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Parabolic Hall effect due to copropagating surface modes
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Real-space separations of countermoving states to opposite surfaces or edges are associated with different
types of Hall effects, such as the quantum, spin, or the anomalous Hall effect. Some systems provide the
possibility to separate a fraction of countermovers in a completely different fashion: surface states propagating
all in the same direction, balanced by countermoving bulk states, realized, e.g., in Weyl metals with intrinsically
or extrinsically broken inversion and time-reversal symmetries. In this Rapid Communication we show that
these copropagating surface modes are associated with a specific Hall effect—a parabolic potential profile in the
direction perpendicular to and in its magnitude linear in the applied field. While in two-dimensional (2D) systems
the parabolic potential profile is directly measurable, in 3D the resulting voltage between the bulk and surface
is measurable in the geometry of a hollow cylinder. Moreover, the parabolic Hall effect leads to characteristic

signatures in the longitudinal conductivity.

DOI: 10.1103/PhysRevResearch.2.012071

Introduction. The condensed-matter realization of Weyl
fermions [1-9] has attracted very much interest in the past
years, due in large part to the realization of chiral Landau
levels, moving parallel or antiparallel to the magnetic field,
depending on the Weyl-fermion chirality [10]. In a crystal,
the two chiralities appear pairwise, separated in momentum
space, which complicates an identification of Weyl-specific
transport phenomena such as the chiral magnetic effect
[11-14].

Tendentiously it is more promising when chiral states are
separated not (or not only) in momentum but in real space—a
situation well known from the separation of countermovers
to opposite surfaces in topological insulators [15]. Here, the
favorable situation associated with the real-space separation
is the clear signature in the form of a quantum (spin) Hall
effect [16,17]. A noteworthy equivalent in the field of Weyl
metals is the anomalous Hall effect (AHE) [18,19]—a voltage
drop in the direction perpendicular to both the direction of the
current flow and the intrinsic magnetization, in the absence
of an external magnetic field [20-22]. The mechanism of the
AHE in Weyl metals can indeed be understood in terms of
chiral surface states—a pairwise connection of Weyl Fermi
surfaces of opposite chirality by two Fermi arcs [23], localized
at opposite surfaces and moving in opposite directions, which
intuitively explains the AHE as the contribution of Fermi arcs
in the case of a potential difference between the surfaces
[8,24] (see Fig. 1). Remarkably, the presence of a finite den-
sity of diffusive bulk states does not obscure the surface-state
driven AHE.
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In this Rapid Communication we focus on a different and
much less explored separation of countermovers in real space:
forward movers homogeneously distributed in the bulk and
back movers localized at the surface. This can be realized in
two-dimensional (2D) systems [25] (edge states have been
called “antichiral” in this case), including transition metal
dichalcogenide monolayers [25], exciton-polariton systems
[26], and in 3D Weyl metals [27,28]. Comparing to the
well-studied case of counterpropagating surface modes, the
question arises whether copropagating surface modes can also
be associated with a characteristic Hall effect.

We show that the answer is positive—copropagating sur-
face modes give rise to a Hall response that is characterized
by a quadratic spatial dependence of the chemical potential

Parabolic Hall Effect
X

-«—

P

co-propagating
surface modes /’1’

FIG. 1. Weyl-metal slab with two Weyl cones separated in en-
ergy and in momentum, connected by Fermi arcs at the surfaces,
illustrated in a mixed momentum/real space. An anomalous Hall
effect—a linear drop of the chemical potential p between the
surfaces—occurs if current is led in the plane of counterpropagating
surface modes. The parabolic Hall effect occurs when current is led
in the plane of copropagating surface modes, leading to a quadratic
spatial dependence of p, measurable in the geometry of a hollow
cylinder between the inner and outer surfaces.
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W, transverse to the applied field. The general mechanism
can be understood as follows. In the bulk, the current density
of chiral charge carriers (the fraction of bulk charges that in
equilibrium compensate the current of copropagating surface
states) changes proportionally to the local chemical potential,
8, o 8. Together with the coexisting diffusive bulk charges
flowing according to the diffusion equation j, o V u, the total
current must be divergence free in the steady state, hence
V2 o« —j, - Vi, where j, is the direction of the chiral bulk
current. According to this relation, if a homogeneous electric
field E = —Vpu is applied along j,, the chemical potential
assumes a quadratic spatial dependence in the direction per-
pendicular to the applied field. Physically, the parabolic Hall
field ensures a charge conserving redistribution of charge,
which is pumped by the applied field at the surface and in
the bulk in opposite directions. This is what we call the
parabolic Hall effect (PHE). Note that this effect is still linear
in the driving field and thus distinct from effects called the
“nonlinear Hall effect” [29].

