ + i

(
ζw
σ + ζ c

)
ηc − ηw

σ − i
(
ζw
σ − ζ c

)
)(

ηc − ηw
σ + i

(
ζ c − ζw

σ + c
)

ηc − ηw
σ + i

(
ζ c + ζw

σ − c
)
)

×
(

ηc + ηw
σ + i

(
ζ c − ζw

σ + c
)

ηc + ηw
σ + i

(
ζ c + ζw

σ − c
)
)

= 1. (C28)

where the obvious selection rule ηc
ν �= ηc and ζ c

ν �= ζ c is implied. To obtain the final form of the reduced Bethe equations
corresponding to closed pairs, we need to eliminate the exponential factor exp {I ′(ηc, ζ c)} in the above equation. This can
be achieved by dividing F (ηc, ζ c) by F ∗(ηc, c − ζ c) and noting that I∗(ηc, c − ζ c) = I (ηc, ζ c), where ∗ denotes complex
conjugation. We have

F (ηc, ζ c)

F ∗(ηc, c − ζ c)
≡ �n

j=1

(
η + θ j + i(ζ − c)

η + θ j + iζ

)(
η − θ j + i(ζ − c)

η − θ j + iζ

)
�

Mcp

ν=1,ηc
nu �=0,ζ c

ν �=0

(
η + ηc

ν + i
(
ζ − ζ c

ν

)
η + ηc

ν + i
(
ζ − ζ c

ν − c
)
)

×
(

η − ηc
ν + i

(
ζ − ζ c

ν

)
η − ηc

ν + i
(
ζ − ζ c

ν − c
)
)(

η + ηc
ν + i

(
ζ + ζ c

ν

)
η + ηc

ν + i
(
ζ + ζ c

ν − c
)
)(

η − ηc
ν + i

(
ζ + ζ c

ν

)
η − ηc

ν + i
(
ζ + ζ c

ν − c
)
)

×�
Mwp

σ=1

(
η + ηw

σ + i
(
ζ + ζw

σ

)
η + ηw

σ + i
(
ζ + ζw

σ − 2c
)
)(

η − ηw
σ + i

(
ζ + ζw

σ

)
η − ηw

σ + i
(
ζ + ζw

σ − 2c
)
)(

η − ηw
σ + i

(
ζ − ζw

σ + c
)

η − ηw
σ + i

(
ζ − ζw

σ − c
)
)

×
(

η + ηw
σ + i

(
ζ − ζw

σ + c
)

η + ηw
σ + i

(
ζ − ζw

σ − c
)
)

= 1. (C29)

Here, the selection rule ηc
ν �= 0, ζ c

ν �= 0 was applied.
The reduced Bethe equations corresponding to wide pairs
(C15) are exactly same as those corresponding to closed
pairs (C29).

For the unscreened phase, the calculation can be done
by the same method described above. After applying the
appropriate selection rules, we obtain the same exact reduced
Bethe equations as that of the screened phase (C15) and (C29).

In this case, an additional selection rule which disallows the
solution λ = ±i(ã − c/2) as a closed pair is applied. This
selection rule is self imposed by the resulting reduced Bethe
equations in the unscreened phase.

Before finishing we should check whether this solution
may exist as a wide pair ã > 3c/2. We show now that it
does not, thereby proving the absence of boundary strings
as a solution of the Bethe equations. From (C9), we see that
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four holes are needed for the existence of this boundary string
and the resulting excitation would be a singlet (C10). Here
we solve for the possible positions of the four holes and find
that no solutions exist, which means that this boundary string
cannot be present in the system as a singlet excitation. The
reduced Bethe equations in the presence of this boundary
string and four holes at positions θ j, j = 1, . . . , 4 are

�4
j=1

θ2
j + (ã − 3c/2)2

θ2
j + (ã − c/2)2

= 1. (C30)

Let us fix the positions of three holes θ2, θ3, θ4, and solve
for θ1. We have(

1 − �3
j=2

θ2
j + (ã − c/2)2

θ2
j + (ã − 3c/2)2

)
θ2

1

= (ã − c/2)2

(
�3

j=2

θ2
j + (ã − c/2)2

θ2
j + (ã − 3c/2)2

)
− (ã − 3c/2)2.

