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Coherent router for quantum networks with superconducting qubits
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Scalable quantum information processing will require quantum networks of qubits with the ability to
coherently transfer quantum states between the desired sender and receiver nodes. Here we propose a scheme
to implement a quantum router that can direct quantum states from an input qubit to a preselected output qubit.
The path taken by the transferred quantum state is controlled by the state of one or more ancilla qubits. This
enables directed transport between a sender and a number of receiver nodes, as well as generation of distributed
entanglement in the network. We demonstrate the general idea using a two-output setup and discuss how the
quantum routing may be expanded to several outputs. We also present a possible realization of our ideas with
superconducting circuits.
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I. INTRODUCTION

The transfer of quantum information between different
quantum processing units will be an integral part of possible
future quantum technology. While photons will play the deci-
sive role for long-range transfer [1–3], the short-range trans-
port of quantum states is more likely to be accomplished via
stationary information channels such as chains and networks
of coupled qubits [4–6]. Since the seminal work of Bose [7],
many studies have explored how to accomplish high-fidelity
transfer of quantum states through a spin or qubit network
[8–22].

State transfer protocols in such networks typically rely
on tuning nearest-neighbor couplings and local fields, either
statically or dynamically, in order to maximize the fidelity
of moving a quantum state across the network in minimum
time. Controlling the individual qubit energies is usually done
with the external classical fields, while couplings between the
qubits are tuned via judicious engineering of the interqubit
interactions [23,24].

Since a larger quantum processing unit is likely to consists
of several smaller devices or subprocessors, it is crucial to
have a quantum routing system for selective high-fidelity state
transfer and entanglement sharing between a sender and a
distinct receiver in a network. This issue has previously been
considered in several different contexts, including coupled
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harmonic systems [25], external flux threading [26], and
local field adjustments in spin systems [27–32] using local
periodic field modulation [33] to manipulate tunneling rates
[34–37] and using optimal control techniques at local sites
[31]. The common theme of all of these previous proposals
is that they require a considerable amount of careful external
control in order to perform the routing of quantum states and
entanglement.

In this paper, we propose to tune the coupling between
the input and the desired output qubits using ancilla qubits.
The internal state of the ancilla qubit controls the direction
of the quantum state transfer, serving thus as a quantum router.
The advantage of our scheme is that the ancilla qubits may be
in superposition or entangled states, allowing the router to sent
the quantum states into a superposition of different directions.
Hence, the process of routing is done in a completely quan-
tum mechanical manner. In combination with, e.g., a set of
controllable swapping gates [38,39], quantum routers may be
a starting point for constructing physical quantum processing
devices analogously to classical circuit designs.

We note that routing quantum states between different
qubits of a quantum circuit can be accomplished by a se-
quence of appropriate gates [40,41]. But our aim here is
to construct a dedicated quantum router, which offers the
advantages of being simple and robust as it is quicker and
requires minimal amount of dynamic controls to operate.

We first discuss the simplest realization of the router, with
just two output qubits. We then describe a router for more than
two output qubits. Finally, we propose a concrete realization
of a quantum router using superconducting circuits [42,43].
The qubit model used here is general and our routing scheme
can also be implemented in numerous other platforms.

II. ROUTER WITH TWO OUTPUTS

To illustrate the dynamics of the router, we start by consid-
ering the router with two output qubits. The most elementary
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FIG. 1. (a) Schematic illustration of the router system with two
output qubits. The solid lines represent transverse XX -type couplings
and the dashed lines represent longitudinal ZZ-type couplings. The
purple sphere represents the input qubit, the blue spheres represent
the output qubits, and the green sphere is the ancilla qubit. Depending
on the state of the ancilla qubit, the state of the input qubit is sent to
either first or second output qubit or their superposition. (b) Possible
circuit implementation. The superconducting circuit consists of four
transmon qubits connected in a square. Two parallel lines indicates
capacitors, while the crossed boxes indicate Josephson junctions.
The different parts of the system are colored according to their role,
as per (a).