In the following, we explore the effect in detail. We focus
on a minimal 3D model of a Weyl metal (Fig. 1), which,
while allowing a direct conclusion on the simpler case of 2D,
requires additional calculations to show how the resulting Hall
voltage can be measured in 3D systems.

Model. Measuring energy in units of /iv, where v is the
Fermi velocity, and length in units of the lattice constant, the
Hamiltonian we consider reads

H = —0yi0, + kyo, + m(k;)o, + ecn(k;), €))]

where o; are spin Pauli matrices, m(k;) = (kf — k(z)) /2ky, and
n(k,) = tanh(2k,/kp), featuring two Weyl nodes with chirality
&£ at momentum k, , = 0, k; = %ko, and energy ¢ ~ *e..

We focus on the case of two well-separated Weyl cones
with vanishing corrections to the linear dispersion and a
constant velocity v at the Fermi level e, hence ¢, |ep| < ko.
The explicit form of m(k,) and n(k;) is unimportant as long as
these requirements are fulfilled.

Considering a slab of width W, the quantum numbers are
Kk = (g, ky, k;), where ¢ is the solution of

m(k)

coming from the boundary condition of the slab [30].
Throughout this work we assume W >> 1, in which case
the solution for g can be divided into three groups: (i) the
group of bulk states, given by the quasicontinuous set g =
(n+0.5)n7 /W, n=0,1,2,..., (ii) surface states with the
imaginary (and hence exponentially decaying) solution ¢ =
im(k;) for m(k;) < 0, and (iii) chiral bulk states with the
solution ¢ = 0 for m(k;) > 0. The dispersion reads

e = ecn(k) & \[g? + K+ [m(k, ) 3)

and the equienergy contours are illustrated in Fig. 2. Note that
surface states (ii) and chiral bulk states (iii) merge at m(k,) =
0, building a single closed contour.

Since the x dependence of the wave functions is given
by exp(i g x), the finite penetration depth of surface states is
1/Img. The velocity of a wave packet at state « can thus
be written as v, = Re[(dy, di,, 9. )ex] and the free spectral
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FIG. 2. Fermi-level states for the Weyl metal of width W = 100,
ko = 1, and two different combinations of &7 and ¢.. The gray, blue,
and green states correspond to (i) the normal bulk state, (ii) surface
states, and (iii) chiral bulk states, respectively. Velocity directions are
indicated by arrows.

function in the center-of-mass coordinate x, and the W > 1
limit reads

Ak, x, ) = 21 8(w — &) p(K, X), 4)
1, Img =0,
IO(IC7 X) = {Zwm(k7)e:|:2m(k:)(X$W/2)’ Imq # 0’ (5)

where Img = 0 and Im g # 0 distinguish bulk and surface
states, and & corresponds to surface states at x = =W/2. De-
spite the divergence of penetration at m(k,) = 0, the surface-
state spectral weight averaged over all states at the surface
is strongly localized, the characteristic length scale being
1/ky ~ 1. Since all other length scales will be considered to
be much larger, we approximate the Im g # 0 case in (5) as
ok, x) =~ W§(x F W/2) in the following.

The density of bulk states at the Fermi level of the cone +
and the total bulk density n, = ), n,4 read, respectively,

_ rFe)
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We also define the density of chiral bulk states and the 2D
density of surface states of a single surface,

ler F el ko
nC:t s — S = )
20hW wvh

respectively. In accord with W > 1, we assume that n, is
much larger than n.1 and ng/W.

Parabolic Hall effect. To explore the transport behavior
in linear response, we aim to find a solution for a state-
dependent deviation of the chemical potential from the Fermi
energy u (k) with an arbitrary spatial profile along the x direc-
tion, given the boundary condition of a homogeneous force
field applied in the z direction, d,u(k) = E. Furthermore,
we assume elastic scattering from a weak disorder potential.
To focus on qualitative features, we take the scattering am-
plitudes to be different only between Fermi-level states of
the different types i € [n+, c+, s+, n—, c—, s—]. Using the
quantum Boltzmann formalism [31] and employing the stan-
dard semiclassical approximation scheme (see Supplemental
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Material for details [32]), we obtain

V. (jnj: +jcj:) = :l:yn7n+(ﬂnf - MnJr)

+ VoneS(X) (s — Un), (8a)

SOV - Jor = s Wsn+ (lnt — Msz)
+ Yo (n— — Hsx)], (8b)
Jnt = — D Vit (8c)

where y;; = I';jnn; and T; is the scattering rate, u; =
(u(K)); is the local chemical potential averaged over the
Fermi-level states i, j;, = n;{(v,u(k)); is the nonequilibrium
current-density contribution of the states i, D is the bulk
diffusion constant, and s(x) = Y | §(x £ W/2).

