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The dynamics of active particles is of interest at many levels and is the focus of theoretical and experimental
research. There have been many attempts to describe the dynamics of particles affected by random active forces
in terms of an effective temperature. This kind of description is tempting due to the similarities (or lack thereof)
to systems in or near thermal equilibrium. However, the generality and validity of the effective temperature
is not yet fully understood. Here we study the dynamics of trapped particles subjected to both thermal and
active forces. The particles are not overdamped. Expressions for the effective temperature due to the potential
and kinetic energies are derived, and they differ from each other. A third possible effective temperature can be
derived from the escape time of the particle from the trap, using a Kramers-like expression for the mean escape
time. We find that over a large fraction of the parameter space, the potential energy effective temperature is in
agreement with the escape temperature, while the kinetic effective temperature only agrees with the former two
in the overdamped limit. Moreover, we show that the specific implementation of the random active force, and
not only its first two moments and the two point autocorrelation function, affects the escape-time distribution.
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I. INTRODUCTION

Active systems, in which particles move due to nonthermal
(active) forces, are of great current interest in statistical and
biological physics [1–3]. Realizations of such systems include
living systems [4], from cells to tissues (active gels) [5],
and synthetic systems [6,7]. In dense active systems, each
particle is confined by its neighbors, leading to the formation
of various condensed phases, such as motility-induced phase
separation [8,9], active fluids, and glasses [10]. The dynamics
within these dense active systems [11,12] is controlled by the
rate at which particles undergo reorganization and overcome
local energy barriers. This dynamics has been explored in
simulations of active glass [13,14] and cell tissues [15–17].
These events are driven by both thermal and active forces and
it is therefore appealing to describe them using a modified
effective temperature Teff .

The notion of an effective temperature and its usefulness
in describing the dynamics within nonequilibrium systems
are still being explored and debated [18–20]. Examples of
systems for which this description was explored include dis-
ordered vortex matter [21], cells [22–24], glass dynamics
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[25,26], sheared granular matter [27–30], self-propelled par-
ticles [31,32], and semiflexible polymers [33,34]. Recently,
several studies have indicated that the relaxation process in
an active fluid and glass can be described as if driven by
an effective temperature that has the form of the potential
energy of an active particle in a confined harmonic potential
[35–37] (which we denote by Tx). The underlying reason for
this behavior is not fully understood.

These observations suggest that inside the dense systems,
the activation of the particles, which allows them to escape
their local confinement and rearrange themselves, is driven by
an effective temperature Teff � Tx. Here we wish to test this
notion by studying a much simpler system of a single active
particle confined in a finite harmonic potential (a recent study
explored the active dynamics in a double-well potential [38]
and in the overdamped limit of a general potential [39]). We
simulate this process in a large range of parameters, including
the underdamped regime, which is relevant for strong con-
finement. We find resonance effects due to the oscillations
of the particle in the confining potential. By comparing the
mean escape time to the predictions of Kramers’ escape
theory, we find that the identification of Teff � Tx gives a very
good description of the active escape for a wide range of
parameters. The differences between various implementations
of the active force, all of which may have the same first mo-
ments and autocorrelation time, are investigated. Importantly,
the limitations of the effective temperature approach and the
conditions for its validity are explored in order to ensure that
this simplifying approach to the nonequilibrium systems of
active matter is not abused. These results, at the single-particle
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level, can shed light on how activity drives the dynamics
inside dense active systems.

Furthermore, the dynamics of trapped active particles, most
simply modeled in a harmonic potential, has been explored
in recent years as a simplified model for the motion inside
active glass [40], gels [41,42], cells [43–45], and tissues [46].
Trapped motile bacteria are another such system [47,48]. In-
vestigating the active escape from potential wells is therefore
of general interest in a variety of different contexts.

The paper is organized as follows. In Sec. II we introduce
the model and the implementations of the active force. In
Sec. III we derive the expressions for the effective temper-
atures and the expressions for the mean escape time for an
active force with long correlation times. In Sec. IV we present
the results for the simulations of the escape time, including
its dependence on the confining potential and active force
characteristics. The results and their relation to the broader
context of the dynamics of particles subjected to active forces
are discussed in Sec. V. The broader implications of the re-
sults for dynamics in nonequilibrium systems are summarized
in Sec. VI.

II. MODEL AND FORMULATION OF THE PROBLEM

The particle dynamics inside a trap is considered to be a
one-dimensional dynamics within the harmonic potential and
under the action of both thermal and active noise. We also
take into account the damping, which is assumed to be linearly
proportional to the velocity. The thermal noise is implemented
as a Gaussian white noise and the active noise is implemented
as a temporally correlated noise. The equation of motion of
the particle within the trap is [41]

mẍ = −γ ẋ − kx + fT (t ) + fa(t ), (1)

where m is the mass of the particle, γ is the friction coefficient,
and k is the harmonic constant. The thermal noise fT (t ) is
characterized by

〈 fT (t )〉 = 0,

〈 fT (t ) fT (t ′)〉 = 2kBT γ δ(t − t ′). (2)

The specific implementation of the active noise differs be-
tween different scenarios (one source or the collective action
of many sources, see Appendix A). In all implementations, the
autocorrelation function of the active noise is given by

〈 fa(t ) fa(t ′)〉 = 〈
f 2
a

〉
exp

(
−|t − t ′|

τon

)
(3)

and its first moment vanishes 〈 fa(t )〉 = 0. In some parts of this
work, we also considered the dynamics in traps that are not
harmonic. In these cases, the term −kx in Eq. (1) is replaced
by the force corresponding to the actual potential (details are
provided where these results are presented).

We note that we have several timescales in this problem;
the natural ones are the damping time td = m/γ and the
oscillation time 1/ω0 = √

m/k. In addition, we have the active
force correlation time τon (the single source and N source
implementations of the active force also have a mean period
τtot ≡ τon + τoff ). If one considers a finite trap, namely, the
trapping potential is truncated at a certain point xesc, which

if passed by the particle it escapes and its dynamics is not
described by the above equations anymore, an additional rele-
vant timescale is the thermal mean escape time, approximated
by Kramers’ formula

τ thermal
esc = τ0e�E (xesc )/kBT , (4)

where �E (xesc) is the energy difference between the escape
point and the bottom of the potential well and τ0 is a coef-
ficient with units of time [49–51] (see Appendix D for more
details).

In order to simulate the dynamics of the particles, we use
the nondimensional version of Eq. (1), which reads

d2x̃

dt̃2
= −dx̃

dt̃
− αx̃ + φ(t̃ ) + βϕs(t̃ ), (5)

where x̃ = x/xd , the distance unit is xd ≡ √
2mkBT /γ , and

t̃ = t/td . The confining potential stiffness is characterized
by α = ω2

0t2
d and the dimensionless active force amplitude

is characterized by β = f0/(mxd/t2
d ), where f0 is a con-

stant (with dimensions of force) setting the amplitude of
the active force. In addition, φ(t̃ ) is a Gaussian white noise
with 〈φ(t̃ )〉 = 0 and 〈φ(t̃ )φ(t̃ ′)〉 = δ(t̃ − t̃ ′); ϕs(t̃ ) is the time-
dependent part of the nondimensional active force [ϕs(t̃ ) =
fa(td t̃ )/ f0] and its characteristics depend on the active force
implementation. The index s takes either an integer value
representing the number of sources or the symbol G, which
represents the Gaussian colored noise implementation of the
active force.