quantum router consists of four qubits: The input qubit, the
two output qubits, and an ancilla qubit that controls the
direction of the state transfer from the input to the desired
output. We initialize the two output qubits in their ground state
|0〉, while the input and control qubits are initialized in states
|ψI〉 and |ψC〉, respectively. We write the initial state of the
combined system as |i〉 = |ψI〉 |00〉 |ψC〉. The router is then
constructed in such a way that if the control qubit is in state
|ψC〉 = |0〉, then the input state is moved to the first output
qubit, and if the control is in state |ψC〉 = |1〉, then the input
state is moved to the second output qubit,

|ψI〉|00〉|0〉 → |0〉|ψI 0〉|0〉,
|ψI〉|00〉|1〉 → |0〉|0ψI〉|1〉. (1)

In general, if the control qubit is in a superposition state
|ψC〉 = α |0〉 + β |1〉, where |α|2 + |β|2 = 1, then we have

|ψI〉|00〉|ψC〉 → α|0〉|ψI 0〉|0〉 + β|0〉|0ψI〉|1〉. (2)

This creates entanglement between the control qubit and the
output qubits.

Figure 1(a) illustrates the system. The Hamiltonian of the
quantum router can be written as

Ĥ = −�1
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where σ x = |0〉〈1| + |1〉〈0|, σ y = −i|0〉〈1| + i|1〉〈0|, and
σ z = |0〉〈0| − |1〉〈1| are the Pauli spin operators in the com-
putational basis {|0〉, |1〉} of the qubits. The subscript I indi-
cates the input qubit, while subscripts 1 and 2 indicate the
output qubits, and C the control qubit. The |0〉-|1〉 transition
frequencies of the output qubits (relative to that of the input

qubit) are �1,2, and the transverse and longitudinal coupling
strengths are denoted as Jx and Jz, respectively. The first
interaction term with strength Jz enables the control qubit
to shift the frequencies of the two output qubits. The second
interaction term has strength Jx and transversely couples the
input qubit to the output qubits. This allows the input qubit
to swap an excitation with an output qubit if their frequencies
are resonant. We require the energy shift due to the interaction
with the control qubit to be much larger than the transverse
coupling Jz � Jx.

We assume that the transition frequencies of the output
qubits can be independently tuned. Depending on the state of
the control qubit, the router should send the state of the input
qubit to one of the output qubits. To realize this behavior, we
set the detunings as

�1 = −�2 = 2Jz. (4)

The diagonal part of the Hamiltonian in eqn. 3 then becomes
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1 + 2Jzσ z
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〈
σ z
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〉 = 1
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2 for
〈
σ z

C

〉 = −1.
(5)

When the control qubit is in the state |0〉, corresponding to
〈σ z

C〉 = 1, the input and the first output qubit are resonant
while the second output qubit is detuned. If the detuning
is significantly larger than the transverse coupling strength,
i.e., |4Jz/Jx| � 1, transfer from the input qubit to second
output qubit will be suppressed, while excitations can hop
resonantly from the input to the first output qubit. If, on the
other hand, the control qubit is in the orthogonal |1〉 state,
then the excitation can hop from the input to the second output
qubit, while transfer to the first output qubit is suppressed.

More formally, we may write the Hamiltonian in a frame
rotating with its diagonal part as

Ĥrot

Jx
= σ−

I σ+
1 e2iJz (σ z

C−1)t + σ−
I σ+

2 e2iJz (σ z
C+1)t + H.c.

≈ σ−
I σ+

1 |0C〉〈0C| + σ−
I σ+

2 |1C〉〈1C| + H.c., (6)

where we have used the rotating wave approximation in
conjunction with the assumption |4Jz/Jx| � 1 in order to
obtain the final expression. At time T = π/(2Jx ) the transfer
is complete and the transformation is described by the unitary
operator

ÛT = exp

{
− i

π

2
(σ−

I σ+
1 |0C〉〈0C| + σ−

I σ+
2 |1C〉〈1C| + H.c.)

}
.

(7)

Note that this unitary transformation is indeed capable of
creating entanglement when the control qubit is in a super-
position state, as in Eq. (2).