To linear order in E and using translation invariance in the
y direction, the divergence of the chiral-bulk and the surface
particle currents simplify to

EF F & . &
E, V. = —E. 9
ThW Js = 7 ©)
We rewrite Eqgs. (8) by considering the differential Egs. (8a)
away from the boundary [s(x) = 0], together with (8c) and

),
F F &
ThW
This is supplemented with boundary conditions, given by inte-

gration of (8) over an infinitesimal distance at both boundaries
and assuming vanishing current through the boundary,

V'jc:tzj:

E — neD} iy = £ynin— (ne — ptny).  (10)

T (EW/2) = Ty sx — ar (EW/2)],  (11a)
T (EW/2) = Fyg s — a—(£W/2)],  (11b)
ZCE = Yoy [ (EW/2) — s ]
h
+ Vsn— [//Lnf(iW/z) - Ms:l:]~ (1 lC)

Assuming that an external contact would couple to all
bulk states with equal probability it would probe the averaged
chemical potential

[y, = Nyt ont + Ry fn— ’ (12)

Ny,

for which Eqgs. (10) and (11) readily provide the solution

NV €c X7

n,,DkOWE +zE. 13)
Sticking to the interpretation that E is an applied field in
the z direction, the response lies in the first term in (13),
which exhibits the PHE—a quadratic spatial dependence on
the transverse coordinate x and a linear dependence on the
magnitude of the applied field E. The roles of applied and
induced fields are of course interchangeable so that a finite
magnitude of the transverse potential would induce a finite
longitudinal field £ and with that a longitudinal current
(which will be calculated below).

Measuring the Hall voltage. In contrast to the ordinary
Hall effect where the potential varies linearly and is fully
characterized by a voltage between opposite surfaces, the PHE
voltage occurs between one surface and the bulk and varies
quadratically with the distance. While in a 2D system the

Mn = —

- magnetization

current

FIG. 3. Weyl metal in the geometry of a hollow cylinder with a
small inner radius. When current is led along the cylinder and the
magnetization, the PHE voltage is induced between the inner and
the outer surface. Arrows indicate local current flows of chiral bulk
(green), surface (blue), and diffusive bulk (black) particles.

parabolic voltage profile can be measured directly, in a 3D
system a contact inside the sample necessarily introduces an
inner surface so that the actual geometry for such a mea-
surement is (in its most simple realization) that of a hollow
cylinder (see Fig. 3) with an inner radius r; and an outer radius
r,. A straightforward modification of the above formalism
[32] [essentially consisting in the replacements W — r, — r;,
X — 1, 0xj, = (0, 4+ 1/r)j;] leads to the solution

nsv & [ 12)2 ror;
l’lnD k()

In i)E Y2E. (14)

Fo — Ti ri

mn(r) = —
Vo — Fj
We quantify the voltage between the inner and the outer
surfaces via the resulting Hall angle Opyg = [, (7,) —
Un(r)1/(ro — r;))E. In the limit r, >> r; we obtain

ngv &
n,D 2ky

Note that the first factor, nyv/n,D = 0, is the Hall angle of
the AHE [19,24], which is thus related to pyg by the ratio
of energy versus momentum separation of the Weyl nodes
(energy in units of /iv).

Conductivity. We first note that general symmetry consid-
erations [33,34] fix the form of the infinite-system conductiv-
ity tensor of our system to

OpuE = — (15)

o** oy 0
o=|—-0o% o¥ 01, (16)
0 0 o

which follows from rotation symmetry around z and symme-
try with respect to time reversal combined with C, rotation
around an x-y plane axis, corresponding to the Laue group
002’ [33]. As discussed above, the model exhibits AHE in
the x-y plane, with a Hall angle o /o™ = 0, related to the
intrinsic magnetization in the z direction. The PHE is instead
found in the plane parallel to z but it evidently does not
manifest itself in a finite 6™ or ¢°%, which is in agreement
with our result that the potential difference in the x direction
between outer surfaces vanishes.

