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Dynamical localization corrections to band transport

S. Fratini 1 and S. Ciuchi 2,3

1Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
2Dipartimento di Scienze Fisiche e Chimiche, Università dell’Aquila, via Vetoio, I-67010 Coppito-L’Aquila, Italy

3Istituto dei Sistemi Complessi-CNR, Via dei Taurini 19, I-00185 Rome, Italy

(Received 4 April 2019; revised manuscript received 14 November 2019; published 2 January 2020)

Bloch-Boltzmann transport theory fails to describe the carrier diffusion in current crystalline organic
semiconductors, where the presence of large-amplitude thermal molecular motions causes substantial dynamical
disorder. The charge transport mechanism in this original situation is now understood in terms of a transient
localization of the carriers’ wave functions, whose applicability is, however, limited to the strong disorder
regime. To deal with the ever-improving performances of new materials, we develop here a unified theoretical
framework that includes transient localization theory as a limiting case and smoothly connects with the standard
band description when molecular disorder is weak. The theory, which specifically addresses the emergence of
dynamical localization corrections to semiclassical transport, is used to determine a “transport phase diagram”
of high-mobility organic semiconductors.
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I. INTRODUCTION

The past decade has witnessed considerable progress in the
understanding of charge transport in high-mobility organic
semiconductors, with important milestones achieved in both
experimental and theoretical research. On the experimental
side, the widespread access and improved control on field-
effect devices has provided a common ground for the system-
atic and reproducible measurement of carrier mobilities [1].
Initially restricted to crystalline rubrene [2,3], which served
as a prototypical material due to its outstanding performances
and stability, results indicative of intrinsic charge transport are
now obtained in a growing number of organic semiconductors
[4–11]. On the theoretical side, it is now understood that the
dominant intrinsic factor limiting the mobility is the presence
of large thermal vibrations of the constituent molecules, which
cause strong dynamic disorder [12]. The latter hinders the
carrier motion in ways that differ substantially from what is
predicted by semiclassical scattering theories.

The dynamical nature of molecular disorder in organic
solids makes the quantum theory of Anderson localiza-
tion, that was developed for systems with static randomness
[13,14], of limited use per se. To deal with this original
situation, the physical idea of charge carriers being coherently
localized, but only over a limited timeframe, has emerged over
the years [12,15,16]. By highlighting explicitly a connection
with the physics of localized systems, the concept of transient
localization could reconcile a number of puzzling features
of organic semiconductors, most notably the observation of
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“bandlike” mobilities decreasing with temperature to values
below the so-called Mott-Ioffe-Regel limit. The applicability
of the transient localization approach, however, is by con-
struction restricted to the regime of strong dynamical disorder.
Materials with reduced localization effects, either featuring
more isotropic two-dimensional band structures [17] or lower
degrees of disorder [18], are actively investigated. It can be
expected that future organic compounds will progressively
move away from the strong disorder regime, entering a
crossover region for which there is yet no available theoretical
description.

The aim of this work is to establish a unified theoretical
framework that encompasses the whole range from Bloch-
Boltzmann band theory, that applies in the limit of weak
electron-phonon scattering [19–22], to the transient localiza-
tion (TL) regime relevant when dynamic disorder is strong
[16]. Our approach, which is based on the evaluation of
dynamical localization corrections to semiclassical transport,
is valid regardless of the disorder strength, as confirmed by the
comparison with available exact numerical data. We illustrate
our findings on organic compounds of current interest, deter-
mining a general “transport phase diagram” for high-mobility
organic semiconductors.

II. THEORETICAL METHODOLOGY

A. Dynamical localization corrections

Due to its semiclassical nature, Bloch-Boltzmann theory
neglects localization processes altogether. While this is a
viable approximation to treat electron-lattice interactions in
the weak scattering limit, it is inappropriate to study the
transport properties of electrons in strongly fluctuating envi-
ronments, as is the case in organic semiconductors owing to
the presence of large-amplitude molecular motions. Here we
want to overcome this limitation by restoring those quantum
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processes that are missing in the semiclassical description.
Our derivation is based on Kubo response theory, and it
builds on the formulation developed in Refs. [15,23]. The key
quantity of interest is the time-dependent velocity-velocity
anticommutator correlation function, C(t ) = 〈{V̂ (t ), V̂ (0)}〉,
with V̂ the velocity operator for charge carriers in a given
direction. The dynamical observables describing charge trans-
port, i.e., the charge diffusivity, the charge mobility and the
optical conductivity, can all be derived from the knowledge of
this time-dependent quantity [15,23].

Let us imagine that for a given system of electrons interact-
ing with lattice vibrations, we are able to calculate the veloc-
ity correlation function using semiclassical Bloch-Boltzmann
theory (see Appendix A), that we denote as CSC(t ). By defini-
tion this quantity misses all those quantum processes that are
instead present in the exact correlator C(t ). It is then natural
to define as dynamical localization corrections (DLC) the dif-
ference δC(t ) = C(t ) − CSC(t ) between the exact correlator
and the semiclassical result. δC(t ) obviously entails all those
velocity correlations that are not included in the semiclassical
description. While this quantity is generally unknown, as
its calculation requires the full solution of the problem, we
now provide an approximation scheme that has a very broad
validity and that turns out to be quantitatively accurate for
the problem at hand, where the dynamical disorder is slow
compared to the free-carrier dynamics.

The key observation is that the quantum corrections δC
induced by dynamical lattice fluctuations are continuously
connected to those that would be realized in a perfectly
frozen lattice environment, δC0: The latter should be adia-
batically recovered when the timescale of lattice fluctuations
is sufficiently long as compared to all other timescales in
the problem. The similarity between δC and δC0 for slowly
fluctuating disorder is advantageous, because solving a prob-
lem with frozen disorder (which can be done exactly via the
diagonalization of a one-body disordered Hamiltonian) is a
much easier task than solving the full dynamical problem,
which is instead prohibitively difficult. The quantity δC0 =
C0 − CSC evaluated in the frozen disorder limit contains most
of the information that we need on localization corrections.
The small difference between δC0 and δC, originating solely
from the dynamical nature of the lattice, can then be treated
in an approximate way. The power of the method relies on
the fact that no assumptions are made on the smallness of δC
itself, so that the whole approach is not restricted to the weak
disorder limit.

B. Decorrelation time

Disorder dynamics (here, the dynamics of atomic and
molecular positions) are known to destroy the quantum pro-
cesses at the very origin of wave-function localization [13,14].
In the scaling theory of localization, the motion of the scat-
tering centers on the dynamical timescale τd gives rise to
a finite cutoff length [24] which corresponds to the length
traveled by semiclassical particles over this time [13]; this
cutoff length/time restores a finite diffusivity for the carriers,
which would otherwise be vanishing. When translated to
our problem, this implies that the quantum corrections δC0

characterizing the localized system can only be sustained at
times that are short compared to the timescale of dynamic

disorder [25,26], while they decay and vanish at longer times
(see Appendix C). This is embodied in the following form:

δC = δC0e−t/τd , (1)

with the decorrelation time being set by the frequency of the
relevant modes, i.e., τd ∼ 1/ω0 within a numerical factor (the
optimal value of such prefactor will be discussed below). The
corresponding velocity correlator is then

C(t ) = CSC(t ) + δC0(t )e−t/τd . (2)

Equation (2) constitutes the basis of our theoretical approach,
which will now be benchmarked and applied to the study of
charge transport in organic materials in the next sections.

Before proceeding further, we argue that the proposed
approximation scheme should be valid even beyond the
slow disorder limit initially assumed in the derivation.
The reason is that Eq. (2) is able to interpolate from full
localization all the way to the semiclassical limit depending
on the value of τd . Indeed, while letting τd → ∞ obviously
restores the correlator of the localized system, C(t ) = C0(t ),
taking the opposite limit of fast disorder, τd → 0, suppresses
all quantum corrections, hence leaving C(t ) = CSC(t ).
More generally, in cases where localization corrections
are irrelevant to start with (because lattice fluctuations are
weak, i.e., for weak electron-phonon interactions and at low
temperatures), then δC0 can be set to zero. Correspondingly,
the correct semiclassical result will be trivially recovered by
Eq. (2) regardless of the value of τd .