The single-source implementation of the active force con-
sists of a sequence of on and off times. The duration of each
on (off) period is drawn from an exponential distribution with
the mean equal to τon (τoff ). The fraction of on times is given
by pon = τon/(τon + τoff ). During on times, the amplitude of
the active force is constant and equal to f0 and its direction
is randomly set for each period with equal probability for
both sides (the active force is not biased). For implementations
with any integer number of sources, the sources are assumed
to be independent such that their on (off) states are not
correlated and their directions are also not correlated. The
amplitude of each source during on times is f0/

√
N in order

to ensure that the second moment of the force is the equal
to that of the single-source implementation. The Gaussian
implementation of the active force is done by considering
it as an Ornstein-Uhlenbeck process with a correlation time
given by τon and a second moment 〈 f 2

a 〉. For all implemen-
tations of the active force, its first moment vanishes and
the two-point correlation function is given by Eq. (3) with
〈 fa(td t̃ ) fa(td t̃ ′)〉 = f 2

0 pon exp[−|t̃ − t̃ ′|/(τon/td )]. The results
will be presented using the force amplitude β and/or the
active temperature Ta ≡ 2β2 ponT = 〈 f 2

a 〉/(kBγ 2/m). In order
to illustrate the dynamics considered here, we present typical
trajectories in Fig. 1.

III. ANALYTICAL RESULTS

The correlation time of the active force affects the nature
of its effect on the dynamics of the particles. For short corre-
lation times, it is tempting to characterize the effect using an
effective temperature because the force statistics is explored
before the particles escape the trap. The expressions for the
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FIG. 1. Typical trajectories of the particle within a finite har-
monic trap. The top panel shows the coordinate vs time for a particle
influenced by thermal noise alone (solid blue line), a particle under
the influence of both thermal noise and the Gaussian realization of
the active force (dashed red line), and a particle influenced by thermal
noise and a single-source realization of the active force (dotted green
line). The middle panel shows the velocity of the particle for the
same scenarios and the bottom panel shows the specific realization
of the single-source force and the Gaussian force. The trajectories
were generated using simulations of the dynamics with the following
parameters: α = 3, β = 0.5, xesc = xd , and pon = 0.5. For these
parameters, the restoring force due to the potential, at the escape
point, is simply αmxd/t2

d = 3mxd/t2
d , which is larger than the active

force values shown in the figure (and realized in this trajectory).

effective temperatures are derived and discussed in Sec. III A.
For long correlation times, particles may escape before the full
statistics of the active force is experienced. Therefore, for long
correlation times of the active force, we consider its effect on
the particles by considering the modified confining potential.
The characteristics of the escape time from the modified
confining potential are derived and discussed in Sec. III B.

A. Effective temperatures

The system considered here is obviously out of equilib-
rium due to the active force, which is independent of the
friction (does not obey any fluctuation-dissipation relation).
Nevertheless, it is common to try to adapt the concept of
temperature for the description of active matter properties.
For the dynamics considered here, one may define effective
temperatures based on the average potential energy (or the
position fluctuations) or the average kinetic energy (or the
velocity fluctuations). In addition, when the escape time of
the particle is considered, one may try to identify the effective
temperature in Kramers’ sense, i.e., the effective temperature
replacing the thermal temperature in Kramers’ expression
for the mean escape time. We define the following effective
temperatures:

Tx = (k/kB) lim
t→∞〈x2〉,

Tv = (m/kB) lim
t→∞〈v2〉. (6)

In order to derive the second moments of the velocity and the
position, we write the formal solution for the coordinate [for

simplicity, we set x(t = 0) = v(t = 0) = 0]

x(t ) = 2

mω

∫ t

0
e−(t−t ′ )/2td sinh

(
ω(t − t ′)

2

)
f (t ′)dt ′, (7)

where ω = √
1 − 4α/td and f (t ) = fT (t ) + fa(t ). Taking the

square of this expression and averaging over the thermal and
the active noise using their characteristics [see Eqs. (2) and
(3)], we obtain for the potential energy effective temperature

Tx = T + Ta
1 + τon/td

1 + ατon/td + td/τon
, (8)

where the active temperature is defined as Ta = 〈 f 2
a 〉t2

d /mkB.
A similar calculation for the second moment of the velocity
yields for the kinetic energy effective temperature

Tv = T + Ta
1

1 + ατon/td + td/τon
. (9)

Equations (8) and (9) show that Tx � Tv , or more precisely
Tx − T = (Tv − T )(1 + τon/td ). In the limit of τon → 0, both
effective temperatures converge to the thermal temperature,
i.e., as expected, for a very short correlation time the active
force does not contribute to the fluctuations of the trapped
particle (note that the second moment of the active force is
finite in this limit, which in combination with a vanishing
correlation time results in no contribution to the fluctuations
of the trapped particles). In the opposite limit of a very long
correlation time of the active force τon → ∞, Tv converges to
the thermal temperature due to the fact that the constant active
force just shifts the stationary point but does not affect the
velocity fluctuations around the stationary point. In contrast,
Tx is affected by the shift of the stationary point (since the
fluctuations are around the stationary point rather than around
the minimum of the potential, x = 0 in our settings) and
approaches the value of limτon→∞ Tx = T + Ta/α.

The kinetic energy effective temperature has a maximum
for a finite value of the correlation time τon = td/

√
α. The

potential energy effective temperature has a maximum only
for

√
α > 1 and it is obtained for τon = td/(

√
α − 1). Note

that a maximum of the second moment as a function of the
correlation time was also found for different systems [52].

The effective Kramers temperature is unknown and it is
unclear if Tx or Tv is related to the escape properties in a
similar way to the relation of the thermal temperature to the
escape time in the absence of active force. The fact that these
expressions were derived for the infinite-time limit suggests
that they may not be relevant for the description of an escape
that occurs over shorter timescales than the convergence time
to the asymptotic values of the respective second moments.
The second moments for finite time include exponentially de-
caying terms with decay rates of 1/τon and (1 ± √

1 − 4α)/td .
Therefore, the values in (8) and (9) are expected to be
relevant for the escape process only if τesc 
 max (τon, td/
(1 − √

1 − 4α)), for 1 > 4α, or τesc 
 max(τon, td ).
The escape is defined by the coordinate and not by the

velocity. Therefore, the fact that the process considered here
is not overdamped suggests that the potential energy effective
temperature, which describes the position fluctuations, would
be more relevant (than the kinetic energy effective tempera-
ture) to the description of the escape process.
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FIG. 2. Potential and kinetic energy effective temperatures for
different values of τon [Eqs. (8) and (9)]. The different panels
correspond to different stiffness values of the harmonic potential α.
In all panels, the lower dashed horizontal line corresponds to Teff = T
and the upper dashed line corresponds to the limτon→∞(Tx/T ) =
1 + Ta/αT . The dashed vertical red line denotes the value of τon/td =
1/

√
α for which Tv is maximal (the maximal value is max(Tv ) = 1 +

(Ta/T )[1/(2
√

α + 1)]) and the dashed vertical blue line denotes the
value of τon/td = 1/(

√
α − 1) for which Tx is maximal (the maximal

value is max(Tx ) = 1 + (Ta/T )[1/(2
√

α − 1)]). In all panels, we
used Ta/T = 20 and td = 1.

In Fig. 2 we present the effective temperatures (8) and
(9) vs the active force correlation time. The different panels
correspond to different values of the harmonic potential stiff-
ness, quantified by α = (ω0td )2. The limits of the effective
temperatures for τon → ∞ are denoted by horizontal lines and
the values of τon that yield the maximal effective temperatures
are denoted by vertical lines (Tx has a maximum only for√

α > 1 and therefore its maximum is denoted only in the
middle and bottom panels). We tested the validity of the
analytically derived effective temperatures (8) and (9) for a
wide range of potential stiffness values and found excellent
agreement with the simulation results in all cases. The second
moments, which were used to calculate the simulated effective
temperatures, were derived from the simulated dynamics of
trapped particles under the influence of thermal and active
noise. The results are presented in Fig. 3.

B. Modified potential

Another way to characterize the effect of the active force
is to consider the fact that the force modifies the potential and
effectively reduces the barrier height. Obviously, this effect
is more significant when the correlation time of the force
is long, and we expect this effect to be negligible for very
short correlation times. Considering the active force as con-
stant results in a modification of the confining potential and
asymmetric barrier height. The barrier height in the direction
of the active force �Ẽ

+ = �E − f xesc is reduced while the
barrier height in the opposite direction �Ẽ

− = �E + f xesc is
increased.