In the following we show that the PHE still manifests
itself in the infinite-system conductivity—it gives rise to an
anomalous term in 0%, which is size dependent but finite in
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the infinite-system limit. The current contribution of normal
bulk states in response to the field E is obtained from (8c)
as j. = —n,D E. This would be the only contribution to 0%
that one would obtain for an infinite system based on the
Drude formula; we denote it as o = ji/E. The additional
contributions of chiral bulk states and surface states, neglect-
ing corrections of order 1/W, can be written as j5, = *(¢r F
&c) Uns/ThW and j, = §(x F W/2) pgr&./mh, respectively.
Inserting p; as solutions of (10) and (11), the full conductivity
is given by 0% = (ji+ j¢+ ji)/E, where the bar denotes
averaging over x. In terms of o§° we obtain

e 4 61 7
O'éz + 3 PHE( + weé " 802 ( )
2 ,(i /
3 I fcoth 51 )0, LW,
£= WL {1, le > W, /0, 1o
6l 0l

where [,; = v/['y,n, is the relaxation length of surface
states and [. = /D/I",4,—n, is the internode relaxation
length [35]. In the infinite-system limit we obtain o% =
(1 4 4034 /3)0§, demonstrating a remarkable deviation from
the Drude behavior. We expect that the same correction can
be derived based purely on the bulk Hamiltonian, e.g., using
Kubo formalism. We leave this for future work, noting that
similarly exchangeable derivations from an infinite- and a
finite-system perspective have been demonstrated for the AHE
in Refs. [19,24].

The finite-size correction in the first brackets is similar to
the finite-size correction of the AHE in Ref. [24] and is due
to the vanishing dissipation of surface states if their scattering
length becomes large compared to the width W. The second
brackets correspond to a finite-size correction which occurs
if the system is not electron-hole compensated (¢r # 0), in
which case the applied field induces an occupation imbalance
between the Weyl nodes leading to a prolonged relaxation
time. The resistivity decrease saturates even if [, — oo be-
cause internode relaxation also happens indirectly via surface
states.

Discussion. Our calculations have shown that copropagat-
ing surface modes and the related counterpropagating bulk
states (which we here call chiral) give rise to a parabolic
transverse potential profile. We made the realistic assumption
that the density of coexisting normal bulk states (spatially not
separated countermovers) is finite and hence ~W times larger

than the number of surface states, where W is the width in
units of the lattice constant. Nevertheless, the spatial separa-
tion of surface and chiral bulk states by ~W compensates this
so that the PHE survives the limit W — oo. Besides the Hall
voltage, we have identified an anomalous term in the longi-
tudinal conductivity, which can be interpreted as the precursor
of the anomalously large conductance in the quantum regime
of localized normal bulk states [25,36].

We exemplified the parabolic Hall effect on a model for
a Weyl metal with intrinsically broken inversion and time-
reversal symmetries, which shows a homogeneous chiral
charge density in the bulk [37]. Several methods have been
proposed to induce (or change) the chiral charge density in
Weyl metals externally. For example, internode charge pump-
ing via parallel electric and magnetic fields can effectively
shift the energies of the Weyl nodes as

2

et
g — &+ —2—EB, (19)

h?>n

where 7t is the internode relaxation time, which is assumed
to be much larger than intranode relaxation [11]. Another
interesting possibility to induce and control the PHE is the ap-
plication of a strain-induced pseudomagnetic field [28,36,38],
which allows one to change the density of chiral states even
without an electric field and independent of the internode
relaxation.

Furthermore, the derived unconventional dependence of
the conductivity on the system size and the scattering ampli-
tudes as a consequence of the PHE is an interesting starting
and reference point for investigations of the conductivity with
regard to temperature dependence in the case of phonon-
mediated scattering [39], or the scaling behavior with the
system size [40]. It is worth noting that in a time-reversal
invariant Weyl metal, the mechanism of a reduced and size-
dependent resistivity due to a doubling of the AHE [24] also
applies to the PHE. The PHE voltage would vanish but the as-
sociated suppression of the resistivity would remain when the
coupling between the time-reversed states is sufficiently weak.
The suppression would set in when the width W becomes
comparable to the characteristic scattering length quantifying
the coupling of time-reversed states.
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