C. Carrier mobility

The carrier mobility can now be obtained from Eq. (2)
following the lines of Ref. [15]. We first observe that the
diffusion constant D is the long-time limit of the instantaneous
diffusivity, defined as D(t ) = ∫ t

0 C(t ′)dt ′/2. Introducing the
Laplace transform C̃(p) = ∫ ∞

0 C(t )e−pt dt , one has

D = lim
t→∞ D(t ) = C̃(0)/2. (3)

Applying the Laplace transform to Eq. (2) yields

C̃(0) = C̃SC(0) + δC̃0(p), (4)

with p = 1/τd , and hence D = DSC + δC̃0(p)/2. The mobil-
ity is then obtained from Einstein’s relation μ = eD/kBT as

μ = μband + δμ, (5)

with μband = eDSC
kBT and δμ = e

2kBT δC̃0(p). The above expres-
sion has the desired form of a semiclassical band mobility
corrected by quantum processes.

To make the connection with previous works, we observe
that when the term δμ dominates in Eq. (5), i.e., when
localization effects are sufficiently strong, one is allowed to
neglect the semiclassical terms altogether, which corresponds
to setting C = δC in the previous derivation. Eq. (2) then
becomes C(t ) = C0(t )e−t/τd , which is the form that was orig-
inally assumed in Ref. [15], setting the basis of transient
localization theory. Repeating the same steps as above, Eq. (5)
reduces to the usual TL formula for the charge mobility, μ =
epL2(p)/2kBT , with the transient localization length defined
by L2(p) = C̃0(p)/p [15,16].
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For the practical implementation of Eq. (5), we actually
rearrange Eq. (4) as

C̃(0) = C̃0(p) + [C̃SC(0) − C̃SC(p)], (6)

which allows us to take full advantage of the numerical tools
already developed in the context of transient localization
theory. The first term in Eq. (6) is then easily recognized as
the TL result, which is readily evaluated with the methods
described in Refs. [27] and [17]. The remaining terms between
brackets now only involve semiclassical quantities, which
are evaluated following the procedure described in Appendix
A. Finally, the mobility Eq. (5), is obtained making use of
the explicit formula Eq. (B12), which follows directly from
Eq. (6). Full details are presented in Appendices A, B, and D.

III. RESULTS

A. Models

The theory developed in the preceding sections is totally
general and can be applied to a variety of electron-phonon
interaction models. For illustrative purposes we shall mainly
consider the following class of tight-binding Hamiltonians
[17]:

H =
∑
i,δ

[Jδ + αδxi,δ](c+
i ci+δ + H.c.) + Hx, (7)

which is broadly representative of the physics of organic
semiconductors. Equation (7) describes charge carriers mov-
ing on a molecular lattice, with nearest neighbor transfer
integrals Jδ in the different bond directions δ that are lin-
early modulated by the coupling to intermolecular modes
xi,δ . Unless otherwise specified, the modes are assumed to
be uncorrelated between different bonds, as described by
the Hamiltonian Hx = ∑

i,δ Kx2
i,δ/2 + p2

i,δ/2M, where ω0 =√
K/M is the typical frequency of intermolecular vibration.

Correlated bond fluctuations, as well as Holstein-type local
interactions with slow intramolecular modes, of the form
HI = ∑

i αH c+
i cixi, can also be studied within the present

general theoretical framework (see below and Appendix A3).
The interaction with high-frequency intramolecular modes,
which is not treated explicitly here, can be included via a
rescaling of the transfer integrals Jδ , corresponding to the
usual polaronic band narrowing [28].

Following Ref. [17] we consider a two-dimensional,
hexagonal molecular lattice of unit spacing a, with nearest
neighbors δ = a, b, c (see the sketch in Fig. 2). We take
J =

√
J2

a + J2
b + J2

c as the energy unit, which fixes the scale
of the band dispersion. For clarity of presentation, we shall
focus on the common situation encountered in high-mobility
molecular semiconductors, where two bond directions are
equal by symmetry, so that the set of transfer integrals can be
characterized by a single parameter θ (Ja = J cos θ , Jb = Jc =
J sin θ/

√
2) [17]. Moreover, we shall be mostly concerned

with the high-temperature regime where kBT � h̄ω0. In this
case the mean-square thermal fluctuation of the transfer inte-
grals is readily evaluated in terms of the parameters of Eq. (7)
to �Jδ = αδ〈x2

i,δ〉1/2 = αδ (kBT/K )1/2. We can then introduce

�J =
√

�J2
a + �J2

b + �J2
c as a measure of the overall ener-

getic disorder induced by the intermolecular displacements.

Unless otherwise specified, we fix the microscopic param-
eters to J = 0.1eV and T/J = 0.25, representative of high-
mobility organic semiconductors at room temperature [17],
and set h̄ = 1.

B. Validation of the theory

Before exploring our general findings we validate the
theory by benchmarking it against exact results available on
simplified one-dimensional models. We consider the quantum
Monte Carlo (QMC) data of Ref. [29] and the Finite Tem-
perature Lanczos Method (FTLM) data of Ref. [30]. Both
approaches are in principle exact, and they fully include the
quantum dynamics of the molecular vibrations without any
assumptions. The case studied in Ref. [29] corresponds to the
one-dimensional limit of the model Eq. (7) in the presence
of maximal correlations between neighboring intermolecular
motions (see, e.g., Refs. [12,15,27,31] and Appendix A3), in
a regime where localization corrections are weak. The results
of Ref. [30] are instead for the one-dimensional Holstein
model, where only on-site (intramolecular) interactions are
considered (Appendix A3), in a regime where localization
corrections are strong.

Figure 1(a) shows the QMC data for the mobility ver-
sus temperature (squares) together with the result obtained
from the present theory (DLC, red full and dotted lines) and
band theory, as described in Appendix A [Eq. (A32)] (gray,
thin). An excellent quantitative agreement with the QMC
data is obtained if one takes a value p = 1/τd = 2.2ω0 in
the DLC theory (red, full line). To illustrate the impact of
the decorrelation time on the mobility, we also show the
result obtained for p = ω0 (red dotted). Reducing the value
of p tends to overestimate quantum localization effects, and
hence to underestimate the mobility. We observe that with
the present choice of model parameters, which corresponds
to a moderate amount of molecular disorder (�J/J = 0.41
at T/J = 0.25), the QMC result is itself qualitatively similar
to the band theory result in the whole temperature range
explored, and the reduction of the mobility by localization
corrections is less than 15%. We also note that the QMC
data do not recover exactly the calculated band value in
the low temperature limit, where molecular fluctuations are
suppressed. This could signal either the presence of scattering
processes not included in the perturbative band result, or a
numerical artefact brought by the analytical continuation in
the QMC calculation. Finally, the TL result (orange dashed)
is quantitatively accurate around room temperature, but it
becomes inappropriate in the weak disorder regime attained
at lower temperatures (see next Sections).

Figure 1(b) shows the exact FTLM data for the optical
conductivity per particle (black, thin), together with the result
obtained from the present theory (DLC, red full and dotted
lines) and from band theory (gray, thin) (details on the cal-
culation of the frequency-dependent response are provided in
Appendix B). Because in this example the level of disorder is
quite large (the thermal fluctuation of the on-site molecular
energy is evaluated to �/J = 1), the improvement brought
by the inclusion of dynamical localization corrections is more
striking: not only the theory corrects the gross overestimate
of the mobility (i.e., the value at ω → 0) implied by band
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(a)

(b)

FIG. 1. (a) Mobility calculated with dynamical localization cor-
rections from Eq. (5) (DLC, red) on a one-dimensional chain with
correlated bond-disorder (see text). Squares are the QMC data of Ref.
[29]. The band result derived in Appendix A [Eq. (A32)] and the TL
result are also shown (thin gray and orange dashed line, respectively).
The microscopic parameters are J = 93meV, ω0/J = 0.05, and λ =
0.17, as defined in Appendix A3. (b) Optical conductivity calculated
for a one-dimensional chain with local intramolecular interactions
(red), compared with the FTLM data of Ref. [30] (black) and the
band result [thin gray line, from Eq. (A35)]. Parameters are ω0/J =
0.2, λ = 1, and T/J = 0.5.

theory, but it very accurately captures the whole frequency
response, including the emergence of a localization peak at
ω 	 2J and the precise shape of the absorption tail at higher
frequencies. The discrepancy observed at the low frequency
absorption edge could instead be related to the small size of
the cluster studied in Ref. [30], which is limited to six sites. As
in the previous case, also here the choice p = 2.2ω0 provides
the overall best agreement with the exact result. We note that
at this large level of disorder, the DLC result is essentially
indistinguishable from the TL result (not shown).

