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Quantum nonlocality without entanglement (Q-NWE) captures nonlocal behavior of multipartite product
states as they may entail global operation for optimal decoding of the classical information encoded in the
state ensemble that allows local preparation. In this Rapid Communication we show that the phenomena of
NWE is not specific to quantum theory only, but rather a class of generalized probabilistic theories that can
exhibit such behavior. In fact, several manifestations of NWE, e.g., asymmetric local discrimination, suboptimal
local discrimination, the notion of separable but locally unimplementable measurements arise generically in
operational theories other than quantum theory. We propose a framework to compare the strength of NWE in
different theories and show that such behavior in quantum theory is limited, suggesting a specific topological
feature of quantum theory, namely, the continuity of state space structure. Our work adds the erstwhile missing
foundational appeal to the study of NWE phenomena along with its information-theoretic relevance.
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Introduction. One of the most counterintuitive aspects of
quantum theory is its nonlocal behavior. Bell, in his seminal
result, showed that entangled states of composite quantum
systems can result in correlations that do not allow any
local realistic explanation [1] (see [2,3] for reviews on Bell
nonlocality). Such correlations, however, are not available in
its most strengthened form [4]. This limited behavior of Bell
nonlocality has later been axiomatized in deriving quantum
theory [5] and subsequently motivates several computational
and information-theoretic primitives that aim to single out the
correlations allowed in the physical world [6–14].

Nonlocal behaviors of quantum theory, however, do not
always necessitate entanglement. In a pioneering work, Ben-
nett et al. recognized that multipartite quantum systems can
exhibit nonlocal properties involving only product states in
a way fundamentally different from Bell nonlocality [15].
In particular, they constructed sets of product states that
cannot be exactly discriminated using local operations and
classical communication (LOCC) while mutual orthogonality
assures their perfect global discrimination. The authors coined
the phrase “quantum nonlocality without entanglement” (Q-
NWE) for this phenomenon as the sets allow local prepara-
tion (with some preshared strategy) but prohibit perfect local
discrimination. In other words, global measurement can be
more efficient than LOCC for extracting classical information
encoded in a locally prepared ensemble of quantum states. At
this point, it should be noted that this particular phenomenon
is different from the other “nonlocality without entanglement”
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aspect of quantum theory as established through the semi-
nal Aharonov-Bohm (AB) effect [16]. The AB effect shows
that, while electromagnetic scalar and vector potentials are
mere calculational aids in classical mechanics, in quantum
mechanics they are an essential part of the formalism: a
charged quantum particle can respond to electromagnetic
potentials without ever passing through an electromagnetic
field. The AB effect has a nonlocal aspect as it underlines the
necessity of describing quantum systems via gauge-dependent
quantities rather than local forces, which cannot account for
abrupt changes in modular velocity [17]. However, in our
work the term “nonlocality without entanglement” should be
understood in the sense of Bennett et al. [15].

Local indistinguishability has later been identified as a
crucial primitive for a number of distributed quantum pro-
tocols, namely, quantum data hiding [18–20] and quantum
secret sharing [21–23]; and it underlies the nonzero gap be-
tween single-shot and multishot classical capacities of noisy
quantum channels [24]. On the foundational part, the recent
Pusey-Barrett-Rudolph theorem uses such a nonlocal feature
of nonorthogonal product states to establish a ψ-ontic nature
of quantum wave function [25].

In the present work, we ask the question, what quantum
feature is indeed captured in quantum nonlocality without
entanglement? More particularly we look for whether this
phenomenon is specific to quantum theory or is it possible to
devise generalized probabilistic models other than quantum
mechanics that also manifest similar behavior. Quite interest-
ingly, we show that the nonlocality without entanglement phe-
nomenon is not specific to quantum theory; it is indeed possi-
ble in a broader class of generalized probabilistic theories. Re-
call that indistinguishability of pure states in quantum theory
can be thought of as an artifact of Hilbert space structure as
it entails nonorthogonality among the states; and the impossi-
bility of perfect local discrimination of an orthogonal product
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basis, there, results in a separable measurement that cannot
be implemented locally. The generalized probability theory
(GPT) framework admits a broader mathematical setup that
includes quantum and classical theory as special examples.
It can incorporate the notion of indistinguishable pure states
without invoking the much constrained Hilbert space structure
of quantum mechanics [26]. Here we show that this general
framework can also exhibit a nonzero gap in optimal success
probabilities of product states discrimination under local and
global protocols, i.e., it evinces the NWE phenomenon. In
fact, we find that several aspects of NWE, as observed in
quantum theory, are indeed feasible in this generalized frame-
work. For instance, it is possible to have a set of bipartite
product states that allows perfect local discrimination when
one of the parties starts the protocol, whereas the protocol
fails for the other party, a fact already known in quantum
theory [27,28]. In the GPT framework, we then constructed
sets of product states that cannot be perfectly discriminated by
any local protocol, whereas a global measurement serves the
purpose exactly. Furthermore, all the effects constituting the
perfect discrimination measurement are product effects en-
suring the existence of separable but locally unimplementable
measurement in the GPT framework. This mimics the NWE
phenomena as established in the seminal work of Bennett et al.
[15]. We propose a methodology to compare the strength of
NWE in different theories and subsequently show that such
behavior in quantum theory is limited in nature. Importantly, it
turns out that this limited behavior of NWE in quantum theory
is deeply linked with one of its topological features. More
particularly the limited NWE is caused due to the continuity
of state space structure in quantum theory which assures
the existence of a continuous reversible transformation on a
system between any two pure states [29]. Our present work
thus adds a deep foundational appeal to the study of NWE
phenomena. In the following we start with a brief discussion
on the GPT framework.