To characterize the performance of the quantum router, we
calculate the average process fidelity, defined as [44–47]

F̄ =
∫

dψ〈ψ |Û †
T E (ψ )ÛT |ψ〉, (8)

where the integration is performed over the subspace of
all possible initial states and E is the quantum map re-
alized by our system. We initialize the two output qubits
in state |0〉 so the subspace of initial states is spanned by
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FIG. 2. Average fidelity of the two-output router as a function
of the coupling ratio. The blue solid line shows the average fidelity
at time t = π/(2Jx ). The dashed lines are the average fidelity with
relaxation and coherence time of T1 = T2 = 30 μs. The red line is
the corresponding transfer time. In all calculations we have used
Jz/(2π ) = 10 MHz. Insert: Time dependence of the state transfer of
the two-output router for Jz/Jx = 1 (blue), Jz/Jx = 3 (yellow), and
Jz/Jx = 5 (green).

{|0〉|00〉|0〉, |1〉|00〉|0〉, |0〉|00〉|1〉, |1〉|00〉|1〉}. The average fi-
delity is then calculated with the QuTiP Python toolbox [48]
using the procedure described in Ref. [49]. In all calculations,
we have Jz/(2π ) = 10 MHz and the relaxation and decoher-
ence times are T1 = T2 = 30 μs [50]. In Fig. 2 we show the
average process fidelity at the transfer time T = π/(2Jx ).
When |Jx| = |Jz| the most detrimental source of error is
transfer to the wrong output qubit, since the detuning induced
by the control qubit is not large enough to completely sup-
press the hopping interaction connecting the input and closed
output qubits. In this regime, the error due to decoherence is
comparatively small, which is due to the fact that the transfer
times are shorter for larger Jx. For larger values of |Jz/Jx|,
transfer to the closed output qubit is stronger suppressed, and
the average process fidelity approaches unity if we neglect
decoherence. But since the transfer time also increases, de-
coherence becomes the dominant source of error. With our
choice of parameters, the maximum fidelity is F̄max = 0.9907
at |Jz/Jx| = 4.192.

III. ROUTERS WITH MULTIPLE OUTPUTS

The number of output ports of the router can be increased
in several ways. In this section we present two different ways
of realizing routers with multiple outputs.

A. Implementation of three output router

A schematic illustration of a three output router is shown
in Fig. 3. The system can be described using a spin-model
Hamiltonian
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FIG. 3. (a) Schematic illustration of the router system with three
output qubits. Compared to Fig. 1(a) an extra output and control qubit
have been added. (b) Possible circuit implementation. The circuit
consists of six connected transmon qubits according to the scheme
illustrated in (a).

Similarly to the two output router, we require that |Jz| � |Jx|
in order to suppress the state transfer transfer to the wrong
output qubits. Depending on the detunings �i, the router can
exhibit different behaviors.

The first setting is realized by tuning �1 = �3 = −Jz and
�2 = 2Jz. The input state is then sent to qubit 1 if the control
state is |01〉, to qubit 2 if the control state is |11〉, or to qubit
3 if the control state is |11〉. For all cases, the transfer time is
T = π/(2Jx ). For the |00〉 control state both output 1 and 3
are open, and the transfer time is T ′ = T/

√
2, but we assume

that such a configuration does not occur, or is forbidden.
It is also possible to set up the router such that only one

output is closed. The input state is then sent to both open
output qubits and we thus get an entangled state between
the open output qubits. Which qubits become entangled is
determined by the control qubits. We can thus produce a
quantum controlled entanglement distribution system. For this
configuration we require the detunings �1 = �3 = Jz and
�2 = 0. When the controls are in state |11〉 the input state is
transferred to qubit 1 and 3, for |10〉 the state is transferred to
qubit 1 and 2, and for |10〉 the state is transferred to qubit 2 and
3. The transfer time is T ′ = T/

√
2 for all cases. In the final

control configuration |00〉 all of the output qubits are closed
and the input state remains in the input qubit.

B. Concatenated routers

Here we describe a scheme in which N routers are con-
catenated as shown on Fig. 4, where one output of each router
serves as the input qubit for the next one. We refer to these
qubits as the bus qubits.