C. Breakdown of band transport

Having validated the theoretical approach, we now study
the emergence of dynamical localization corrections in the
broad class of organic semiconductors, by analyzing the en-
semble of models described by Eq. (7). Figure 2(a) illustrates
the evolution of the quantum correction term δμ of Eq. (5)

FIG. 2. (a) Dynamical localization corrections δμ for hole car-
riers on the tight-binding model defined in the text (sketched), as
a function of the band parameter θ , calculated for τd = 20/J and
T/J = 0.25 (angular averaged). (b) Mobility along the a direction,
scaled w.r.t. the band result [μband ∝ (�J/J )−2, see Appendix A] for
the structures indicated by the labels [θ = 0, 0.21, θ0, and π − θ0;
see also symbols in panel (a)], from TL (dashed lines) and DLC
(full lines and symbols). (c) Time-dependent diffusivity calculated
for the band structure of rubrene [17], θ = 0.21, with �J/J = 0.3.
Time is in units of 1/J , diffusivity is in units of a2J/h̄. (d) same, with
�J/J = 0.1.

relative to the band value, as a function of the electronic
structure parameter θ . Results are shown for two values of
the energetic disorder, �J/J = 0.3 and 0.5, and p/J = 0.05
(τd = 20/J). The quantum correction to the band mobility is
predominantly negative and expectedly increases in magni-
tude upon increasing the amount of disorder. The importance
of processes beyond Bloch-Boltzmann theory is very much
dependent on the band structure, which is in agreement with
the general observation that different crystal structures are dif-
ferently affected by disorder, with isotropic two-dimensional
bands being the most resilient to localization processes [17].
The correction term is indeed maximum for one-dimensional
structures (θ = 0, π ), while it is minimized at the isotropic
point (θ = θ0 = arccos(1/

√
3)), where it becomes practically

negligible at �J/J = 0.3. The structures around π − θ0 are
exceptions, exhibiting a positive correction term: there, due to
a negative combination of the signs of the transfer integrals,
JaJbJc < 0, a van Hove singularity of states resilient to local-
ization arises close to the hole band edge. Thermal population
of these states causes the mobility to rise above the band
value.

The detailed dependence of quantum corrections on the
amount of disorder is illustrated in Fig. 2(b), where we
show the ratio of the total calculated mobility μ to the band
prediction μband, for selected electronic structures (solid lines
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and points). For each structure, one can identify a value of �J
above which the mobility significantly deviates from the band
value, signaling the emergence of quantum processes. For ex-
ample, band transport holds up to �J/J 	 0.3 in the isotropic
structure (red), while it breaks down already at �J/J 	 0.1 in
the one-dimensional case (dark gray). The neglect of quantum
processes beyond this point can lead to gross quantitative
errors in the estimated mobility: at the largest values of �J/J
studied here, for example, μ can deviate from the band value
by up to a factor of three.

In Fig. 2(b) we also report the transient localization result,
shown as dashed lines. The latter is applicable in the strong
disorder regime, where it closely matches the result of Eq. (5).
Upon reducing the disorder strength, however, the TL result
does not tend to the band limit as required, but instead it
incorrectly bends downwards. Band theory and TL theory
therefore appear to be complementary, each addressing a
different regime of parameters. Equation (5) allows to bridge
continuously between these two limiting regimes.

D. Localization corrections in the time domain

The buildup of quantum localization processes can be
directly visualized by tracking the time-dependent diffusivity
D(t ), as shown in Fig. 2(c) for �J/J = 0.3 and θ = 0.21
(these are the values of the microscopic parameters calcu-
lated for rubrene in Ref. [17]). The semiclassical diffusivity
(gray) exhibits a monotonic evolution from ballistic at short
times, D ∝ t , to diffusive, D → DSC as t → ∞, showing no
hint of localization. Localization processes are instead fully
developed when considering the exact evolution in a frozen
molecular environment (black thin line), as derived from the
reference correlation function C0 introduced in Sec. II A.
Their onset can be identified with the locus of the maximum
of D(t ), that we denote as tloc, and they are responsible for the
subsequent steady decrease of the diffusivity, which vanishes
at long times. When the disorder is dynamic, such localization
corrections are initially retained, leading to a partial suppres-
sion of the diffusivity (red curve and hatched region) w.r.t. the
band value. The suppression of D(t ), however, stops at times
t � τd , which follows from the fact that its derivative δC(t )
vanishes [cf. Eq. (1)].

By tracking the time evolution of the diffusivity, we can
now better visualize what controls the emergence of dynami-
cal quantum corrections in Eq. (5). When the disorder is suf-
ficiently strong [Fig. 2(c)] the condition tloc < τd is fulfilled,
and localization corrections can develop before they are sup-
pressed by decorrelation due to the molecular dynamics. Re-
ducing the disorder strength makes localization processes less
efficient, resulting in an increase of the localization time tloc.
When the latter reaches τd , the quantum corrections cannot
develop anymore, because they are cut off at their very onset
by decorrelation, cf. Eq. (1). Quantum processes then become
irrelevant and band theory applies. Therefore, the condition
tloc � τd is what marks the breakdown of semiclassical behav-
ior. According to this argument, the emergence of dynamical
localization corrections is subject to the existence of either
sufficiently strong (low tloc) or sufficiently slow (large τd )
disorder fluctuations. Both conditions are naturally realized in
organic crystals, where large amplitude, slow intermolecular

fluctuations arise owing to the large masses of the molecular
constituents and to the weak intermolecular binding forces.

The disappearance of localization corrections at low dis-
order is shown in Fig. 2(d), where we report the diffusivity
calculated for �J/J = 0.1, well within the band regime. In
this case tloc > τd and the full diffusivity (red) is essentially
indistinguishable from the band result, implying δμ 	 0.

Finally, Fig. 2(d) also shows that applying TL theory when
tloc > τd incorrectly underestimates the diffusion constant
(dashed line), which is at the origin of the nonmonotonic
behavior exhibited in Fig. 2(b).

E. Localization corrections in the frequency domain

The conduction properties under a constant applied field
and the response of charge carriers in the frequency domain
are deeply intertwined. In the band transport regime, the
optical absorption exhibits a simple Lorenztian (Drude) shape,
which is a monotonically decreasing function of frequency
(cf. Appendix A). Upon increasing the disorder strength, the
suppression of the mobility (and hence the d.c. conductivity)
by localization processes induces a dip in the absorption at
ω = 0, as already shown in Fig. 1(b). This shifts the absorp-
tion maximum to finite frequencies [15,29,32–34], providing
a direct and measurable signature of the breakdown of band
transport.

To assess how the emergence of dynamical localiza-
tion corrections is reflected in the optical conductivity, we
take advantage of the following exact formula [15] σ (ω) =
2 tanh βω

2

∫ ∞
0 dt sin(ωt )D(t ), whose second derivative reads

d2σ

dω2

∣∣∣∣
ω=0

= −β

{
2

∫ ∞

0
[D − D(t )]t dt + Dβ2

6

}
. (8)

It is clear from the above relationship that whenever the diffu-
sivity is a monotonically increasing function of time, so that
D(t ) is always lower than its long time limit D, the curvature
is necessarily negative and the optical conductivity remains
peaked at ω = 0. This is the case in particular for the band
diffusivity shown in Figs. 2(c) and 2(d), in agreement with the
resulting Drude behavior. A necessary condition for the emer-
gence of a finite-frequency peak is instead the existence of
a region where D(t ) > D, as indeed happens when quantum
corrections are relevant [red curve in Fig. 2(c)]. This, together
with the analysis of the time-dependent diffusivity given in the
preceding paragraphs, shows that the emergence of a dip in
the optical absorption essentially coincides with the crossover
condition τd ∼ tloc. The change of sign of Eq. (8) can therefore
be used to identify the breakdown of the band picture. The
equivalence between these two conditions is further explored
next.