Generalized probabilistic theory. This mathematical frame-
work is broad enough to describe all possible probabilistic
theories that use the notion of states to yield the outcome
probabilities of measurements (see the Supplemental Material
[30], and Refs. [29,31–36] for details of this framework).
In a GPT, a system Sys ≡ (�, E ) is associated with a set
of states � and a set of effects E . Typically, � is consid-
ered to be a compact convex set embedded in the positive
convex cone V+ of some real vector space V while E is
embedded in the cone V ∗

+ which is dual to the state cone
V+. An effect e ∈ E corresponds to a linear functional on
� that maps each state ω ∈ � onto a probability p(e|ω),
representing successful filter of the effect e on the state ω.
A collection of effects {ei}i forms a measurement whenever∑

i ei = u, with u being the unit effect such that p(u|ω) =
1, ∀ω ∈ �. A preparation or state ω thus specifies outcome
probabilities for all measurements that can be performed on it.
Given two systems Sys(A) ≡ (�A, EA) and Sys(B) ≡ (�B, EB)
the theory also delineates their composition. The composite
system Sys(AB) ≡ (�AB, EAB) satisfies some natural condi-
tions, such as no-signaling and local tomography [29,37],
that narrow down the possibilities of such compositions and
assure that �AB is embedded in the positive cone of V A ⊗ V B

[38–40].

Hilbert space description of quantum theory lies within this
framework. The state of the system is represented by a density
operator ρ ∈ D(H) [41] while effects correspond to positive
semidefinite operators on H, where H is the Hilbert space
associated with the system. The outcome probabilities follow
the Born (trace) rule. The Hilbert space of a composite system
consisting of the subsystems Ai’s is given by

⊗
i HAi , where

HAi is the Hilbert space of the ith subsystems.
Here we recall another class of GPTs, namely, polygo-

nal models P (n) ≡ [�(n), E (n)] [42]. The state spaces �(n)
for elementary systems are regular polygons with n ver-
tices. The states and effects are represented by vectors in
R3 and p(e|ω) is given by usual Euclidean inner product.
For a fixed n, �(n) is the convex hull of n pure states
{ωi}n−1

i=0 with ωi := [rn cos(2π i/n), rn sin(2π i/n), 1]T ∈ R3;
T denotes transpose and rn := √

sec(π/n). The unit effect
is given by u := (0, 0, 1)T . The set E (n) of all possible
measurement effects consists of a convex hull of zero effect,
unit effect, and the extremal effects {ei, ēi}n−1

i=0 , where ei :=
1
2 {rn cos[(2i + 1)π/n], rn sin[(2i + 1)π/n], 1}T for even n
and ei := 1

1+rn
2 [rn cos(2π i/n), rn sin(2π i/n), 1]T for odd n

and ē := u − e. This class of models has attracted consider-
able interest in the recent past [43–46].

A composite system allows the possibility of a state
ωAB ∈ �AB that cannot be prepared as a statistical mixture
of some product states, i.e., ωAB �= ∑

i piω
i
A ⊗ ωi

B with {pi}i

being a probability distribution. Such states are called entan-
gled states. Entangled effects are defined similarly. When-
ever such entangled states and/or entangled effects are in-
voked in a GPT, they must satisfy the basic self-consistency
condition—any valid composition of systems, states, ef-
fects, and their transformations should produce non-negative
conditional probabilities. However, mathematically several
self-consistent compositions of the elementary system are
possible while considering a multipartite system. For instance,
bipartite composition of square-bit model P (4) allows four
such nontrivial compositions: (i) Popescu-Rohrlich model, (ii)
hypersignaling (HS) model, (iii) hybrid model, and (iv) frozen
model [47]. Even in quantum mechanics, different, in fact
infinite, self-consistent compositions are possible [38–40,48].
Among these only the quantum composite state space D(H⊗n)
possesses the property of self-duality [49], which in the GPT
framework has recently been derived from a computational
primitive [50]. With this prelude we now move to the main
part of this work.