To find the modified (due to the modified confining poten-
tial) thermal escape time, we consider the asymmetric energy

10 -4 10 -2 10 0 10 2 10 4

α

1

5

10

15

20

T
x
,v
/
T

τon/td = 1, Ta = 20

Tx simulation
Tv simulation
Tx prediction
Tv prediction

FIG. 3. Comparison of simulated and calculated effective tem-
peratures. The potential and kinetic effective temperatures were
derived from simulations of the dynamics of trapped particles using a
wide range of the harmonic potential stiffness parameter α. We used
the Gaussian implementation of the active force with Ta/T = 20 and
τon = 1 for all the values of α. There is excellent agreement between
the calculated and simulated second moments of the position and
the velocity. For the small values of α the uncertainty (or spread
of simulation results) is more apparent due to the broad range of x
values explored by the trapped particle.

barrier and assume that the escape is the combination of two
(escape to either side) rate processes, so

τesc( f )−1 = [τ−
esc( f )]−1 + [τ+

esc( f )]−1

= τ−1
1

{
exp

[
−

(
�E + f xesc

kBT

)]

+ exp

[
−

(
�E − f xesc

kBT

)]}
, (10)

where τ1 is a constant time from Kramers’ expression and
τ±

esc are the mean escape times in the positive/negative direc-
tions, respectively. For consistency with Kramers’ expression,
we must have τesc( f = 0) = τ thermal

esc , meaning τ1 = 2τ0. It is
important to note that for Kramers’ expression to be valid,
the force amplitude must be small enough such that |�Ẽ±| >

kBT . For large values of constant active force, we expect the
escape to be almost ballistic (almost because the thermal noise
is still acting on the particle). We denote the ballistic time to
escape by t∗. Neglecting the thermal noise, its value may be
obtained by solving numerically the implicit equation

e−(t∗/td )/2
[
sinh

(
t∗ω

2

) + ωtd cosh
(

t∗ω
2

)] − ωtd

mω
(
ω2t2

d − 1
)/

4 f td
= xesc

[see Eq. (7)]. The ballistic time to escape is expected, in
the limit considered here of long correlation times of the
active force, to be smaller than the thermal escape time. The
resulting mean escape time for a given value of the active force
is given by

τesc( f ) =
{

τ thermal
esc

cosh
(

f xesc
kBT

) , | f | � fcr

t∗( f ), | f | 
 fcr,
(11)

where we have defined fcr = (�E − kBT )/|xesc|.
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For the single-source active force, the expected escape time depends on the ratio τoff/τ
thermal
esc and is given by

τesc ≈
{
τesc( f0) + (1 − pon)τoff , τoff � τ thermal

esc

τ thermal
esc [ponτesc( f0)/τ thermal

esc + (1 − pon)], τoff 
 τ thermal
esc .

(12)

There is a probability 1 − pon that the active force is zero
at the beginning. Therefore, for τoff � τ thermal

esc , the expected
escape time is the weighted sum of the waiting time for the
active force to be nonzero (τoff ) and the escape time over
the reduced barrier height. For τoff 
 τ thermal

esc , the expected
escape time is the weighted sum of the thermal escape time
and the escape time out of the modified trap. In many cases,
the ballistic escape time t∗ may be neglected relative to the
terms involving the thermal escape time.

For the continuous Gaussian active force, with a correlation
time much longer than the escape time, we have to consider
the Gaussian distribution of the initial force amplitude. In this
implementation of the active force, the large amplitude only
implies a large variance of the active force, but weaker forces
are still possible (though with a smaller probability due to the
broadening of the distribution). The mean escape time may be
written as

τesc ≈
∫ ∞

−∞
p( f )τesc( f )df ≈ τ thermal

esc√
2π

〈
f 2
a

〉
∫ fcr

− fcr

e− f 2/2
〈

f 2
a

〉
cosh

( f xesc

kBT

)df .

(13)

In the last expression on the right-hand side, we neglected
t∗ for large force values. The integral can be numerically
calculated or approximated by expanding the denominator,
whose argument is small, and taking the integration limits to
infinity (the denominator and the Gaussian kernel ensure that
the approximation is valid). The approximated mean escape
time is given by

τesc ≈ τ thermal
esc

√
πT

2Ta

xd

xesc

× exp

[
T

2Ta

(
xd

xesc

)2
]

erfc

(√
T

2Ta

xd

xesc

)
, (14)

where erfc(x) ≡ 1 − erf (x) is the complementary error func-
tion. This approximation is expected to provide an upper
limit for the mean escape time and results in an analytical
expression.

IV. SIMULATION RESULTS

The escape times and other characteristics of the dynamics
inside the trap were simulated under various parameters. The
simulations were done by numerically integrating (using the
Euler or second-order Runge-Kutta method where needed
in order to verify the convergence of the results [53]) the
nondimensional equation of motion (5).

All the simulations started with the particle at rest at the
bottom of the trap x̃(0) = ˙̃x(0) = 0. The time unit in the
nondimensional dynamics is simply td . Equation (5) shows
that except for the active force, all the other aspects of the
dynamics inside the trap are controlled by the parameter

α (which is proportional to k). The escape process is also
dictated by the nondimensional escape point x̃esc = xesc/xd .

The effects of the active force on trapped particles may
be seen in the probability density functions (PDFs) of the
position and the velocity of the particles. We studied the PDFs
for different characteristics of the confining potential and the
active force. The PDFs also depend on the implementation of
the active force (we obtained the PDFs for the single-source
and the Gaussian implementations of the active force). We
found that the PDFs may show significant deviations from a
Gaussian distribution, especially for long correlation times of
the active force. In all cases, we found excellent agreement
between the calculated second moments (8) and (9) and those
obtained from the simulations. For particles that can escape
the confining potential, i.e., when we set absorbing boundary
conditions for |x| = xesc, the PDFs change considerably as
do the second moments. Therefore, it is not obvious that the
effective temperatures are relevant for the description of the
escape process. The PDFs and their detailed discussion are
provided in Appendixes B and C.

The mean escape time, which is the focus of this work,
depends on the characteristics of the trap, the thermal noise,
and the active force. In particular, the active force may be
implemented using either a single source, several sources, or
the continuous version, which is a Gaussian colored noise.
The correlation time and the second moment can be set equal
in all the implementations. In Sec. IV A we present the mean
escape time for different values of the confining potential
stiffness and different escape points (both of which modify
the energy barrier). In Sec. IV B we present the effects of
the active force correlation time on the mean escape time for
different amplitudes and implementations of the active force.
In Sec. IV C we study the effects of the number of sources
generating the active force on the mean escape time, and the
probability density function of the escape time is studied in
Sec. IV D. In Sec. IV E we study the mean escape time from
nonharmonic confining potentials.

A. Effects of barrier height on the mean escape time

First we examined the dependence of the mean escape time
on the energy barrier. For the thermal case, Kramers’ expres-
sion shows an exponential dependence on the magnitude of
the energy barrier, regardless of what sets the barrier’s height
(the barrier’s height may vary by varying xesc or α). The other
characteristics of the potential well and the dynamics affect
the prefactor τ0 [Eq. (4)]. In the case of an active force, there
is no guarantee that a similar relation will hold even if one re-
places the thermal temperature with an effective temperature.
Moreover, the effective temperature is not uniquely defined
because there is no fluctuation-dissipation relation.