(C31)

The term inside the brackets on the left-hand side is always
negative. The right-hand side is always positive. This means
θ2

1 is negative hence we cannot have any real solutions for θ1.
This implies we cannot have the boundary string as there are
no real solutions for the holes.

APPENDIX D: ELEMENTARY EXCITATIONS

In order to study the effect of a magnetic field on the
system and thereby determine the existence of a Kondo effect
as well as understand the transition from the screened to the
unscreened phases we need to study the low-energy excita-
tions of the system. In this section, we construct the triplet
and singlet spinon excitations.

Triplet excitation. The triplet excitation is formed by
adding two holes to the ground state of the Bethe roots.
Adding two holes at θ1 and θ2, we obtain from (C7)

ρ̃(ω) = ρ̃gs(ω) + δρ̃h(ω), (D1)

where ρ̃gs refers to the Fourier transform of the ground-state
distribution either in the screened (7) or unscreened (8) phase
and

δρ̃h(ω) = − 1

2
√

2π

cos(θ1ω) + cos(θ2ω)

cosh
(

cω
2

) e
c|ω|

2 (D2)

is the shift in the distribution caused by the holes. Using the
same method as in the ground state we can calculate that the
spin of this excitation is Sz = 1. Justifying the moniker of
triplet excitation. It is also worthwhile to calculate the energy.
Using E = ∑N

j=1 k j along with (5) and replacing the sum over
Bethe roots by an integral over ρ(λ) we find that energy of the
triplet excitation is

δE = D
∫

δρh(λ)
∑
σ=±


(b̃ + σλ, c/2), (D3)

which yields

δE =
2∑

l=1

D arctan

[
cosh

(
θl π

c

)
sinh (bπ )

]
. (D4)

Therefore the total excitation energy is a sum of two terms one
from each hole. We interpret this as two spinons, each carrying
spin 1/2 which are symmetrically coupled in the triplet state.
In addition to this, we see that in contrast to the gapless, linear
dispersion of the bare left and right movers of the system, the
spinons have acquired a gap. The minimum energy of a single
spinon occurs at θl = 0 and it is given by

� = D arctan

[
1

sinh (bπ )

]
. (D5)

This is the same dynamical mass generation present in the
chiral Gross-Neveu model. Note that the mass vanishes when
g1 → 0.

Singlet excitation. In addition to the triplet excitation there
must also be a singlet. This is created by adding two holes as
before but also introducing a complex conjugate pair of Bethe
roots called a 2-string, λs ± ic/2, which belongs to the closed
pair category in (C29). We obtain from (C7)

ρ̃(ω) = ρ̃gs(ω) + δρ̃h(ω) + δρ̃s(ω), (D6)

where δρ̃h is the same as before and the contribution from the
string is

δρ̃s(ω) = − 1√
2π

e− c|ω|
2 cos(λsω). (D7)

The position of the 2-string λs depends on the positions of
the holes, this can be calculated by using the reduced Bethe
equations. In the presence of two holes at θ1 and θ2 and
one closed pair with imaginary part c/2, the reduced Bethe
equations (C29) take the form(

i + 2(λs+θ1 )
c

i − 2(λs+θ1 )
c

i + 2(λs−θ1 )
c

i − 2(λs−θ1 )
c

i + 2(λs+θ2 )
c

i − 2(λs+θ2 )
c

i + 2(λs−θ2 )
c

i − 2(λs−θ2 )
c

)
= 1,

which gives λs = ±
√

θ2
1
2 + θ2

2
2 + c2

4 .
This result which is in agreement with the result obtained

in Ref. [33], is different to the periodic case where the position
of the string is at the midpoint of the two holes. λs = 0 is also a
solution to the above equation and it is a trivial solution which
occurs for any number of holes. This is not a valid solution
since for more than two holes, the reduced Bethe equations
yield an inconsistent number of other complex solutions when
solved in the presence of this trivial solution, hence it should
be discarded.