FIG. 4. (a) Schematic illustration of a concatenated router with
N + 1 output ports. The purple sphere is the input qubit, the blue
spheres are the output qubits, the green spheres are the control qubits,
and the orange spheres are bus qubits, i.e., qubits which act both as
input and output qubits.
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The concatenated router operates in (time) steps.
Step 0. Initialize the input qubit in a given state |ψ〉.
Step 1. The state will either move down to the first output

or right to the first bus qubit, depending on the state of the
first control qubit. After the state have been transferred, i.e.,
at t = T , the input qubit is closed by detuning it from the bus
qubit.

Step 2. The state moves either down to the second output
qubit or continues right to the second bus qubit, depending on
the state of the second control qubit.

Step 3. Detune the second bus qubit from the first bus qubit
at time t = 2T . The procedure proceeds as above until the
state moves down into one of the N output qubits or it arrives
at the last output qubit N + 1.

This process can be expressed through a Hamiltonian with
time-dependent detunings. The static part of the Hamiltonian
is

Ĥ = Jz
N∑
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y
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, (10)

where we denote the bus’s qubits σ
x,y,z
B , and the zeroth bus

qubit is the input qubit, while the N th bus qubit is the final
output qubit. The time-dependent part of the Hamiltonian is

Ĥ (t ) = �

N∑
i=1

⎡⎣σ z
Bi−1

+ σ z
Bi

+
i∑

j=1

σ z
φ j

⎤⎦
× [θ (t − (i − 1)T ) − θ (t + iT )], (11)

where � is the detuning and θ (t ) is the Heaviside step func-
tion. For the process to function properly, we must ensure that
|�| � |Jx| and |2Jz ± �| � |Jx|. Thus, an excitation starting
in the input qubit will move down the chain of bus qubits in
discrete time steps until it encounters a control qubit in state
|0〉 and moves to the associated output qubit, where it will
remain for the rest of the process.

IV. IMPLEMENTATION USING
SUPERCONDUCTING CIRCUITS

Superconducting circuits present a promising platform to
implement the quantum router. Specifically, we propose an
implementation using transmon qubit architecture as shown in
Fig. 1(b). The circuit consists of four transmon qubits, each of
which can be made flux-tunable by substituting the Josephson
junction with a SQUID. The two output qubits (blue) are
coupled to the control qubit (green) each through a Josephson
junction and a capacitor in parallel. The nonlinearity of this
Josephson junction provides the main mechanism for the ZZ-
type coupling between outputs and control. A tunable version
of this coupler has been investigated experimentally, and it
has been shown that the transversal coupling could be made
negligible compared to the longitudinal coupling [51]. In our
scheme, the transverse coupling between the output qubits and
control is much smaller than their relative detuning such that
there will be no exchange of excitations between them.

TABLE I. Physical parameters used for our example implemen-
tation of the quantum router.

Cq

fF
Cz
fF

Cx
fF

EI
2πGHz

E1
2πGHz

E2
2πGHz

EC
2πGHz

Ez
2πGHz

80.0 13.7 0.082 19.52 19.22 19.52 38.74 3.46

By using second-order perturbation theory, we derive an
effective Hamiltonian for the circuit (see Appendix),

Ĥ circ
eff = −�1
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where the three last terms arise from the second-order inter-
actions between outputs and control. Numerical modeling of
the full circuit Hamiltonian with the parameters of Table I
leads to longitudinal coupling of Jz = −9.95(2π MHz) and a
transversal input/output coupling of Jx = 2.78(2π MHz) with
appropriate detunings of the outputs. The three remaining
couplings are all much smaller than Jx and can thus be
neglected for our purposes.