In Fig. 4 we present the mean escape time versus the barrier
height. The barrier height was modified by varying either
the escape point (red) xesc or the stiffness of the confining
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FIG. 4. Mean escape time vs potential well barrier height for
a Gaussian active force. The barrier height is controlled through
either the potential’s stiffness α (blue) or the escape point xesc (red)
while the other is held constant. Line styles represent active force
parameters, where solid lines correspond to the thermal case (no
active force) and the dashed and dotted lines correspond to active
forces with τon/td = 0.01 and τon/td = 1, respectively. The solid
black line is the Kramers predicted mean escape time, for reference.
In all simulations with an active force, a value of Ta/T = 20 was
used.

potential (blue) α. The different line styles refer to the thermal
case and two different correlation times of the active force.
The black line represents the exponential dependence to guide
the eye. The longer correlation time of the active force reduces
the mean escape time for all heights of the energy barrier. For

a fixed α, the dependence of the mean escape time on the
energy barrier height is still exponential, but the slope depends
on the active force characteristics. For the case of varying α,
a deviation from exponential dependence can be seen even
for the thermal case. This deviation is due to the dependence
of the prefactor in Kramers’ expression (4) on α. For more
details, see Appendix D.

B. Effects of active force correlation time
on the mean escape time

In order to explore the high-dimensional parameter space,
we decided to focus on several cross sections of this space
where we either set the ratio pon = τon/τtot constant or kept
τtot = τon + τoff constant. For the first choice, varying τon

implies varying τoff by the same multiplicative factor. This
in turn implies that larger on times are always accompanied
by larger off times. For the explicit source implementations,
i.e., single source or any small integer number of sources,
this is reflected in larger off times, which affect the mean
escape time if the thermal force is insufficient to trigger an
escape during an off time. For the continuous force, only the
ratio pon and the correlation time τon affect the active force
characteristics. We start by considering the constant pon case.
In Fig. 5 we present the mean escape times for different imple-
mentations of the active force: single source, five sources, and
the Gaussian force. For each implementation, three different
values of the ratio pon were considered, pon = 10−3, 10−2,
and 10−1. For each of the nine parameter sets, we considered

FIG. 5. Mean escape time vs the correlation time of the active force. The three rows correspond to the three indicated values of pon =
τon/τtot (0.001, 0.01, and 0.1). The three columns correspond to the indicated force amplitude β (2.5, 5, and 10). In each panel, the curves
show the mean escape time for the three different force implementations (single source, five sources, and the Gaussian) and the mean escape
times expected from Kramers’ expression with the effective temperatures Tx or Tv . The solid black line in each panel represents the thermal
mean escape time. The shaded area represents the 95% confidence interval. The confidence interval and the mean were derived from 4×104

simulated trajectories. For all the simulations, xesc = xd and α = 5.
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FIG. 6. Mean escape time vs the correlation time of the active force. The three rows correspond to the three indicated values of pon =
τon/τtot (0.001, 0.01, and 0.1). The different columns correspond to three different implementations of the active force with a single source, five
sources, and the Gaussian force, as indicated. Each panel includes results for three different amplitudes of the active force β (2.5, 5, and 10)
as noted in the legend. For all the simulations, xesc = xd and α = 5. The black lines show the thermal escape time. The shaded areas represent
the 95% confidence interval. The confidence interval and the mean were derived from 4×104 simulated trajectories.

three different amplitudes of the active force, β = 2.5, 5, and
10. The results show that for the single-source and the five-
source implementations, there is a clear optimal correlation
time that yields the shortest escape time. Considering the fact
that increasing the correlation time results in increasing off
times of the active force (because pon remains constant), this
behavior is easily understood. We also notice that for short
and long correlation times (relative to the optimal correlation
time), the larger active force amplitude becomes less effective.
For the Gaussian force, we still see the optimal correlation
time despite the fact that there is no time during which the
active force is off. This behavior is explained by the match
(resonance) between the correlation time of the active force
and the timescale corresponding to the natural dynamics of the
particle in the trap in the absence of an active force. Similar
behavior was observed for a model describing the effect of
stochastic wind stress on surface ocean currents [52].

For a short correlation time of the active force, the escape
time approaches the thermal escape time due to the ineffi-
ciency of the active force, which can change sign before the
particle escapes. It is important to note that the second mo-
ment of the active force approaches zero for short correlation
times (unlike white noise, whose second moment is propor-
tional to a δ function and therefore has a finite contribution
even in the limit of a vanishing correlation time). For long
correlation times of the active force, there is a saturation
but not to the thermal escape time. For the single-source
and the five-source implementations of the active force, the
convergence in the long correlation time limit is toward the
escape time in the presence of a constant active force but also
accounting for the probability that the force is off and there is a

waiting time before the particle starts its active escape process.
For the Gaussian force implementation, the convergence is
toward the escape time in the presence of a constant active
force but accounting for the weight of the possible active force
amplitudes (see Sec. III B).

The expected mean escape times according to Kramers’
expression with the effective temperatures are shown in each
panel in Fig. 5. For short correlation times, the differences
between the different implementations are small. The value
of τon corresponding to the minimal mean escape time varies
between the different implementations of the active force. For
correlation times that are much smaller than the mean escape
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FIG. 7. Comparison of the simulated mean escape time with the
theoretical approximation (14) for long correlation times of the active
force. The simulations are based on the Gaussian implementation
of the active force with τon = 4×104td . The confining potential
parameters are α = 5 and xesc = xd .
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FIG. 8. Mean escape time vs the correlation time of the active force. The three rows correspond to the three indicated values of τtot

(1, 10, and 100). The three columns correspond to the three amplitudes of the active force β (2.5, 5, and 10). The different curves in each panel
correspond to three implementations of the active force (single source, five sources, and the Gaussian) and to the expected mean escape times
according to Kramers’ expression with the effective temperature Tx or Tv . The solid black lines present the thermal escape time. The shaded
areas (too narrow to see in most cases) present the 95% confidence interval. The confidence interval and the mean were derived from 4×104

simulated trajectories. For all the simulations, xesc = xd and α = 5.

time, Kramers’ expression with the potential energy effective
temperature Tx shows good agreement with the results for the
Gaussian implementation of the active force. For correlation
times that are longer than the mean escape time, there is a very
broad range between the Tx and Tv Kramers’ expressions, and
the simulation results are within this range. The minimal mean
escape time for the single source and the five sources is not
well captured by Kramers’ expressions. In Fig. 6 we present
the same results of Fig. 5 but organized to allow an easy
comparison between the different active force amplitudes.

For long correlation times, we derived an approximation
of the mean escape time [Eq. (14)]. In Fig. 7 we compare the
mean escape time derived from simulating the dynamics of
particles escaping the trap with the analytical expression. The
simulations are based on the Gaussian implementation of the
active force with different amplitudes and correlation times
given by τon = 4×104td . The confining potential parameters
are α = 5 and xesc = xd . The values of Ta/T presented cor-
respond to the values used in the different panels of Fig. 5.
Note that larger differences between the approximation of
Eq. (14) and the simulation results for larger Ta are expected
due to the fact that the exponential term in Eq. (13) is
wider and values of the active force for which the expansion
of the denominator near zero is less accurate contribute to
the integral. We also verified a convergence of the mean
escape time for longer correlation times, the fact that the
mean escape time is independent of the potential stiffness α,
and the dependence of the mean escape time on the escape
point xesc.

In Fig. 8 we present the mean escape time for the case
of constant τtot. For the single-source and the five-source
implementations, keeping τtot constant implies that increasing
the active force correlation time is accompanied by a decrease
in the off times. For the Gaussian implementation, increasing
τon implies increasing the active force amplitude, which is
proportional to pon = τon/τtot. Therefore, there is no optimal
correlation time, and the mean escape time monotonically
decreases with the increase in the correlation time for the
active force implementations, for all values of τtot and active
force amplitudes. Kramers’ expressions for the mean escape
time, based on the effective temperatures, are also presented.
The expression based on Tx shows good agreement with the
Gaussian implementation of the active force in most cases. In
Fig. 9 we present the same results but organized to enable eas-
ier comparison between the different active force amplitudes.

In Fig. 10 we present the comparison between the simu-
lated mean escape times and those calculated using Kramers’
expressions and the effective temperatures Tx and Tv for two
sets of parameters and for the case of constant τtot. The
behavior described above can be clearly seen in this figure.