The spin of this excitation is calculated along similar lines
to before. Taking into account the extra 2-string, we have that
Sz = (N + 1)/2 − 2 − √

2πρ̃(0) = 0. Thus the excitation is
a singlet and moreover performing the same calculation of
the energy we find that δρs is enough to completely cancel
the bare energy of adding the 2-string. Therefore the energy
is also given by (D4) making it degenerate with the triplet
excitation. In the scaling limit, the energy becomes

δE = � cosh

(
πθ1

c

)
+ � cosh

(
πθ2

c

)
, (D8)

which shows that the Lorentz invariance of the model is
restored in the scaling limit.
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APPENDIX E: MAGNETIZATION

We now turn to the calculation of the magnetization in the
presence of a small magnetic field, h. To do this we add a term
−μhSz to the Hamiltonian, where Sz = 1

2

∑N
i=0 σ z

i and so we
are looking for the ground state of the following Hamiltonian:

H ′ = H − μhSz, (E1)

which shall provide us with the magnetization of the system.
Since H commutes with Sz, the eigenstates of H ′ are same as
that of H however the energy levels are shifted. Consequently,
the ground state will be different and will require a balancing
of the energy contribution of both terms in H ′. We already
know that the ground state for h = 0 involves all the electrons
forming a singlet and the impurity being either screened or
unscreened, in contrast the magnetic field term is minimized
by maximizing the total number of up spins, i.e., Sz = N/2.
Thus, in the presence of a magnetic field, minimizing the
energy requires that a number of holes be included in the
ground state.

Since there is an energy gap in the system, we will find
that there exists a critical field up until which the bulk will not
magnetize. This critical field naturally depends on the energy
gap and can be expected to be hc = 2�/μ corresponding to
the minimum energy required to create a triplet excitation.
When the applied magnetic field is greater than the critical
value, hole excitations occur symmetrically about θ = 0 up
until θ = ±B(h) owing to the spectrum being symmetric in λ,
where B(h) depends on the applied magnetic field [36].

Let the density of the holes be denoted by ρh(λ), |λ| <

B(h) and ρ(λ) = 0, |λ| < B(h) We combine these and define
a new function ρB(λ) = ρh(λ) + ρ(λ) which is the distribu-
tion of particles and holes in the ground state. Starting from
the Bethe equations we find that it satisfies the following
integral equation:

h(λ) = ρB(λ) +
∫

|μ|>B
f (λ − μ)ρB(μ), (E2)

where h(λ) = g(λ) − 1
2δ(λ). Here, g(λ) refers to ether

gs(λ) = ∑
σ=± Nϕ(2λ + 2σbc, c) + ϕ(2λ + 2σdc, c) +

ϕ(2λ, c) − (1/2)δ(λ) and ϕ(x, n) = (n/π )(n2 + x2)−1 in the
screened case or a similar expression, gus(λ) in the unscreened
case. This equation reduces to the previous equation (6) when
B(h) = 0, i.e., for h = 0. In terms of this, the total energy of
the system as a function of the magnetization is

E = D

L

∫
|λ|>B

ρB(λ)
∑
σ=±


(b̃ + σλ, c/2) + (πD − μh)Sz.

(E3)

Furthermore, we can write the total spin in terms of ρB(λ),

Ss
z = 1

2

∫ B

−B
ρB(λ)dλ, Sus

z = 1

2
+ 1

2

∫ B

−B
ρB(λ)dλ, (E4)

where Su
z and Sus

z are the spin in the screened and unscreened
phases.

We need to solve (E2) subject to the constraint that (E3) is
minimized after which the magnetization can be determined.
Since the minimum value of the spin Sz occurs for B = 0 and
the maximum value occurs for B = ∞, we can solve (E2)

perturbatively in the small parameter B which corresponds to
a magnetic field, close to hc. This is used in (E4) to obtain
a relation between the spin and the parameter B, Sz = Sz(B)
and subsequently inserted into (E3) to give E (B). The ground
state occurs for a minimum value of ε(S) = E (Sz ) − E (0)
which gives us B(h) and therefore Sz(h), the magnetization.
We carry this out separately for both the screened and un-
screened cases below. In both cases, we find that 2πB(h) =
c
√

(μh − 2�)/2� from which we find that the critical field is
hc = 2�/μ in agreement with our previous expectation.