F. Transport phase diagram

The locus of the breakdown of band transport as deter-
mined from the condition d2σ/dω2|ω=0 = 0 is reported in
Fig. 3 as a function of the electronic structure parameter θ

(shaded area). The symbols locate the electronic structures
and disorder levels calculated for a number of high-mobility
organic semiconductors of current interest [17,35]. For com-
pleteness we have included materials that either exactly fulfill
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FIG. 3. Regimes of room temperature charge transport in two-
dimensional organic semiconductors. The shaded area denotes the
emergence of dynamical localization corrections as determined from
Eq. (8). The upper and lower edge are determined by choosing τd =
10/J and 20/J, respectively, both with J = 0.1eV and T = 0.25 J .
The dotted lines are the corresponding estimates from Eq. (10), and
the dashed line is the MIR limit (see text). Data points are from Refs.
[17] (full symbols) and [35] (open symbols). The insets illustrate the
characteristic shapes of the optical absorption in the two different
regimes.

the condition Jb = Jc, or are sufficiently close to it. The
shaded area delimits the crossover lines calculated for val-
ues of the molecular fluctuation time τd comprised in the
interval 10 − 20 h̄/J , which is the typical range encountered
in materials. Remarkably, all the reported compounds are
characterized by sizable dynamical localization processes,
making band transport theory inappropriate. Several of them,
however, are located very close to the crossover region. In
the case of rubrene, in particular, this is in agreement with
the fact that a finite-frequency peak is observed in optical
absorption experiments at room temperature [36,37], yet a
normal Drude shape is recovered upon reducing the amount
of thermal disorder [38]. We stress that the reported crossover
line corresponds to the ideal situation where the only source
of randomness is from transfer integral fluctuations. In real
conditions, local site-energy fluctuations originating from the
coupling to intramolecular vibrations as well as extrinsic
sources of disorder will likely shift the crossover to lower
values of �J/J .

At any rate, we observe that while low levels of disor-
der and isotropic band structures have been independently
achieved in current materials, no compound exists yet that
is able to combine such optimal features together. If such a
compound could be synthesized, then we argue that it would
fully enter the band transport regime, possibly opening new
perspectives for organic-based applications.

IV. CONCLUDING REMARKS

Poor conduction properties are commonly observed in
broad and diverse classes of solids, including disordered and
amorphous metals, polymers, materials with strong electron-
phonon interactions and strongly correlated electron sys-
tems. Regardless of the microscopic origin, all these “bad”

conductors and semiconductors have in common a fundamen-
tal breakdown of the weak-scattering hypothesis underlying
band transport theory. In this respect, we speculate that the
mechanisms described in this work could generally apply to
other classes of materials, where slowly fluctuating degrees
of freedom of electronic, magnetic or vibrational origin are
coupled to the carrier motion. While the microscopic analysis
of specific cases is clearly beyond the scope of this work,
we can take advantage of the physical insight gained here
to derive a simple phenomenological formula that will be of
practical use to assess the presence of dynamical localization
corrections in general situations.

To this aim we go back to Sec. III D, where we have shown
that localization processes arise when the localization time is
shorter than the velocity decorrelation time, i.e.,

tloc � τd . (9)

We observe that this typically occurs in a regime where the
level of disorder is sizable on the scale of the band energy (cf.
Fig. 2). In this regime, the localization time tloc scales with
the semiclassical scattering rate τ within a numerical factor,
and the two merge in the strong disorder limit, where tloc 	 τ .
Specifically, we have checked from the data of Fig. 2 that even
in the isotropic 2D case, where localization corrections are the
weakest, the ratio tloc/τ falls below 2 as soon as �J/J � 0.4.
In 1D, this is attained already at �J/J � 0.2.

It is then appealing to rewrite Eq. (9) by replacing the
(quantum) localization time τloc with the more familiar (semi-
classical) scattering time τ . We therefore write

1

τ
	 η

1

τd
DMC, (10)

with η a numerical prefactor. As a consistency check for
Eq. (10), when τd → ∞ we recover the known result that in
the low density limit appropriate to nondegenerate semicon-
ductors, localization corrections are always relevant when dis-
order is static [13]. To fix the value of η, in Fig. 3 we compare
Eq. (10) with the rigorous condition obtained from Eq. (8), for
two different values of the fluctuation time, τd = 10/J and
20/J . We find that a very good match is obtained for η 	 4
(shaded area and dotted lines, respectively). The criterion
Eq. (10) can now be straightforwardly applied to a variety
physical situations of interest, provided that τd is identified
with the timescale of the relevant degrees of freedom that
couple to the electron motion.

It is interesting to compare this result with the phenomeno-
logical Mott-Ioffe-Regel (MIR) criterion, which signals the
disappearance of Bloch states. In its original formulation
[39], this is identified as the point where the semiclassical
mean-free-path becomes comparable to the lattice spacing,
i.e.,  	 a. Using 2 = 〈v2〉τ 2, this can be rewritten in terms
of the scattering rate as

1

τ
	 〈v2〉1/2

a
MIR. (11)

This condition is illustrated in Fig. 3 as a dashed line, and
it is located well above the crossover region. The fact that
deviations from band theory arise before the MIR limit is
reached is consistent with the fact that the buildup of quantum
localization corrections requires the existence of coherently
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propagating Bloch waves to start with. The comparison of
Eqs. (10) and (11) shows that this can only happen in systems
where the disorder dynamics is sufficiently slow, as is the case
here.

Finally, we note that a slightly different formulation of the
MIR criterion is often used [40,41], which predicts the dis-
appearance of Bloch states when the semiclassical scattering
rate 1/τ reaches a fraction of the bandwidth, i.e.,

1

τ
	 ξ

J

h̄
MIR (spectral), (12)

with ξ again a numerical factor. The two conditions Eqs. (11)
and (12) become equivalent in the ultrahigh temperature limit
T � J , in which case 〈v2〉1/2/a ∝ J/h̄ independent on temper-
ature (the average velocity entering in Eq. (12) instead recov-
ers instead 〈v2〉 ∝ kBT/m∗ at low temperature). Comparing
Eqs. (12) and (10), we again conclude that for sufficiently
slow vibrations, i.e., J � ω0, the dynamical localization cor-
rections emerge in a region where Bloch states are not yet
suppressed.
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APPENDIX A: BAND TRANSPORT THEORY

Here we start from the textbook equations of Bloch-
Boltzmann band transport theory to evaluate the time-
dependent diffusivity DSC(t ) and anticommutator correlation
function CSC(t ) needed in the main text, and provide useful
analytical formulas for the mobility in different models of
electron-phonon coupling that are relevant to high-mobility
organic semiconductors.

1. Time-dependent diffusivity

In band transport theory, one starts with Bloch states in
the periodic molecular lattice, having momentum k, energy
εk , and velocity vk in a given direction. The diffusion con-
stant of each band state is Dk = v2

k τk , with τk a decay time
determined by scattering off disorder and lattice vibrations
(see Appendix A 3 below). The mobility is then obtained as
μband = eβDSC = βe〈v2

k τk〉, where the symbol 〈· · · 〉 indicates
thermal averaging over the states and β = 1/kBT , with kB the
Boltzmann constant.