C. Effects of the number of sources on the mean escape time

As mentioned above, the Gaussian implementation of the
active force is the limit of having many independent sources
(unsynchronized). To better illustrate this, we present in
Fig. 11 the mean escape time versus the number of sources and
the limiting values derived from the Gaussian implementation
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FIG. 9. Mean escape time vs the correlation time of the active
force. Each panel corresponds to the indicated value of τtot (1, 10,
and 100 in units of td ). The different curves in each panel correspond
to the nine combinations of three different force implementations
(single source, five sources, and the Gaussian) and three amplitudes
of the active force (β = 2.5, 5, and 10). The shaded areas (too narrow
to see in most cases) represent the 95% confidence interval. The
confidence interval and the mean were derived from 4×104 simulated
trajectories. For all the simulations, xesc = xd and α = 5.

of the active force. The error bars denote the 95% confidence
interval. The fact that the mean escape time depends on the
number of sources emphasizes the fact that the active force
and its effects are not fully characterized by the correlation
time and the second moment. These in turn imply that any
description based on effective temperatures will be limited.
For the long correlation time τon = 100td , the mean escape
time monotonically decreases with the number of sources.
This decrease is due to the fact that the more sources there
are, the less likely it is to have a time with no active force.
For the shorter correlation time τon = td , one sees that the
maximal mean escape time is found for the single source;
there is a sharp decrease for two sources and then almost
a monotonic increase (within the uncertainty limits) toward
the limit of the Gaussian force implementation. This behavior
may be explained by the fact that when two sources act in
the same direction, the net force is larger than the force of a
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FIG. 10. Comparison of simulated mean escape time with the-
oretical approximation. Two distinct amplitudes of the active force
were used, for each of the three implementations of the active force.
The effective temperature prediction’s performance, for different
regimes of the correlation time, can be seen.
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FIG. 11. Mean escape time vs the number of sources used in the
implementation of the active force. The different lines correspond
to the active force correlation times noted in the legend. The active
force amplitude is β = 2.5, the confining potential stiffness is α = 5,
the mean fraction of activity time is pon = 0.1, and the escape point
is xesc = xd . The error bars represent the 95% confidence interval
for the mean escape times derived from the simulation of 4×104

trajectories. The black symbols and error bars represent the mean
escape time and the associated uncertainty for a Gaussian force.

single source (because the amplitude is only divided by
√

2).
The probability of having all the sources acting in the same
direction decreases with the number of sources; therefore, for
more than two sources, there is an increase in the escape time
until it saturates to the mean escape time corresponding to the
Gaussian force implementation.

D. Probability density function of the escape time

The escape time is not fully characterized by the mean
value because there is no guarantee that the PDF is exponen-
tial. The deviation from an exponential distribution may be
characterized by the coefficient of variation CV ≡ σesc/τesc,
where σesc is the standard deviation of the escape time. In
Fig. 12 we present the PDFs of the escape times for different
parameters and the three implementations of the active force.
In all cases, α = 5, xesc = xd , β = 10, and pon = 0.1. For
the shortest correlation time considered, τon = 0.001td , for
all implementations, the mean escape time is similar, and the
distribution is very close to exponential, CV = 0.989–0.996.
The red lines present the exponential probability density with
the same mean of the simulations. For the longer correlation
time τon = 0.1td , the deviation from exponential is apparent
for all three active force implementations and the probability
density is narrower than exponential in the sense that the
coefficient of variation is smaller than one, CV = 0.9–0.934.
For the longest correlation time considered, τon = 100td , the
probability density becomes broader than exponential for the
active force implementations, CV = 1.1–1.48.

E. Mean escape times from nonharmonic confining potentials

In order to investigate the relevance of our results to
other confining potentials, we simulated the escape dynamics
of particles subjected to thermal and active noise confined
by two nonharmonic potentials. The first is the V-shaped
potential U (x) = αkBT |x/xd |. The second potential is U (x) =
αkBT (x/xd )4. The dynamics is described by Eq. (1) with
the term −kx replaced by −dU (x)/dx. For the V-shaped
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FIG. 12. Probability density functions of the escape time. The three rows correspond to the three indicated values of τon/td (0.001, 0.1,
and 100). The different columns correspond to three different implementations of the active force with a single source, five sources, and the
Gaussian force, as indicated. In each panel, the individual escape time values tesc are scaled according to the mean escape time τesc. For all the
cases, we simulated the escape with the following parameters: α = 5, β = 10, and xesc = xd .

FIG. 13. Mean escape time vs the correlation time of the active force for several trapping potentials. The three rows correspond to the three
indicated values of pon (0.001, 0.01, and 0.1). The different columns correspond to three indicated values of β (2.5, 5, and 10). The three lines in
each panel correspond to three trapping potentials (harmonic, V-shaped, and quartic). Each potential’s mean escape times are normalized by the
potential’s thermal escape time (225.2 ± 1.1, 120.6 ± 0.6, and 338.6 ± 1.7 td for the harmonic, V-shaped, and quartic potentials, respectively).
For all the cases, we simulated the escape with the parameters α = 5 and xesc = xd , using the Gaussian force implementation for the active
force.
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potential, the force at x = 0 is defined to be zero. In order to
compare the escape times from the different confining poten-
tials, we set the energy barrier to be equal in all the potentials.
We also used the same second moment and correlation time of
the Gaussian active force. In Fig. 13 we present the normal-
ized mean escape times (the mean escape time from each con-
fining potential is normalized by the mean thermal escape time
from the same potential) for different amplitudes of the active
force as dictated by β and pon values. The mean escape times
are presented against the active force autocorrelation time.
Note that the constant pon value in each panel implies that
only the ratio τon/τtot is constant and not the cycle time. We
see that for all three potentials, the normalized mean escape
time is very similar. Moreover, for all cases, the minimal mean
escape time is obtained for the same autocorrelation time of
the active force. These results suggest that our findings are
not limited to the case of escape from the harmonic potential,
but they are likely to be valid for other confining potentials.

V. DISCUSSION

The inherent stochastic and nonequilibrium nature of active
matter makes it difficult to find a universal description, similar
to equilibrium statistical mechanics. A common approach is
to attempt to define an effective temperature that can describe
some or all of the statistics of the out-of-equilibrium system.
However, the use of effective temperatures was shown to be
limited for many systems. Moreover, the effective temperature
is not uniquely defined. Nevertheless, it is often tempting to
stretch the use of the effective temperature beyond its range
of validity.

The dynamics within and outside a confining potential is
important for many processes. For particles subjected to ther-
mal noise alone, the celebrated Kramers expression provides
a relatively simple dependence of the mean escape time on the
height of the energy barrier.

We found that for short to intermediate correlation times
of the active force, an effective temperature combined
with Kramers’ expression describes well the mean escape
time, while for long correlation times, the regular Kramers
expression, combined with modified energy barriers, provides
an accurate description of the mean escape time. In the
following, we detail the limitations and range of the validity
of these predictions. An important point is that the particles
considered are not overdamped (often the arguments in favor
of considering the overdamped limit stem from the long-range
dynamics, and here we focused on the dynamics within and
outside a single trap).

We derived analytically the second moments of the position
and the velocity, which by analogy with the thermal case
were used to define the potential energy and kinetic energy
effective temperatures Tx and Tv , respectively. The expressions
we derived using the direct integration in the time domain are
somewhat different from previously derived expressions that
were based on analysis in the frequency domain [24,30,41].
The effective temperatures depend on the second moment of
the active force and its correlation time, regardless of the spe-
cific implementation of the active force, e.g., a single source
or the Gaussian colored noise. Importantly, the expressions

provide the time dependence of the second moments and
thereby the convergence time to the limiting value. Obviously,
when the typical escape time from a trap is shorter than the
convergence time to the saturation value of the second mo-
ments, one need not expect the effective temperatures based
on the infinite-time limit to be relevant for the description
of the escape process. The convergence time depends on the
friction and the confining potential characteristics but also on
the active force correlation time. Therefore, correlation times
of the active force that are longer than the timescale of interest
render the effective temperatures useless. We found that in all
cases, the simulated second moments of the position and the
velocity of trapped particles were in excellent agreement with
the calculated ones, regardless of the force implementation.
Nevertheless, one should bear in mind that the effective tem-
peratures depend on the confining potential and therefore are
not similar to the thermal temperature, which is independent
of the energy landscape.