V. CONCLUSION

To summarize, we have proposed a simple implementation
of a quantum router with quantum control and analyzed it
analytically and numerically. By utilizing a relatively strong
interaction with a control qubit, we can suppress state transfer
to the undesired output qubit and achieve selective transfer
fidelity above 0.99, even when including the effects of dephas-
ing and relaxation. We have also described a scalable scheme
that can extend the router to an arbitrary number of outputs.
Finally, we have presented a possible realization of the router
using a superconducting circuit. Our simple routing scheme is
capable of distributing entanglement between distant qubits
which is highly useful for short-range (on-chip) quantum
communications.
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APPENDIX: SUPERCONDUCTING CIRCUIT
IMPLEMENTATION OF THE ROUTER

Here we show how the Hamiltonian of Eq. (3) in the main
text can be realized using the circuit in Fig. 1(b). We use the
procedure of Refs. [52,53]. Since the couplings between the
input and output are much smaller than the couplings between
the outputs and control, we will analyze an isolated system

013004-4



COHERENT ROUTER FOR QUANTUM NETWORKS WITH … PHYSICAL REVIEW RESEARCH 2, 013004 (2020)

consisting of the outputs and control before adding the input
qubit. The circuit Hamiltonian can then be written as

H = 1
2 	qT C−1 	q − EJ1 cos (ϕ1) − EJ2 cos (ϕ2)

− EJC cos (ϕC ) − EJz1 cos (ϕ1 − ϕC )

− EJz2 cos (ϕ2 − ϕC ). (A1)

Here {ϕi}i∈{1,2,C} are phase differences across the Josephson
junctions of the respective qubits, and qi are the conjugate
charge operators fulfilling [ϕi, q j] = iδi j . The capacitance
matrix is given explicitly by

C =

⎡⎢⎣C1 + Cz1 0 −Cz1

0 C2 + Cz2 −Cz2

−Cz1 −Cz2 CC + Cz1 + Cz2

⎤⎥⎦. (A2)

For a typical transmon, the charging energy is much smaller
than the junction energy and the phase is well localized near
the bottom of the potential. This is equivalent to a heavy
particle moving near the equilibrium position. We can thus use
the fourth-order Taylor expansion of the full potential, which
allows us to rewrite the Hamiltonian as

Ĥ =
∑

i∈{1,2,C}
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†
j − b̂ j )
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16
, (A3)

where we have defined the effective single mode Josephson
energies and charging energies

ẼJ1 = EJ1 + EJz1,

ẼJ2 = EJ2 + EJz2,

ẼJC = EJC + EJz1 + EJz2,

EC1 = (C−1)1,1

8
,

EC2 = (C−1)2,2

8
,

ECC = (C−1)3,3

8
, (A4)

and the ladder operators

ϕ̂i =
√

ζi

2
(b̂†

i + b̂i ), q̂i = i√
2ζi

(b̂†
i − b̂i ), (A5)

with impedances ζi =
√

(C−1)i,i/ẼJi . Note that even though
there is no capacitor between qubits 1 and 2, there is still a
capacitative coupling between the two qubits, since (C−1)1,2

is nonzero. The circuit operates in the weak-coupling limit
EJzi � EJ j∀i, j and Czi � Cj∀i, j. This allows us to view
the system as three harmonic oscillators perturbed by the
quadratic and quartic interactions. In addition, we will assume
that modes 1 and 2 are very close to resonance such that
we can treat their detuning as part of the perturbation. For
simplicity, we neglect terms that do not preserve the number
of excitations, such as b̂†

1b̂†
2. Such terms are suppressed by a

large energy gap and thus only give rise to minor corrections.
The total Hamiltonian is then the sum of the uncoupled
harmonic oscillator Hamiltonian Ĥ0 and a perturbation V̂ ,

Ĥ0 = ω(n̂1 + n̂2 + n̂C ) + �n̂C, (A6)

V̂ = δ(n̂2 − n̂1) + α1n̂1(n̂1 − 1)

2

+ α2n̂2(n̂2 − 1)

2
+ αCn̂C (n̂C − 1)

2

+ gz1n̂1n̂C + gz2n̂2n̂C + gx1X̂1C + gx2X̂2C + gx12X̂12

+ gxz1[ζ1(X̂1Cn̂1 + n̂1X̂1C ) + ζC (X̂1Cn̂C + n̂CX̂1C )]

+ gxz2[ζ2(X̂2Cn̂2 + n̂2X̂2C ) + ζC (X̂2Cn̂C + n̂CX̂2C )].