The time-dependent diffusivity is related to the real part
of the frequency-dependent conductivity σ (ω) per particle via
the following expression [15]

D(t ) = 1

π

∫ ∞

0

sin(ωt )

tanh(βω/2)
σ (ω)dω, (A1)

which is exact for nondegenerate carriers. The optical conduc-
tivity per band carrier is given by [42]

σSC(ω) = β

Z
Re

∑
k

v2
k τk

1 − iωτk
e−βεk , (A2)

with Z = ∑
k e−βεk the partition function. The corresponding

diffusivity is obtained via direct integration of Eq. (A1).
As Eq. (A2) is a linear superposition, the contribu-
tions from individual states can be separated as DSC(t ) =
(1/Z )

∑
k e−βεk Dk (t ), with

Dk (t ) = β

π
Re

∫ ∞

0

sin(ωt )

tanh(βω/2)

v2
k τk

1 − iωτk
dω. (A3)

The integral can be performed via contour integration, leading
to

Dk (t ) = v2
k τk

[
1 − β

2τk

e−t/τk

tan(β/2τk )
+

∑
n>0

2e−ωnt

1 − (ωnτk )2

]
,

(A4)

where we have introduced the bosonic Matsubara frequen-
cies ωn = 2πn/β. The result of the last summation has a
closed expression in terms of the Hurwitz-Lerch transcendent
function �. Denoting z = e−2πt/β , we have

∑
n>0

2e−ωnt

1−(ωnτk )2 =
[zβ/π (τk )2][�(z, 1, 1 + ω1τk ) − �(z, 1, 1 − ω1τk )]. The an-
ticommutator velocity-velocity correlation function CSC(t )
can be straightforwardly obtained from Eq. (A4) using the
definition CSC(t ) = 2dDSC/dt .

In the high temperature/weak scattering limit, T � 1/τk ,
the explicit sum over Matsubara frequencies drops out and
the above expression simplifies to Dk (t ) 	 v2

k τk[1 − e−t/τk ]
[this result can be obtained straightforwardly from Eq. (A3)
by taking the classical limit for the detailed balance factor,
tanh(βω/2) → βω/2]. This form corresponds to a simple
exponential decay of the velocity correlation function [15]. It
describes ballistic behavior at short times, Dk ∼ v2

k t , followed
by diffusive behavior Dk → const = v2

k τk at times t � τk .
The diffusivity in this case is a monotonically increasing
function of time. According to the full expression Eq. (A4),
however, an anomalous time dependence can arise when the
scattering rate becomes much larger than the thermal energy,
in which case deviations from the simple monotonic form
above can appear. This happens because the ballistic velocity
at short times becomes larger than vk . Due to this initial
overshoot, Dk (t ) reaches values larger than the long-time
diffusion constant, which is then attained after going through a
maximum. Such nonmonotonic behavior arises when 1/τk �
3.15T . Note that because the scattering rate for classical vi-
brations increases with

√
T due to the equipartition principle,

a regime of anomalous diffusivity can in principle be attained
at low temperature.

2. Average scattering time

The full electrodynamic response of nondegenerate carriers
in the Bloch-Boltzmann approximation, as given by Eq. (A2),
is a superposition of Lorentzians of widths 1/τk , weighted by
the corresponding thermal factors. This, in principle, deviates
from a simple Lorentzian shape, as would be predicted instead
within Drude theory. A simpler approximation for σ (ω) [42],
and therefore for DSC(t ), is obtained by introducing a single,
k-independent relaxation time τ . The latter is univocally de-
termined from the knowledge of the long-time diffusivity, as

τ = 〈
v2

k τk
〉
/
〈
v2

k

〉
, (A5)

013001-7



S. FRATINI AND S. CIUCHI PHYSICAL REVIEW RESEARCH 2, 013001 (2020)

which is the proper thermal average of the transport scat-
tering time τk , as defined in Ref. [42]. By construction,
the above equation recovers the correct diffusivity DSC =
〈v2

k 〉τ = 〈v2
k τk〉 and mobility μband = eβ〈v2

k 〉τ . The corre-
sponding optical conductivity then takes the simple Drude
form

σ (ω) = σ0

1 − iωτ
, (A6)

with σ0 = β〈v2
k τk〉. In all cases studied the time-dependent

diffusivity and optical conductivity obtained from the average
τ are either very close to or indistinguishable from those
obtained from the full k-dependent expressions. We therefore
use the former simplified framework for the evaluation of the
quantum corrections in the main text.

3. Calculations on specific models

Let us consider the scattering of a k-state off phonon
modes of momentum q and frequency ω0, as described by the
interaction Hamiltonian

HI = (1/N )
∑
k,q

∑
δ

α
(δ)
k,qc+

k+qckxq,δ. (A7)

Here N is the number of molecules, c+
k , ck the creation and

annihilation operators for carriers, xq,δ the deformation mode
corresponding to a given bond direction δ, and we set h̄ =
1. Straightforward algebra allows to write the interaction
matrix elements for uncorrelated bond disorder as [α(δ)

k,q]2 =
4α2

δ {cos[(k + q/2)δ]}2, with δ the vectors connecting nearest-
neighbours as shown in Fig. 1(a) and αδ = dJδ/dxδ the sen-
sitivity of the transfer integrals to intermolecular deforma-
tions. Upon substituting this expression, Eq. (A7) becomes
equivalent to Eq. (1) of the main text, now expressed in mo-
mentum space. The canonical second quantization expression
for the electron-phonon interaction is obtained by expressing
the bond coordinate in terms of dimensionless bosonic op-
erators as xq,δ = (ω0/2K )1/2(b+

q,δ + bq,δ ) with K the spring
constant, so that the electron-phonon coupling matrix ele-
ment becomes g(δ)

k,q = (ω0/2K )1/2α
(δ)
k,q, and correspondingly

gδ = (ω0/2K )1/2αδ . As is customarily done, we introduce a
set of dimensionless coupling parameters λδ = α2

δ /(4JδK ) =
(g2

δ/ω0)/2Jδ . The classical (thermal) fluctuation of the transfer
integrals can be written as (�Jδ )2 = α2

δ T/K = 2λδJδT using
the equipartition principle. In general, one can define global
parameters J2 = ∑

δ J2
δ and �J2 = ∑

δ �J2
δ . In Sec. III C

we consider a model where the relative fluctuations in the
different bond directions are all equal, i.e., �Jδ/Jδ = �J/J
for all δ. This corresponds to the choice of an isotropic
coupling λδ ≡ λ, and leads to (�J )2 = 2λJT in the thermal
fluctuation regime.

Other models of interest can be put in the form
of Eq. (A7). In the case of fully correlated bond dis-
order, as studied in Refs. [16,31], the matrix element
reads [α(δ)

k,q]2 = 4α2
SSH{sin[(k + q)δ] − sin(kδ)}2, with now

(�JSSH)2 = 2α2
SSHT/K = 4λSSHJT . The prefactor 4 instead

of 2 arises from the fact that the fluctuation of the transfer inte-
gral now arises from two independent modes located on adja-
cent sites. Finally, diagonal (intramolecular) electron-phonon
interactions correspond to a constant αk,q = αH , where αH

measures the variation of the local molecular energy level with
respect to an intramolecular deformation x, and correspond-
ingly �2 = α2

H T/K = 2λH JT .
The momentum scattering rate is evaluated in d dimensions

as

1

τk
= 2π

∫
dd q

(2π )d
g2

k,k+qFk,k+q

×{[nb + fk+q]δ(εk − εk+q + ω0)

+ [nb + 1 − fk+q]δ(εk − εk+q − ω0)}, (A8)

with nb the phonon population and fk+q the Fermi occupation
of the final state k + q, which can be set to zero at low
carrier densities, and we have introduced the compact notation
g2

k,k+q = ∑
δ[g(δ)

k,k+q]2. The two terms between brackets origi-
nate from phonon emission and absorption, respectively. The
geometric factor Fk,k+q = 1 − vkvk+q/v

2
k measures the loss of

momentum occurring at each scattering event, thereby differ-
entiating the transport scattering time from the quasiparticle
scattering time, which is instead obtained by setting Fk,k+q =
1. The form of Fk,k+q used here is the proper generalization
to generic band structures of the textbook expression −kq/k2,
which only applies to isotropic, parabolic band dispersions.
Note that the factor Fk,k+q is often omitted in practical cal-
culations [17,22], generally leading to quantitatively incorrect
values for the mobility (see below).

In the quasielastic limit where the intermolecular vibration
frequencies set the smallest energy scale in the problem, ω0 �
T, J the scattering time simplifies to

1/τk = 2kBT

h̄ω0
2π

∫
dd q

(2π )d
g2

k,k+qFk,k+q δ(εk − εk+q). (A9)

From this result and from the expressions of g2
k,k+q given

above it is clear that in all models considered here, the band
mobility at any given temperature in the classical regime
T � ω0 scales with disorder strength as μ ∝ �J−2, which
reflects the second-order nature of the scattering process.