Nonlocality without entanglement. This particular phe-
nomenon is related to the multipartite state discrimination
problem under local protocols. In the GPT framework the task
can be defined as follows. Suppose an n-partite state chosen
randomly from an ensemble {pi, ω

i
A1···An

}k
i=1 is distributed

among n number of spatially separated parties who know the
ensemble but not the exact state and aim to identify it given
one copy of the system. However, there are severe restrictions
on their action—they can only perform operations on their
respective parts of the composite system and can classically
communicate with each other. In general, the ensemble can
consist of entangled states. But while studying the NWE
phenomena we will consider ensembles of product states only.
Before proceeding further, let us discuss a bit more about
operations which are locally implementable or otherwise. In
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FIG. 1. Polygonal models P (4) (left) and P (5) (right). Normal-
ized state plane (at z = 1) is depicted. Pentagon model is self-dual,
whereas squit is not. In both models ωi’s represent pure states. In
the squit model there are only two extremal measurements, Mi ≡
{ei, ei+1|ei + ei+1 = u} with i ∈ {0, 1}, whereas the other has five ex-
tremal measurements, Mi ≡ {ei, ēi|ei + ēi = u} with i ∈ {0, . . . , 4}.
In both models ei’s are ray extremal effects, whereas ēi’s are extremal
effects of E (5) but not ray extremal.

the following we define separable measurements in the GPT
framework.

Definition 1. Consider an n-partite system Ssy

(A1 · · · An) ≡ (ΩA1···An , EA1···An ). A measurement M ≡
{ei

A1···An
| ei

A1···An
∈ EA1···An∀i and

∑
i ei

A1···An
=uA1···An} is called

separable if ei
A1···An

= ei
A1

⊗ · · · ⊗ ei
An

for all i, where
ei

X ∈ EX with Ssy(X ) ≡ (�, EX ) being the subsystems for
X ∈ {A1, . . . , An}.

Quite surprisingly, all separable quantum measurements
are not locally implementable, i.e., cannot be realized by
LOCC [15]. Generally a LOCC protocol consists of multi-
round steps that make its mathematical characterization hard
in quantum theory [51]. During such a protocol when some
party performs a measurement on her/his subsystem and
obtains some outcome, then naturally the question arises how
the given state gets updated. As noted in Ref. [52], any valid
postmeasurement update rule in a GPT must satisfy some
basic consistency requirements imposed through Bayesian
reasoning. While the von Neumann–Lüders rule in quantum
theory is a consistent update rule, there is no natural way
in an arbitrary GPT to come up with such a rule. Despite
this we now show that several features of the local state
discrimination problem, as observed in quantum theory, have
similar manifestations in GPT.

We start with the example of asymmetric local discrimina-
tion. For composite quantum systems there exist orthogonal
product states that can be perfectly discriminated locally if
and only if one of the parties starts the protocol [27,28]. For
instance, the set {|00〉AB , |01〉AB , |1+〉AB , |1−〉AB} ⊂ C2

A ⊗
C2

B is perfectly discriminable when Alice starts the protocol,
but not the other way around. Similar is possible in other
generalized probabilistic models.

Lemma 1. Consider the four states, $(4) := {ω0 ⊗
ω0, ω0 ⊗ ω3, ω1 ⊗ ω0, ω2 ⊗ ω1} of the composite system
P (4)⊗2, where all ωi ∈ �(4) (see Fig. 1). This set can be
perfectly discriminated locally if and only if Alice starts the
protocol (proof provided in [30]).

As already mentioned, for P (4)⊗2 four different self-
consistent nontrivial compositions are possible along with the

trivial minimal composition P (4)⊗2
min ≡ [�(4)⊗2

min, E (4)⊗2
min],

where both the state space �(4)⊗2
min and the effect space

E (4)⊗4
min contain only product states and product effects,

respectively. Among these, the minimal composition and the
HS composition [47] are Bell local models as they contain no
entangled state. However, Lemma 1 holds true in all of these
five models. We now consider a more exotic phenomenon of
NWE. In their classic paper [15], Bennett et al. provided an
example of orthogonal product bases for (C3)⊗2 and (C2)⊗3

Hilbert spaces that cannot be perfectly discriminated under
LOCC operations. However, global separable measurements
perfectly discriminate the states. To obtain a similar
manifestation in GPT we consider the tripartite system
P (5)⊗3. Likewise P (4)⊗2, here also it will be interesting to
find out all possible self-consistent compositions. However,
the minimal composition P (5)⊗3

min ≡ [�(5)⊗3
min, E (5)⊗3

min] will
suffice for our purpose.