We found that the probability density functions of the posi-
tion and the velocity of trapped particles depend on the active
force implementation. For the single source, the value of the
force, while on, is constant, which if remaining active for long
enough periods drives the particle to a stable point. For the
Gaussian implementation, the amplitude of the active force
changes continuously and there is no stable point. Therefore,
for the single source, the position’s PDF is trimodal if the
active force’s correlation time and amplitude are large enough,
while for the Gaussian force, they are unimodal. For all
implementations of the active force, one may find a trimodal
distribution of the velocity for cases in which the confining
potential is shallow, and the particle may reach a terminal
velocity dictated by the friction and active force’s amplitude.

For particles that can escape from the confining potential,
the PDFs are considerably different. The position PDF is
truncated at the escape points and this in turn also affects the
velocity PDF. The second moments of the position and the
velocity are also affected by the escape, with the second mo-
ment of the position being always smaller due to the escape,
as expected, while the second moment of the velocity can be
smaller or greater (depending on the active force and potential
parameters). Therefore, the relevance of the effective temper-
atures for the description of the escape process is not obvious.

We found that the mean escape time depends on the active
force implementation, suggesting that the second moment and
the correlation time are not sufficient for the full description
of the escape process. We also showed that increasing the
number of sources results in behavior similar to the Gaussian
force implementation, as expected. For all implementations
of the force, we found that for a fixed amplitude of the force,
there is an optimal correlation time, which yields the minimal
escape time. The appearance of the optimal correlation time is
not limited to the harmonic potential, and we also found it for
the V-shaped and polynomial potentials. Using the potential
effective temperature in Kramers’ expression gives a good
approximation for short and intermediate correlation times
and it also captures the minimal escape time. As expected,
it fails for correlation times that are longer than or of the
same order as the mean escape time. For the longer correlation
times, the effective temperatures that are based on the steady-
state probability density functions of trapped particles are not
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representative of the dynamics of particles that can escape be-
cause they escape before the active force statistics reaches its
steady state. The kinetic energy effective temperature seems
to be less relevant for the description of the escape process.
It is important to note that we considered a system that is
not overdamped, and this is the reason that the kinetic energy
effective temperature is not useful in describing an escape at
a fixed position. It is also worth noting that the difference be-
tween the potential and kinetic energy effective temperatures
is larger for longer correlation times. The distribution of the
escape time is not always exponential, and it varies with the
active force and confining potential characteristics.

For long correlation times, the active force varies only
slightly before the particle escapes. This allowed us to con-
sider a modified confining potential and derive an analytical
approximation for the mean escape time. The simulations
showed excellent agreement with this approximation.

Interestingly, we found that the normalized mean escape
time is very similar for different confining potentials. In par-
ticular, the autocorrelation time of the active force for which
the mean escape time is minimal was found to be almost
identical for escape from all three confining potentials that we
investigated. This in turn suggests that our results may not be
limited to harmonic confining potential.

VI. SUMMARY

To summarize, we investigated the dynamics of particles
subjected to thermal and active noises within and outside
a confining potential. We derived analytical expressions for
the effective temperatures and showed that the kinetic and
potential energy effective temperatures are different. Numer-
ical simulations showed that despite capturing the second
moments of the position and the velocity, the probability
density functions may show large deviations from Gaussian
distributions even for trapped particles; therefore, the effec-
tive temperatures do not provide a full description of the
statistical properties of the active particles. For the escape
of the active particles, we found that Kramers’ expression,
with the potential energy effective temperature replacing the
thermal temperature, gives a very good approximation for the
mean escape time for short to intermediate autocorrelation
times of the active force, but it fails for correlation times that
are larger than or comparable to the mean escape time. An
analytical expression, derived for the limit of long correlation
times, showed excellent agreement with simulation results.
It is also important to note that due to the fact that the
system is not overdamped, the different definitions of the
effective temperature do not agree (unlike the results found
for overdamped systems [29,33,34]).

Our results are relevant to many systems in which an active
force plays an important role in nonequilibrium dynamics.
Such systems include living matter [2] (biofilaments and
molecular motors [54] in vitro or in vivo, collections of motile
microorganisms [55], animal herds, and chemical and me-
chanical imitations [2]), active colloids [56–59], mixtures of
active particles [60], active particles in crowded environments
[61], active glasses [30,35,62], and the dynamics of bacteria
in porous media [63]. In spatially extended systems, the
active escape process we explored here can be an individual

event of a larger-scale dynamics and the reorganization of
the system. Our results provide the underlying reason for the
successful use of the potential energy effective temperature for
the description of the relaxation processes in active fluid and
glass. The interpolation between the short- to intermediate-
correlation-time limits and the long-correlation-time limits
and the generalization to an arbitrary confining potential are
left for future work.
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APPENDIX A: ACTIVE FORCE IMPLEMENTATIONS

For an integer number of sources,

ϕN (t̃ ) ≡ 1√
N

N∑
r=1

ϕ1,r (t̃ ),

where the time dependence of each source is given by

ϕ1,r (t̃ ) =
{

0 ∃i : t ∈ Toff,i,r

ai,r ∃i : t ∈ Ton,i,r,
(A1)

where ai,r = ±1 with equal probability (ai,r is drawn inde-
pendently for each interval of on time), and the duration of
each on/off interval is drawn from an exponential distribution
according to

p(Ton,i,r ) = τ−1
on exp(−Ton,i,r/τon), (A2)

p(Toff,i,r ) = τ−1
off exp(−Toff,i,r/τoff ). (A3)

It is important to note that the different sources are inde-
pendent in the sense that each source has different on and
off periods and an independent direction of the force [ai,r

for different sources (r values) are independent]. All sources
share the same statistics regarding the duration of the intervals
and the relative contribution to the total active force. It is
worth noting that the fixed initial time t = 0, the duration
of the intervals for each source, and their sequential order
completely define the time series describing the active force
values.

For the Gaussian implementation of the active force, which
corresponds to the limit of a large number of sources N→∞,
ϕG(t̃ ) is a Gaussian colored noise with 〈ϕG(t̃ )ϕG(t̃ ′)〉 =
pon exp[−|t̃ − t̃ ′|/(τon/td )]. The specific implementation is
realized as an Ornstein-Uhlenbeck process according to

dϕG(t̃ )

dt̃
= − 1

τon/td
ϕG(t̃ ) + η(t̃ ), (A4)

where η(t̃ ) is a Gaussian white noise whose characteristics are
given by

〈η(t̃ )〉 = 0

and

〈η(t̃ )η(t̃ ′)〉 = 2pon

τon/td
δ(t̃ − t̃ ′).
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FIG. 14. Simulated probability density functions of the position and the velocity of particles within an infinite harmonic trap (α = 5). The
red lines represent the corresponding Gaussian distributions expected for a thermal particle within a harmonic trap with the same parameters
and a temperature given by the effective temperature Tx or Tv , respectively. Due to the relatively weak active force, all the distributions are
unimodal and their width is in excellent agreement with the predicted width. The active force is characterized by pon = 0.5.

APPENDIX B: POSITION AND VELOCITY PROBABILITY
DENSITY FUNCTIONS FOR TRAPPED PARTICLES

UNDER THE INFLUENCE OF THE GAUSSIAN
IMPLEMENTATION OF THE ACTIVE FORCE

To better characterize the dynamics of the trapped active
particles, we derived their position and velocity probability
density functions. The histograms of the velocity and po-
sition of the trapped particles were derived from simulated
trajectories. The convergence was verified by comparing the
histograms derived from different trajectories with the re-
quirement that 1

2

∫ ∞
−∞ |ψi(q) − ψ j (q)|dq < 0.01, where ψi(q)

is the PDF of the variable q (x or v) derived from the ith
simulated trajectory. The simulations were done with a time
step of dt = min(τon/30, 0.01), and we found that trajectories
of 1010 steps [equivalent to a total duration of 1

3 –(1×108td )]
satisfied the convergence condition.