4. Analytical results in 1D

For charge carriers in one space dimension, most calcu-
lations can be performed analytically. In what follows we
express distances in units of the lattice spacing a, we set
h̄ = 1 and mobility units to μ0 = ea2/h̄. Taking Ja = J and
Jb = Jc = 0, we have εk = −2J cos(k) and vk = 2J sin(k) =√

4J2 − ε2
k . The density of states is ρ(ν) = 1/

√
4J2 − ν2/π

and we have

Z = I0(2βJ ), (A10)〈
v2

k

〉 = 2J2
0F1(2, (βJ )2)/Z. (A11)

The last equation allows to determine the average scattering
time from the knowledge of the diffusion constant D, via
Eq. (A5). The scattering time, diffusion constant and charge
mobility can be calculated from Eq. (A9) in the following
cases.
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a. Uncorrelated bond fluctuations �J , i.e., off-diagonal
thermal disorder:

τk =
(

J

�J

)2 (
4J2 − ε2

k

)1/2

8J2
, (A12)

τ
qp
k =

(
J

�J

)2 (
4J2 − ε2

k

)1/2

4J2 + ε2
k

, (A13)

where the last expression is the quasiparticle scattering time,
obtained by setting Fk,k+q = 1 in Eq. (A9). By performing the
momentum integrations, we obtain

D = 2βJ cosh(2βJ ) − sinh(2βJ )

2πβ3(�J )2Z
, (A14)

μ = μ0
2βJ cosh(2βJ ) − sinh(2βJ )

2π (βJ )2(�J/J )2I0(2βJ )
(A15)

	 μ0
(T/J )−1/2

2π1/2λ
T � J, (A16)

where I0 and 0F1 denote, respectively, the modified Bessel
function of the first kind and the regularized hypergeometric
function. In the last equation, we have introduced (�J/J )2 =
2λT/J using the definition of the dimensionless electron-
phonon coupling λ = α2

δ /(2KJ ).
b. Diagonal disorder �. In this case we have

τk =
(

J

�

)2 (
4J2 − ε2

k

)1/2

2J2
, (A17)

τ
qp
k = τk, (A18)

D = 2βJ cosh(2βJ ) − sinh(2βJ )

(π/2)β3�2Z
, (A19)

μ = μ0
2βJ cosh(2βJ ) − sinh(2βJ )

(π/2)(βJ )2(�/J )2I0(2βJ )
(A20)

	 μ0
2(T/J )−1/2

π1/2λH
T � J, (A21)

where we have used (�/J )2 = 2λH T/J . Note that the trans-
port scattering rate is formally equivalent to that arising from
uncorrelated bond disorder (this equivalence is instead lost
for the quasiparticle scattering time). As a result, the mobility
has exactly the same functional form as in Eqs. (A14)–(A16)
), but with a reduced prefactor: for a given energetic spread
�, diagonal disorder appears to be four times less effective
than off-diagonal disorder �J in limiting the charge mobility,
which is therefore four times larger. This result, which is
exact in one dimension, remains approximately true in all the
two-dimensional structures studied here.

c. Correlated bond fluctuations �J . In this case we have

τk =
(

J

�J

)2 1

8
(
4J2 − ε2

k

)1/2 , (A22)

τ
qp
k = 2τk, (A23)

D = sinh(2βJ )

4π (�J )2βZ
, (A24)

uncorrelated

uncorrelated �qp�

correlated

diagonal
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FIG. 4. Band mobility vs. temperature for charge carriers in 1D
in the quasistatic limit for phonons, according to different electron-
phonon coupling models. In all cases the dimensionless coupling
strength λ is chosen such that �J/J = 0.3 at room temperature
(T/J = 0.25 having assumed J = 0.1 eV). Mobility units are set by
μ0 = ea2/h̄, typically in the range 5–8 cm2/Vs.

μ = μ0
sinh(2βJ )

4π (�J/J )2I0(2βJ )
(A25)

	 μ0
(T/J )−3/2

16π1/2λ
T � J, (A26)

with λ = α2
δ /(2KJ ), so that (�J/J )2 = 4λT/J (see above).

d. Summary. Figure 4 illustrates the temperature depen-
dence of the mobility obtained, in the quasistatic limit, in the
different cases studied above. We first observe that the effect
of the geometrical factor Fk,k+q is rather small for uncorrelated
bond disorder, especially at low temperature, and it is strictly
irrelevant in the case of diagonal disorder, cf. Eq. (A18). This
is in contrast with the case of correlated bond disorder, where
its neglect leads to an overestimate of the mobility by a factor
of 2 [cf. Eq. (A23)], as already reported in Ref. [31]. Second,
the temperature dependence for uncorrelated bond disorder in
one dimension (and, similarly, for diagonal disorder) is rather
weak in the relevant temperature range around and below
room temperature. At T/J = 0.25 the temperature exponent
of the mobility μ ∝ T −γ is γ = 0.66, and it tends to γ = 0.5
when T � J , cf. Eq. (A16). The exponent is slightly reduced,
γ = 0.46, if the geometrical vertex factor is neglected, as
reported in Fig. 3(a) of Ref. [17], again recovering γ = 0.5
when T � J . The temperature exponent is larger for corre-
lated bond disorder, γ 	 1.5, cf. Eq. (A26), which holds for
all T � J . We note that the mobilities calculated for correlated
and uncorrelated bond disorder have accidentally very similar
values at room temperature.

5. Quantum phonons

In all cases reported above we have considered the
quasielastic limit h̄ω0 � kBT , by setting explicitly ω0 → 0
in Eq. (A9). We illustrate here how the quantum nature of the
phonons is restored in the specific case of correlated disorder,
by using the full expression Eq. (A8). The calculations can
be straightforwardly extended to the other cases considered
above.
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For each of the two processes described in Eq. (A8), i.e.,
phonon emission and absorption, the delta function yields two
solutions

δ(ω ± ω0 − εk+q) = δ(q − q+) + δ(q − q−)√
4J2 − (εk ± ω0)2

, (A27)

with

k + q± = ±κ ; κ = arccos

[
−εk ± ω0

2J

]
. (A28)

The corresponding squared matrix element g2
k,k+q is equal to

4g2 times

1 + sin2 k −
(

εk ± ω0

2t

)2

− 2 sin k

√
1 −

(
εk ± ω0

2t

)2

(A29)

at q = q+, and

1 + sin2 k −
(

εk ± ω0

2t

)2

+ 2 sin k

√
1 −

(
εk ± ω0

2t

)2

(A30)

at q = q−. In the absence of vertex corrections, i.e., setting Fk,k+q = 1, the square-root term cancels from the sum, leading to

1

τ
qp
k

= 8g2
SSH

{
nb + f (εk + ω0)√
4J2 − (εk + ω0)2

[
2 − ε2

k

4J2
− (εk + ω0)2

4J2

]
+ nb + 1 − f (εk − ω0)√

4t2 − (εk − ω0)2

[
2 − ε2

k

4J2
− (εk − ω0)2

4J2

]}
. (A31)

Including the geometrical vertex Fk,k+q = 1 − vkvk+q/v
2
k restores the square-root terms in Eqs. (A29) and (A30). After some

elementary algebra the transport scattering time is then obtained as

1

τk
= 8g2

SSH

{
nb + f (εk + ω0)√
4J2 − (εk + ω0)2

[
4 − ε2

k

4J2
− 3

(εk + ω0)2

4J2

]
+ nb + 1 − f (εk − ω0)√

4t2 − (εk − ω0)2

[
4 − ε2

k

4J2
− 3

(εk − ω0)2

4J2

]}
. (A32)

The calculation of the diffusion constant D and of the mobility μ now proceed as in the classical case. The energy integrals
〈v2

k τk〉 cannot be cast in closed analytical form and must be performed numerically.
We report for completeness the expressions obtained for uncorrelated disorder, i.e.,

1

τ
qp
k

= 4g2
δ

{
nb + f (εk + ω0)√
4J2 − (εk + ω0)2

[
1 + εk (εk + ω0)