Here we derive the magnetization in the screened phase.
By adding and subtracting the integral∫ B

−B

2c

π

ρB(μ)

c2 + (λ − μ)2
(E5)

to Eq. (E2) with g(λ) = gs(λ) and applying the Fourier trans-
formation, we get

ρ̃B(ω) = ρ̃ ′
0(ω) +

∫ B

−B

1√
2π

ρB(μ)eiωμ

1 + ec|ω| , (E6)

where

ρ̃ ′
0(ω) = 1

4
√

2π

[2N cos(b̃ω) + 2 cos(d̃ω) + 1]

cosh( cω
2 )

. (E7)

By applying Fourier transformation to (E6), we obtain

ρB(λ) = ρ ′
0(λ) −

∫ B

−B
ρB(μ)R(λ − μ),

R(x) = − 1

2π

∫ ∞

−∞

e−iωx

1 + ec|ω| . (E8)

For a magnetic field close to the critical field, we can expand
these expression for small B and upon doing so we obtain

ρB(0) = ρ ′
0(0) − 2BρB(0)R(0) − B3

3
(ρB(0)R(0))′′ + · · · ,

(E9)

which yields

ρB(0) = ρ ′
0(0) − 2Bρ ′

0(0)R(0) + 4B2R(0)2ρ ′
0(0) + O(B3).

(E10)

Using the first relation in (E4) and expanding once again for
small B, we get

Ss
z = ρB(0)B + ρ ′′

B(0)
B3

6
+ · · · (E11)

After this, we insert (E10) in (E11) and obtain

Ss
z = ρ ′

0(0)B − 2B2ρ ′
0(0)R(0)

+ B3

(
4ρ0(0)R2(0) + ρ ′′(0)

6

)
+ O(B4). (E12)

We now use this to determine the energy difference

ε
(
Ss

z

) = E
(
Ss

z

) − E (0) = D
∑
σ=±

∫
|λ|>B

(ρB(λ) − ρ ′
0(λ))


(b̃ + σλ, c/2) + (πD − μH )Ss
z, (E13)
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By using (E8) and integrating over λ in the above equation,
we get

ε
(
Ss

z

) = −D
∫ B

−B
ρB(μ) arctan

[
sinh

(
π b̃
c

)
cosh

(
πμ

c

)
]

+(πD − μH )Ss
z .

(E14)

Performing the same expansion as before and using (E12) to
eliminate B in favor of Ss

z , we obtain

ε
(
Ss

z

) = −μ

(
h − 2�

μ

)
Ss

z

+ D

3

(
π2

c2

)
1

[ρ ′
0(0)]2

sinh(πb)

[cosh(πb)]2

(
Ss

z

)3
. (E15)

For μh < 2�, the coefficient of Ss
z is positive and hence the

minimum of ε(Ss
z ) occurs at Ss

z = 0. For μH > 2�, minimiz-
ing ε(Ss

z ), we obtain

Ss
z =

(
c

π

)
cosh[πb]

(sinh[πb])1/2

(
1

D

)1/2

(μh − 2�)1/2ρ ′(0). (E16)

By using the form of ρ ′(0) and trading in the bare pa-
rameters for the physical scales � and T0 we arrive at (12).
Following the same method one can also derive (13).

APPENDIX F: DERIVATION OF THE RG EQUATIONS

Within the Bethe ansatz approach to quantum field theory
one can recover the leading order RG equations given. In this
section, we show how this is done and derive (14).

The gap is given by

� = D arctan

(
1

sinh πb

)
(F1)

in order to take the universal scaling limit we take D → ∞
and b → ∞ such that � is held fixed. Upon doing this, we
have

� = 2De−π/2g1 (F2)

where we have replaced b → 1/2g1. Inverting this relation-
ship tells us how at weak coupling g1 flows as a function of
the energy scale,

g1(�) = 1
2
π

ln
(

2�
�

) , (F3)

where � is some energy scale and � is held fixed. From our
expression for d , we have

c = 2b

b2 − d2 − 1
(F4)

where in the unscreened phase we should take d2 → −a2.
Inserting (F3) into the above expression we obtain the flow
of J at weak coupling

J (�) =
1
π

ln
(

2�
�

)
[

1
π

ln
(

2�
�

)]2 − 1 − d2
(F5)

where we have replaced c → 2J . These equations can be most
easily analyzed by turning them into a set of coupled differ-
ential equations. Differentiating (F3) and (F5) with respect to
l = ln �, we arrive at (14).
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