Theorem 1. Consider the set of states $(5) ≡ {φ1 :=
ω000, φ2 := ω222, φ3 := ω102, φ4 := ω402, φ5 := ω021, φ6 :=
ω024, φ7 := ω210, φ8 := ω240} ⊂ �(5)⊗3

min, where ωklm :=
ωk ⊗ ωl ⊗ ωm with each ωi ∈ �(5). This set is perfectly
discriminable under global operation, whereas no local
protocol can discriminate them exactly.

Proof. Symmetry of the states in $(5) assures that any
one of the parties (say Alice) can start the local discrimi-
nation protocol. Suppose that Alice performs the extremal
measurement M0 ≡ {e0, ē0} from such five possible choices
{Mi}5

i=0 (see Fig. 1). Since postmeasurement update is not
well defined in polygonal models, a measurement outcome
should either exactly identify the given state or it should
conclusively eliminate some possibilities. Alice’s outcome e0

ensures that the given state is none of {φ2, φ7, φ8}. Similarly
the outcome ē0 excludes {φ1, φ5, φ6}. Having this information,
Bob and/or Charlie (in any possible order) perform suitable
measurements on their respective subsystems. At this step,
one of the outcomes corresponding to the best chosen mea-
surement conclusively eliminates two states. Thus the last
party has to identify the state from the remaining three states,
which is impossible (a flow chart of the protocol is provided in
the Supplemental Material). If Alice measures M1 ≡ {e1, ē1},
her outcome e1 (ē1) eliminates only one state φ4 (φ3) making
the protocol less effective. It is not hard to see that whichever
measurement Alice starts with, no perfect discrimination is
possible.

For perfect discrimination, consider the set of effects
{E1 := e000, E2 := ē000, E3 := e10,⊗ē0, E4 := ē1 ⊗ e0 ⊗ ē0,

E5 = e0 ⊗ ē0 ⊗ e1, E6 := e0 ⊗ ē01, E7 := ē0⊗e10, E8 := ē01

⊗ e0} ⊂ E (5)⊗3
min, where ei jk := ei ⊗ e j ⊗ ek and ēlmn :=

ēl ⊗ ēm ⊗ ēn, with each er, ēs ∈ E (5). They form a
measurement as

∑8
i=1 Ei = u(5)⊗3. Straightforward

calculation also yields p(Ei|φ j ) = δi j ensuring perfect
discrimination of the set $(5). This concludes the proof. �

The state discriminable measurement in Theorem 1 is a
separable measurement (see Definition 1). Since no local pro-
tocol can perfectly identify the states, this particular separable
measurement cannot be implemented locally. Similar con-
struction is also possible in other higher gonal models. Please
see the Supplemental Material for explicit constructions in
hexagonal and heptagonal models. Regarding the squit model,
however, we have the following observation.
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Observation 1. Construction of nonlocal product states as
of Theorem 1 is not possible in P (4)⊗3.

This follows from the fact that an elementary system of
squit does not allow any pair of indistinguishable pure states.
In other words, local indistinguishability among pure states
is necessary for the existence of nonlocal product states of
Theorem 1.

So far we have studied different aspects of NWE in
the broader mathematical framework of GPTs. Naturally the
question arises how to compare the strength of NWE in dif-
ferent GPTs. To do so, first note that the elementary systems
considered in different GPTs must be of the same type. Recall
that the phenomena of NWE fundamentally demonstrates a
difference between local and global operations in extracting
classical information encoded in product states. Thus to be on
a similar footing, different such systems must have the same
“classical information storage capacity,” a notion recently
studied for quantum systems in Ref. [53] and generalized for
GPTs in Ref. [47] by the name “signaling dimension.” The
concept can be understood with the following communication
scenario. Given two finite alphabets X = {x} and Y = {y}
of cardinalities m and n, respectively, let Pm→n

Sys
denote the

convex set of all m-input/n-output conditional probability
distributions generated by transmitting an elementary system
Sys from a sender to a receiver who may have preshared
randomness. In such a scenario signaling dimension is defined
as follows.