(A7)

The unperturbed qubit frequencies and anharmonicities are
then given by

ωi =
√

8ẼJiECi − αi − EJziζiζC

8
i = 1, 2,

ωC =
√

8ẼJCECC − αC − EJzC (ζ1 + ζ2)ζC

8
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2
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2
,

� = ωC − ω, (A8)

and the coupling strengths are given by

gzi = −EJziζiζC

4
i = 1, 2,

gx12 = (C−1)1,2

2
√

ζ1ζ2
,
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16
i = 1, 2,
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√

ζiζC

16
i = 1, 2. (A9)

The unperturbed Hamiltonian has a degenerate spectrum
with the lowest-lying energies being ED∈{0, ω, ω+�,

2ω, 2ω+�, 3ω+�}. If the detuning � is much larger than the
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transverse coupling between the control and the output qubits,
then we can ignore the first-order excitation swaps between
the control and the output. In this case each degenerate
subspace is well described by an effective interaction,

P̂V̂eff P̂ = P̂V̂ P̂ + P̂V̂ Q̂
1

ED − Q̂Ĥ0Q̂
Q̂V̂ P̂, (A10)

where P̂ projects onto the degenerate subspace and Q̂ = 1 − P̂
projects onto the orthogonal complement. If the anharmonic-
ity is much larger than the total transverse coupling between
qubits 1 and 2, then we can justify projecting the final effective
Hamiltonian onto the two lowest states of each qubit. In doing
so, we find that the effective interaction between the three
qubits is given by

V̂eff = −�1

2
σ z

1 − �2

2
σ z

2 + Jz
(
σ z

1 + σ z
2

)
σ z

C

+
(

Jx
12

2
+ Jxz

12

2
σ z

C

)(
σ x

1 σ x
2 + σ

y
1 σ

y
2

)
. (A11)

The qubit frequencies can be calculated from the second-order
matrix elements found from Eq. (A10),

�1 = − δ + gz1

2
− 1

�
[γ1C (1, 1) + γ1C (1, 3) − γ1C (3, 1)],

�2 = δ + gz2

2
− 1

�
[γ2C (1, 1) + γ2C (1, 3) − γ2C (3, 1)],

�C = gz1C + gz2C

2
+ 1

�
[γ1C (1, 1) + γ1C (1, 3) − γ1C (3, 1)

+ γ2C (1, 1) + γ2C (1, 3) − γ2C (3, 1)], (A12)

where we have defined γiC (n, m) = gxi + gxzi(nζi + mζC ).

The longitudinal couplings between the control and outputs
1 are

Jz
i = gz1

4
+ γ1C (3, 1) − γ1C (1, 3)

2�
i = 1, 2. (A13)

As described in the main text, the purpose of this longitudinal
coupling is to suppress state transfer to the closed output qubit.
We thus require this coupling to be significantly larger than the
coupling between the input and output qubits.

1. Residual coupling between the outputs

In Eq. (A11) there is an undesired coupling between the
two output qubits. The strength of this coupling is given by:

Jx
12 = gx12 − γ1C (1, 3)γ2C (1, 3)

�
,

Jxz
12 = γ1C (1, 3)γ2C (1, 3) − γ1C (1, 1)γ2C (1, 1)

�
. (A14)

Note that the coupling strength depends on the state of the
control qubit. This may be useful in other applications, such as
the implementation of controlled three qubit gates, but for our
purposes we require this coupling to be as small as possible.
If it is much smaller than the longitudinal coupling between
the control and outputs, then transfer between the two outputs
will be suppressed by a detuning much larger than |Jx

12 ± Jxz
12|

and can thus be neglected.

2. Coupling to the input qubit

In our model, we couple the input qubit capacitively to
the outputs, but one could also couple the qubits through a
resonator or transmission line. The only requirement is that
it must produce a transverse coupling between the input and
outputs. For a small coupling capacitance Cx, the coupling
strength is given by

Jx
I, j ≈ Cx

2C̃IC̃i
√

ζ1ζ2
. (A15)
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