4J2

]
+ nb + 1 − f (εk − ω0)√

4t2 − (εk − ω0)2

[
1 + εk (εk − ω0)

4J2

]}
, (A33)

1

τk
= 4g2

δ

{
nb + f (εk + ω0)√
4J2 − (εk + ω0)2

[
2 − ω0(εk + ω0)

4J2

]
+ nb + 1 − f (εk − ω0)√

4t2 − (εk − ω0)2

[
2 + ω0(εk − ω0)

4J2

]}
, (A34)

and for diagonal disorder:

1

τk
= 1

τ
qp
k

= 2g2
H

{
nb + f (εk + ω0)√
4J2 − (εk + ω0)2

+ nb + 1 − f (εk − ω0)√
4t2 − (εk − ω0)2

}
. (A35)

Figure 5 shows the comparison of the quasistatic re-
sult Eq. (A12) (orange) with the full quantum expression
Eq. (A34) (blue), in the case of uncorrelated bond disorder
(top panel). The inclusion of quantum phonons has two
effects: the first is that the amount of intermolecular fluc-
tuations increases as compared to the classical value, due
to the fact that 1 + 2nb > 2T/ω0, with the classical limit
only being attained asymptotically for T � ω0. In particular,
intermolecular fluctuations do not vanish at zero temperature
as predicted by the classical formula but rather saturate to
(�J/J )2 = λδω0/J . This effect tends to increase the scatter-
ing rate, and hence to decrease the mobility with respect to
the classical value. The second effect is that, due to energy
conservation, scattering by phonons is suppressed within a
shell of ±ω0 around εk , which leads instead to an increase in
mobility. As shown in Fig. 5(a), the latter always dominates
and the mobility with quantum phonons is larger than what
is predicted in the quasistatic limit. The correction is around
2% at T = 0.25J = 5ω0, validating the use of the quasistatic

expression when investigating room temperature mobilities.
The discrepancy between the quantum and quasistatic results,
however, grows rapidly upon reducing the temperature (it is
about a factor of 2 already at T = ω0), so that one should
use the full quantum expression when addressing the low-
temperature properties. The apparent power-law exponent γ

also rapidly increases upon reducing the temperature. The
bottom panel in Fig. 5 shows an analogous comparison in
the case of correlated bond disorder [Eq. (A22) (orange),
Eq. (A32) (blue)], showing a qualitatively similar behavior.
The correction in this case is, respectively, 7% at T = 5ω0

and 60% at T = ω0.
The results reported in Fig. 5 also indicate that the effect of

the geometrical vertex can be slightly modified by the inclu-
sion of phonon quantum fluctuations. This is especially true
in the case of correlated disorder, where the exact reduction
of a factor 2 in the mobility in the quasistatic phonon limit [cf.
Eqs. (A22) and (A23)], is increased in the quantum phonon
case as soon as T � ω0, reaching a factor 3 when T � ω0. For
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FIG. 5. Quantum phonon effects, brought by restoring a finite
ω0/J = 0.05, illustrated in the case of uncorrelated bond disorder
(top panel), with the same parameters as in Fig. 4, and for correlated
bond disorder (bottom panel). In this case, for comparison with the
results of Ref. [29] we have chosen λSSH = 0.17, corresponding to
�J/J = 0.41 at T/J = 0.25 in the quasistatic case.

uncorrelated disorder, vertex corrections become negligible at
low temperature both in the quasistatic and in the quantum
phonon case.

6. Errata on previously reported results

Equation (A25) for correlated bond disorder correctly ap-
pears in Refs. [16,31]. In both cases, however, there is a
misprint in the low-temperature expansion, which appears
with the numerical prefactor 1/8 instead of 1/16, which
actually corresponds to the result calculated in the absence
of the geometrical vertex Fk,k+q (this result was used in the
figures of these papers to provide a direct comparison with
the results of the Kubo bubble approximation, which does not
contain vertex corrections). An analogous overestimate of the
mobility is reported in Fig. 1(d) of Ref. [29]. The correct band
theory result is the one reported in Fig. 1(a) above.

Similarly, the Boltzmann result reported as a dashed line in
Fig. 3(b) of Ref. [17] for uncorrelated bond disorder was also
overestimated by a factor of 2. The correct result therefore
moves closer to the transient localization value [see also
Fig. 1(b) of the present work], although the significant dis-
crepancies pointed out in that work remain. The temperature
exponent shown as a dashed line in Fig. 3(a) of Ref. [17] is
instead correct.

APPENDIX B: LOCALIZATION CORRECTIONS AND
CROSSOVER TO THE TRANSIENT LOCALIZATION

REGIME

1. Optical conductivity

To evaluate the optical conductivity we consider the Kubo
formula

σ (ω) = ReC−(ω)

ω
, (B1)

where C−(ω) is the current-commutator correlation function
(we use units in which e = h̄ = 1 and a unit lattice spacing).
The detailed balance condition relates C−(ω) to the anticom-
mutator correlation function C(ω)

ReC−(ω) = tanh(βω/2)ReC(ω). (B2)

Combining Eqs. (B1) and (B2) yields

σ (ω) = 1

ω
tanh(βω/2)ReC(ω). (B3)

From Eq. (2) of the main text we obtain

C(ω) = FT {CSC(t ) + [C0(t ) − CSC(t )]e−pt }, (B4)

where FT indicates the Fourier transform and p = τ−1
d is the

inverse of a velocity decorrelation time (see text and Appendix
C below). Substituting this expression in the exact relations
Eqs. (B1) and (B2) yields, for the real part of the optical
conductivity:

σ (ω) = σSC(ω) + σ0(ω, p) − σSC(ω, p), (B5)

where

σ0(ω, p) = 1

ω
tanh(βω/2)ReFT [C0(t )e−pt ], (B6)

σSC(ω, p) = 1

ω
tanh(βω/2)ReFT [CSC(t )e−pt ], (B7)

and the semiclassical term in Eq. (B5) is given by Eq. (A6),
i.e.,

σSC(ω) = σSC(0)

1 + (ωτ )2
(B8)

where σSC(0) and τ are, respectively, the DC conductivity
and the relaxation time obtained within the semiclassical
approximation [42] and evaluated in Appendix A.

The term in Eq. (B7) can be calculated via the the Lehman
representation [Ref. [23], Eq. (A12)] as

σSC(ω, p) = 1

πω
tanh(βω/2)

∫ ∞

0
dν

σSC(ν)ν

tanh(βν/2)

×
[

p

(ω + ν)2 + p2
+ p

(ω − ν)2 + p2

]
. (B9)

Direct inspection of Eq. (B9) shows that limp→0 σSC(ω, p) =
σSC(ω), so that Eq. (B5) recovers the optical conductivity
of the statically disordered Hamiltonian when p → 0. In the
opposite limit, p → ∞, the contributions from Eqs. (B6)
and (B7) vanish as can be verified explicitly from the form
Eq. (B9). It is worth noting that at any finite p, σSC(ω, p) is
not a simple Lorentzian convolution of σSC(ω).

013001-11



S. FRATINI AND S. CIUCHI PHYSICAL REVIEW RESEARCH 2, 013001 (2020)

2. Mobility

The quantum corrections to the mobility are explicitly
derived in the main text. Here we show how these can be alter-
natively obtained as the ω → 0 limit of the AC conductivity.
Using the relation [23]

C(p) =
∫ ∞

0

dω

π

2pωσ (ω)

(p2 + ω2) tanh(βω/2)
, (B10)

we obtain

μ = μband + β

2
[C0(p) − CSC(p)], (B11)

which is Eq. (5) in the main text.
For practical calculations, we recognize that the second

term in Eq. (B11) is the mobility μTL obtained from tran-
sient localization theory, which can be calculated by standard
methods [17,27]. To evaluate the remaining terms we perform
explicitly the integral in Eq. (B9) and take the limit ω → 0,
which yields the final expression

μ = μTL + μband

{[
1 − β

2τ

cot(β/2τ )

1 + pτ

]

+
pβ
2π

1 − (pτ )2

[
2h

(
pβ

2π

)
+

(
1 + 1

pτ

)
h

(
β

2πτ

)

+
(

1 − 1

pτ

)
h

( −β

2πτ

)]}
, (B12)

where h(z) = ∫ 1
0 dx(1 − xz )/(1 − x) denotes the integral rep-

resentation of the zth harmonic number. A similar expression
can be obtained for the full frequency-dependent conductivity.