Definition 2. (Dall’Arno et al. [47]) The signaling dimen-
sion of a system Sys, denoted by κ (Sys), is defined as the
smallest integer d such that Pm→n

Sys
⊆ Pm→n

Cd
, for all m and n.

Here, Pm→n
Cd

denotes the set of all m-input/n-output con-
ditional probability distributions obtained by means of a d-
dimensional classical noiseless channel and shared random
data. Suppose that S1

ys and S2
ys are elementary systems of

two different theories having identical signaling dimension
and (S i

ys)⊗n is their n-partite self-consistent composition,
with i ∈ {1, 2}. Consider now sets of product states (having
the same cardinality) in both these theories that cannot be
distinguished locally while respective global measurements
can discriminate the states perfectly. The quantity �[i] :=
1 − PL[i] amounts to the gap between global and local suc-
cess probabilities in discriminating the states, where PL[i] is
optimized under all local protocols allowed in the ith theory.
If it turns out that �[1] > �[2], then we can say Theory 1
depicts stronger NWE in comparison to Theory 2. In quantum
theory both for the systems (C3)⊗2 and (C2)⊗3 we have two
different sets of product states with cardinality 8 that exhibit
NWE phenomena [15]. However, the example of (C2)⊗3 is
comparable with that of Theorem 1, since both the elementary
systems have same signaling dimension and both examples
consider tripartite composite systems. What follows next is
the comparison between the strength of NWE in these two
examples.

Theorem 2. �[QT] � 1
8 (4 − √

10) < 1
8 = �[pentagon].

Proof of the theorem is provided in the Supplemental
Material [30]. Here it is worth mentioning that for the pen-
tagon model local success probability is optimized over all
possible local protocols which consists of one-way protocols
only. The corresponding quantum value is also obtained under

one-way LOCC protocol. More general local protocol (con-
sisting of two-way LOCC) may further decrease the value of
�[QT] which in general is difficult to optimize [54]. From
the structure of constructions, arguably it follows that other
polygonal models also have � = 1/8. Furthermore, we note
that instead of the uniform prior distribution of the states
{φi}8

i=1 if one considers a biased prior distribution (a more
feasible situation for the experimental purpose), then also
limited NWE behavior of quantum theory can be established
(see [30]). Importantly, the continuity of the quantum state
space plays the crucial role in the resulting limited NWE
behavior compared to the discrete polygonal models.

One may ask for the GPT analog of the nonlocal product
bases in (C3)⊗2 [15]. We have a negative impression at
this point that such analogy will not be possible in bipartite
composition of the polygonal models. This is due to the fact
that all the polygonal models have signaling dimension 2,
whereas that of the qutrit system is 3. Of course a rigorous
mathematical proof of this intuition will be worth investigat-
ing. Such a result will generalize Theorem 4 of Ref. [28] in
the GPT framework.

Discussion. In this work we study the nonlocality with-
out entanglement phenomena in the broader mathematical
framework of generalized probabilistic theories. We show that
this particular nonclassical behavior in quantum theory is
limited as compared to other GPT models. This, in a sense,
is similar to the fact of limited Bell nonlocality in quantum
theory as observed by Rohrlich and Popescu in their seminal
work [5]. In fact, Rohrlich-Popescu proposed to axiomatize
this limited Bell nonlocal behavior (along with relativistic
causality) to derive quantum theory. Subsequently, several
information and physical principles have been proposed to
explain limited Bell nonlocality in quantum theory [6–14],
and its connection with other quantum features has also been
established [55–61]. In our work, we observe that the limited
nonlocality without entanglement feature in quantum theory
is owing to the continuity of the quantum state space structure
which is presumed in axiomatic derivation of quantum theory
either directly [29], or invoked through other assumptions
such as “reversible transformation” [62] or “purification” [63].
However, the present work shows that the same feature can be
obtained as an emerging fact if we presume the limited NWE
as a fundamental characteristic of the theory. It therefore
welcomes novel information/physical primitive(s) to explain
this limited NWE behavior in quantum theory.

Our work also motivates further research to study other
exotic features of NWE phenomena in the GPT framework.
For instance, the phenomena of NWE in quantum theory was
first anticipated by Peres and Wootters [64]. They conjectured
that LOCC measurements are suboptimal for discrimination
of a specific set of nonorthogonal product states (see also
[65]). More recently, the authors in Ref. [66] revisited the
classic problem of Peres and Wootters and proved that their
conjecture is indeed true. A similar example in the GPT
framework is yet to be obtained. On the other hand, multi-
partite generalization of NWE phenomena have been studied
very recently [67–69]. Similar study in the GPT framework
may provide further insight into the structure of quantum
theory.
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