In order to quantify the deviation from a Gaussian distri-
bution, we show for each PDF its standard deviation (SD) σ ,
the calculated SD σ predicted [based on Eq. (8) or (9)], and the
excess kurtosis κ . As expected, for small values of the active
force amplitude, the PDFs are close to the thermal Gaussian
PDF (not shown). For all the parameter values, we found
excellent agreement between the calculated and simulated
second moments of the position and the velocity.

In Figs. 14–16 we present histograms of the position and
velocity for different values of a single-source active force
amplitude and autocorrelation time. In Fig. 14 we present
the PDFs for the thermal case (top row, β = 0) and for an
active force with a small amplitude, β = 3, and two different
autocorrelation times of the active force, τon = 1 (middle row)
and τon = 100 (bottom row). The thermal case is presented

just to enable a comparison. All the panels correspond to
harmonic potential with α = 5, and the single-source active
force is characterized by pon = 0.5. For the small-amplitude
active force, one can see that the PDFs of the position are
unimodal for both correlation times, but the PDF is not
Gaussian; the negative excess kurtosis implies that extreme
values of the position are less likely than in a Gaussian PDF.
The velocity PDFs are very close to Gaussian.

In Fig. 15 we present the PDFs of the position and velocity
but for a larger force amplitude β = 10. Due to the larger
active force, there are stationary points away from the bottom
of the potential well, and for long autocorrelation times of
the active force, the position PDF becomes trimodal. The
stationary points are determined by α|x̃| = β. The width of
each peak is determined by the thermal fluctuations T around
the stationary points, and the relative height of the sidebands
is determined by pon (the fraction of time during which the
active force is on). For the specific parameters used in Fig. 15,
the yellow line shows the function

p(x) = 1√
2π〈x2〉thermal

{
pon

2

[
exp

(
− (x + xs)2

2〈x2〉thermal

)

+ exp

(
− (x − xs)2

2〈x2〉thermal

)]

+ (1 − pon) exp

(
− x2

2〈x2〉thermal

)}
.

Here xs = β/αxd = 2xd defines the absolute value of the sta-
tionary points and 〈x2〉thermal = kBT/k = x2

d/2α = 0.1x2
d de-

fines the variance of position fluctuations under thermal force
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FIG. 15. Similar to Fig. 14 but for a stronger active force β = 10 (α = 5 and pon = 0.5). For short correlation times of the active force
(bottom panels), the same behavior found for the weaker force is seen, i.e., Gaussian distributions. For longer correlation times, the position
probability density function becomes trimodal due to the time spent near the points where the active force balances the force due to the
harmonic potential. At these points, the velocity is small and therefore the corresponding velocity PDFs are narrower than the Gaussian PDFs.
Note that even for the cases with non-Gaussian PDFs, the predicted second moments are still in agreement with the simulated ones. The yellow
lines fitting the trimodal position PDFs are detailed in the text.

FIG. 16. Similar to Figs. 14 and 15 but with a much shallower trap (α = 0.0008). The correlation time is τon = 100td , the force amplitude
is β = 100, and pon = 0.5. In this case, the position PDF is close to Gaussian, but the velocity PDF is trimodal. The trimodality stems from
the periods of ballistic motion due to the active force (the trap has little influence near its bottom due to the weak confinement).
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FIG. 17. Probability density functions of the position and velocity for relatively weak active forces. The red lines present Gaussian PDFs
with zero mean and variance according to Eqs. (8) and (9). The top row presents the PDFs for the thermal case β = 0. The middle and bottom
rows represent the PDFs for β = 3 and τon = 1td and 100td , respectively. For all panels, α = 5.

(the latter equality stems from the parameters corresponding
to Fig. 15). Despite the trimodal PDFs, the second moments
are still in agreement with the calculated ones since we have
not made any assumption regarding the shape of the PDF in
deriving the second moments. It is worth noting that around
the stationary points, the velocity fluctuations are still around
zero; therefore, for these parameters, the velocity PDFs are
unimodal.

For a weaker confinement α = 0.0008, a relatively large
forcing amplitude β = 100, and a long autocorrelation time
of the active force τon = 100td , the velocity PDF becomes
trimodal, while the position PDF is unimodal. The PDFs are
depicted in Fig. 16. The trimodality of the velocity PDF stems
from the terminal velocities under the action of the force
and the damping. The weak confinement makes the confining
force small compared with the other terms. The position PDF
is very broad under these conditions. The calculated second
moments are also in agreement with the simulated ones for
these parameters. Figures 17–19 present the position and
velocity PDFs for the Gaussian implementation of the active
force. For this implementation, the PDFs are all Gaussian and
unimodal. Unlike the single-source implementation, for the
Gaussian active force, the amplitude of the force varies and
is not fixed. There are no on and off times. Therefore, there
is no trimodality even for the long autocorrelation times. The
active force amplitude, dictated by β, and the autocorrelation
time τon, as well as the potential shape, dictated by α, affect
the variance of the PDFs. For all values considered, there is
excellent agreement between the calculated second moments
(8) and (9) and the simulated ones.

APPENDIX C: POSITION AND VELOCITY PROBABILITY
DENSITY FUNCTIONS FOR PARTICLES

ESCAPING THE TRAP

The escape of particles from the well can be considered
if one sets an absorbing boundary condition for |x| = xesc.
Under the settings of our problem, each particle eventually
reaches the absorbing boundary and escapes the potential
well (see Fig. 1 for typical trajectories of a particle that
can escape the potential well). Figures 20–22 present the
simulated position and velocity PDFs for particles subjected
to a single-source active force that can escape the potential
well as their position crosses the well boundary |x| > |xesc.
For particles that escape we expect the PDFs to be dif-
ferent from those of trapped particles. The main difference
is that by definition the probability of the particle being
outside the well is zero (it is “absorbed” when reaching the
boundary).

The PDFs for particles that can escape have to be derived
differently because each trajectory terminates once the parti-
cle escapes (reaches |x| = xesc). To overcome this limitation,
we considered multiple trajectories, 4000 for most values
of α and 40 000 for α = 0.0008. All the trajectories were
terminated with the escape of the particle. The time step was
identical to the time step used for trapped particles. The PDFs
were derived by assigning each trajectory an equal weight
regardless of the duration of the trajectory [the weight of each
time step was set by (1/NT )×(1/Ti ), where NT is the number
of trajectories that were used and Ti is the duration of the ith
trajectory]. Therefore, we avoided bias from slowly escap-
ing particles whose trajectories are of longer duration. The
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FIG. 18. Probability density functions of the position and velocity for a larger amplitude of the active force β = 10. The red lines present
Gaussian PDFs with zero mean and variance according to Eqs. (8) and (9). The different rows correspond to the different autocorrelation times
indicated. For all panels, α = 5.

FIG. 19. Probability density functions of the position and velocity for a very large amplitude of the Gaussian active force and weak
confinement by the potential. The red lines present Gaussian PDFs with zero mean and variance according to Eqs. (8) and (9). As expected,
the PDFs are very broad for this setting but are still Gaussian with the corresponding effective temperatures. The parameters are α = 0.0008,
τon = 100, and β = 100.
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FIG. 20. Position and velocity histograms for the case of escape. The active force was implemented using the single source. The imposed
vanishing probability density at the escape points sharply truncates the position PDF. All the distributions show significant deviation from a
Gaussian distribution. The second moment of the position is smaller than the second moment calculated for a trapped particle (as expected,
due to the zero probability at coordinates beyond the escape points). For the velocity, there is no such effect, and for two of the three parameter
sets considered, it appears that faster particles dominate the distribution, resulting in a second moment larger than that of a trapped particle.
For all the panels, α = 5, pon = 0.5, and xesc = xd . The values of β and τon are indicated to the right of each row. The top row presents the
results for the thermal case with no active force in order to better illustrate the effects of the active force.

convergence of the PDFs with escape was verified by con-
sidering only a fraction of the total simulated trajectories
and verifying that the average difference (quantified by the
integral of the absolute value of the difference between the
PDFs) between the PDFs, derived from two different sets of
N trajectories each, is proportional to 1/

√
N . The average

was taken over 1000 different sets randomly sampled from
the total number of simulated trajectories. The number of tra-
jectories that we used implies that we expect 〈 1

2

∫ ∞
−∞ |ψi(q) −

ψ j (q)|dq〉<0.02 for PDFs derived from two sets of N trajec-
tories (here i and j are not trajectory indices but rather set
indices and the total number of trajectories used is 4000 or
40 000, as mentioned above).