In the high temperature limit, βp � 1, Eq. (B12) expres-
sion simplifies to

μ = μTL + pτ

1 + pτ
μband. (B13)

3. Crossover condition

According to Eq. (B5), the second derivative of the optical
conductivity at ω = 0 consists of three parts. The semiclassi-
cal terms are directly evaluated from the explicit expression
Eq. (B8):

d2σSC(ω)

dω2

∣∣∣∣
ω=0

= −2σSC(0)τ 2, (B14)

∂2σSC(ω, p)

∂ω2

∣∣∣∣
ω=0

= −2
∫ ∞

0

dν

π

νσSC(ν)φ(p, ν)

tanh(βν/2)
, (B15)

with

φ(p, ν) = β

2

p

p2 + ν2

[
−β

6
+ 2(3ν2 − p2)

(p2 + ν2)2

]
. (B16)

The transient localization term is calculated from the exact
eigenvectors (|n〉) and eigenvalues (En) of the statically disor-
dered Hamiltonian as

∂2σ0(ω, p)

∂ω2

∣∣∣∣
ω=0

= 2

Z

∑
n,m

e−βEn |〈n|J|m〉|2φ(p, ωnm), (B17)

where we have defined ωnm = En − Em. The crossover from
band transport to transient localization is found when the

Δ
J
/J

FIG. 6. The crossover points obtained from the condition
d2σ/dω2 = 0, as a function of the band structure parameter θ

defined in the main text, for T = 0.25J and 1/τd = 0.05J . Results
are obtained for four different system sizes, averaging over 50
configurations of disorder.

sum of the three terms appearing in Eqs. (B14), (B15), and
(B17) vanishes. Figure 6 illustrates the crossover line obtained
for p = 0.05 (τd = 20h̄/J) using four different system sizes,
showing that finite-size effects are well controlled. The results
reported in Fig. 3 of the main text correspond to the largest
clusters studied, consisting of 32 × 32 sites.

Similar to Eq. (B13), a compact analytical expression for
the term appearing in Eq. (B15) can be obtained in the large
temperature limit βp � 1, which corresponds to replacing
Eq (B5) with the simpler form

σ (ω) = σSC(ω) + σ0(ω + ip) − σSC(ω + ip), (B18)

with σ0(ω) the optical conductivity of the the random static
Hamiltonian. Taking the second derivative yields

d2σ (ω)

dω2

∣∣∣∣
ω=0

= ∂2σ0(ω, p)

∂ω2

∣∣∣∣
ω=0

+ 2σSC(0)τ 2 1 − (1 + pτ )3

(1 + pτ )3
.

(B19)

This approximate expression gives results comparable to the
original Eq. (B5) in all the cases studied in the main text.

APPENDIX C: THOULESS ARGUMENT AND
IDENTIFICATION OF THE PARAMETER τd

The effects of decorrelation due to dynamic degrees of
freedom in disordered systems have been studied within the
frame of the scaling theory of localization in the past [13].
The typical situation addressed in these works corresponds
to disordered systems in which a (small) source of inelastic
scattering is added, e.g., due to interaction of charge carriers
with phonons. Here we show how the Thouless argument
[24], which was devised to deal with this situation, can be
generalized to the case of purely dynamic disorder (i.e., where
the lattice vibrations act both as the source of disorder and
of decorrelation), provided that a correct identification of the
decorrelation time is made.
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According to the Thouless argument, in a disordered sys-
tem in the presence of inelastic scattering of phononic or
electronic origin, there exists a finite length scale LTh beyond
which diffusive motion can take place. The Thouless length is
related to the inelastic scattering time τin via L2

Th = DSCτin,
i.e., it can be interpreted as the diffusion length on the
inelastic scattering timescale, which acts as a decorrelation
time. According to the scaling theory of localization in two
dimensions, this corresponds to a finite DC conductivity [13]

σ2D(Lth) = σSC + δσDC(Lth) (C1)

where the two-dimensional correction to the conductivity due
to weak localization is

δσDC(Lth) = e2

2π2h̄
log

2

L2
Th

, (C2)

with  a microscopic length enforcing a lower cutoff in the
scaling theory. The presence of a finite length (L2

Th) in the
scaling term Eq. (C1) implies that the DC conductivity is
nonvanishing, at variance with the case of a purely static
disorder. We can interpret this result in terms of an infrared
cutoff ω∗ in the quantum correction of the AC conductivity,
by imposing

δσDC(Lth) = δσAC(ω∗). (C3)

To determine the corresponding ω∗, we make use of the
scaling theory expression for the AC conductivity [13]

δσAC(ω) = σSC

kF 
log |ωτ |. (C4)

Equating the above result with Eq. (C2) yields

ω∗ = 2

L2
Thτ

. (C5)

If τin � τ , then the microscopic length  can be identified
with the semiclassical diffusion length, 2 	 DSCτ , and con-
sequently ω∗ = 1/τin.

Equation (B18) allows us to directly compare our results
with that coming from the previous argument. Let us now con-
sider Eq. (B18). In the ω = 0 limit, the quantum corrections
to the conductivity are

δσ = Reσ0(ip) − ReσSC(ip). (C6)

Continuing Eq. (C4) to the complex plane and substituting
into Eq. (C6) yields

δσ = σSC

[
1

kF 
log(pτ ) + pτ

pτ − 1

]
. (C7)

Comparing Eq. (C7) in the pτ � 1 limit with Eq. (C3) we get
p = ω∗ = 1/τin. Since p = 1/τd , we can therefore identify
the inelastic time in the Thouless argument with the decor-
relation time introduced in the main text.

We note that in the standard situation where preexist-
ing localization effects are decorrelated by the inclusion of
phonons, the decorrelation time is expected to diverge when
the electron-phonon coupling strength vanishes. In the case
considered in this work, instead, where the disorder is itself
of dynamical origin, the decorrelation time diverges when the
disorder becomes static, i.e., when the phonon frequency ω0

vanishes. It is then natural to assume [25,26] p ∝ ω0. Beyond
the analytical argument given here, the comparison with the
exact QMC results shown in Fig. 1(a) for the correlated bond
disorder model, and with the FTLM results of Fig. 1(b) for
the Holstein model confirms the proportionality between p
and ω0, and indicates that the choice p 	 2.2ω0 provides
the most accurate quantitative results. This identification is
also compatible with the values in the range p = 2–2.9ω0

inferred from best fits of the Ehrenfest dynamics of Ref. [15],
performed at various values of λ and ω0 in the strong disorder
regime.

APPENDIX D: DETAILS OF NUMERICAL METHODS

For the practical calculation of the mobility, of the instan-
taneous diffusivity and of the optical conductivity, we use
the decomposition of the correlator given in Eq. (6). The
mobility, in particular, can be evaluated using the explicit
form Eq. (B12), which is based on the single scattering time
approximation Eq. (A5) as described in Appendix A 3.

To evaluate the remaining TL part μTL, one needs to
solve the model Eq. (7) in the limit of static disorder, where
the intermolecular transfer integrals form a statistical ensem-
ble of gaussianly distributed variables with variances �J =
αδ

√
kBT/K . This is done numerically, using two different

methods as documented in previous works.
(i) for the study of long time/long distance dynamics,

needed in Figs. 1(c) and 1(d), we implement the direct solu-
tion of the Schrödinger equation in the time domain using the
time diffusion method of Refs. [17,43]. This method allows
to reach system sizes of 400 × 400 molecular sites, and times
t ∼ 2000h̄/J , at modest computational cost.

(ii) for all other cases, i.e., for the calculation of the quan-
tum corrections to the mobility and for the determination of
the crossover from band transport to transient localization, we
use the exact diagonalization method described in Ref. [27].
The maximum system size studied here, of 32 × 32 sites, is
sufficient to reach convergence on the quantities of interest
(see Fig. 6).
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