Figure 20 presents the position and velocity PDFs for the
same parameters as in Fig. 14 but for the case in which the
particles escape the potential well. For the thermal case, the
main deviation is seen in the position PDF where the escape of
particles results in a deviation from the Gaussian distribution
(the excess kurtosis is not zero) and, in particular, in a peak
around the bottom of the potential well. In addition, we found,
as expected, that the second moment of the position is smaller
than the second moment predicted for trapped particles. The
fact that there is a zero probability for the particle to be
in the region |x| > xesc implies that there is no contribution
of the tails of the no-escape PDF to the second moment
in the case of escape. The second moment of the velocity
can be smaller or larger than the second moment found for
the trapped particles and is determined by the force and the
potential characteristics (β, τon, pon, α, and xesc). The excess

kurtosis of all the PDFs shown in Fig. 20 is negative, which
implies that extreme values of the position and the velocity
are less likely than in a Gaussian distribution. For a larger
amplitude of the active force β = 10, the PDFs of both the
position and the velocity are very different from Gaussian
and from the corresponding PDFs of trapped particles as
shown in Fig. 21. Comparing Fig. 21 with Fig. 15 shows
that the trimodality found for the trapped particles in the
position PDF does not appear for particles that can escape.
On the other hand, for long autocorrelation times of the active
force, trimodality appears in the velocity PDF of particles that
can escape, while the velocity PDF of trapped particles is
unimodal for the same parameters. The fact that the PDF of
the position shows no trimodality is understood by the fact
that particles escape if they reach |x| = xesc. The trimodality
in the velocity is likely to be the result of the fact that under
long periods of constant active force, the particles move with
terminal velocity until they escape. The side peaks correspond
to the terminal velocity in both directions (the active force
is unbiased). Figure 22 shows that for weak confinement
α = 0.0008, a large amplitude of the active force β = 100,
and a long autocorrelation time τon = 100td , the position and
velocity PDFs are strongly non-Gaussian, the excess kurtosis
is large and positive (implying that extreme values are more
likely than in a Gaussian distribution), and there are strong
peaks for zero velocity and at the bottom of the potential well.
The second moments of both the velocity and the position
are smaller than those of trapped particles with the same
parameters (see Fig. 16).
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FIG. 21. Similar to Fig. 20 but for β = 10 and different values of τon. The effect on the position PDFs is similar to that seen in Fig. 20.
These different panels show that for short τon, the second moment of the velocity is smaller than expected for trapped particles, while for large
τon it is larger. Moreover, the velocity distribution may become trimodal for parameters in which trapped particles show unimodal PDFs. All
the PDFs show a clear deviation from a Gaussian PDF. For all panels, α = 5, xesc = xd , and pon = 0.5. The values of τon are indicated for each
row.

FIG. 22. Position and velocity PDFs for a shallow trap, α = 0.0008, with escape. Due to the weak confinement, the PDFs are broader. The
high peak in the center is likely to be a bias introduced by the initial condition (x = 0 and v = 0). The active force parameters are β = 100
and pon = 0.5. The escape points are |xesc| = xd .
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FIG. 23. Position and velocity histograms for the case of escape and Gaussian active noise. The imposed vanishing probability density at
the escape points sharply truncates the position PDF. The parameters are α = 5 and xesc = xd . The values of β and τon are indicated in the
figure.

Figures 23–25 present the position and velocity PDFs for
particles that can escape and are subjected to the Gaussian
implementation of the active noise. For small amplitudes of
the active force (Fig. 23), the PDFs are similar to those found
for the single-source implementation of the force. For the
larger amplitude (Fig. 24), the position PDFs are similar to
those obtained for the single source (Fig. 21), but the velocity
PDFs show shoulders rather than the trimodality obtained for

the single source. This difference is due to the fact that for
the Gaussian implementation, the force amplitude is not con-
stant. For the large active force amplitude, we find apparent
differences between the PDFs for the Gaussian noise (Fig. 25)
and those for the single source (Fig. 22). The position PDF
shows negative excess kurtosis for the Gaussian noise, while
it shows a large positive excess kurtosis for the single source.
The velocity PDF shows the same difference and, in addition,

FIG. 24. Similar to Fig. 23 but for β = 10 and different values of τon. The effect on the position PDF is similar to that seen in Fig. 20.
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FIG. 25. Position and velocity PDFs for a shallow trap, α = 0.008, with escape and Gaussian active noise (β = 100 and τon = 100td ). Due
to the weak confinement, the PDFs are broader. The velocity PDF shows trimodality which did not appear for the single-source active noise.
Moreover, both PDFs show negative excess kurtosis, while for the single source, they have large positive excess kurtosis. The escape point is
xesc = xd .

for the Gaussian force, it shows trimodality, which did not
appear for the single source.

APPENDIX D: KRAMERS’ EXPRESSION
FOR THE MEAN ESCAPE TIME

The details of the prefactor of the exponent τ0 in Kramers’
expression for the mean escape time [Eq. (4)] depend on
the shape of the potential and, in particular, on the way the
potential is truncated, i.e., whether there is a cusp or just a
smooth barrier. The escape that we consider here corresponds
to escape over a cusp for which the thermal Kramers escape
time, in the limit of moderate friction, is given by [49–51]

τ thermal
esc,m f = (2π/ω0)e�E (xesc )/kBT , (D1)

where ω0 = √
(1/m)|U ′′(x0)|. In the limit of strong friction,

Kramers’ escape time is given by [49–51]

τ thermal
esc,s f = 2π

tdω2
0

(
kBT

π�E (xesc)

)1/2

e�E (xesc )/kBT . (D2)

The interpolation between moderate and strong friction was
studied in [64]. In the limit of very weak friction, Kramers’
mean escape time is independent of the barrier shape and is
given by [49–51]

τ thermal
esc,w f ≈ td

kBT

�E
exp(�E/kBT ). (D3)

The results presented in Fig. 4 illustrate the dependence
of the mean escape time on the barrier height. The barrier was
changed either by changing the escape point xesc and fixing the
stiffness of the confining potential α or by changing the value
of α and fixing the escape point. The curves for the thermal
case show that even in the absence of active noise, when the

escape point is fixed and the potential stiffness varies, the
mean escape time deviates from exponential.

In Fig. 26 we present the numerical prefactor of the expo-
nent τ0 that was obtained from the simulations. The energy
barrier may be written as �E/kBT = α(xesc/xd )2. For the
case of fixed α, we find that τ0 only slightly varies and is
in fact constant in the regime of high-energy barriers, where
Kramers’ expression is expected to be valid. For the case
of fixed escape point and varying stiffness, we found that
τ0 ∼ 1/

√
α, as expected in the regime of moderate friction.

Since xesc = xd = const (blue line and symbols), the energy
barrier height is proportional to α; the fit (green line) shows
the predicted 1/

√
α behavior [Eq. (D1)].

FIG. 26. Prefactor in Kramers’ expression for the mean escape
time vs the energy barrier for the thermal (no active force) case
of Fig. 4. The prefactor shows the expected dependence on α for
moderate friction and the lack of dependence on the escape point.
The symbols denote the values of the energy barrier for which the
mean escape time was simulated and the shaded area represents the
uncertainty.
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