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Bond percolation thresholds on Archimedean lattices from critical polynomial roots
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We present percolation thresholds calculated numerically with the eigenvalue formulation of the method of
critical polynomials; developed in the last few years, it has already proven to be orders of magnitude more
accurate than traditional techniques. Here, we report the result of large parallel calculations to produce what we
believe may become the reference values of bond percolation thresholds on the Archimedean lattices for years to
come. For example, for the kagome lattice we find pc = 0.524 404 999 167 448 20(1), whereas the best estimate
using standard techniques is pc = 0.524 404 99(2). We further provide strong evidence that there are two classes
of lattices: one for which the first three scaling exponents characterizing the finite-size corrections to pc are
� = 6, 7, 8, and another for which � = 4, 6, 8. We discuss the open questions related to the method, such as the
full scaling law, as well as its potential for determining the critical points of other models.
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Introduction. Percolation is one of the simplest mathe-
matical models with a phase transition [1]. It has served as
a paradigm of such models, with basic properties that also
emerge in a diverse range of systems from superconductivity
[2] to black hole critical collapse [3]. In recent years the two-
dimensional problem, which we focus on here, has proven to
be particularly interesting, with its fascinating mix of solved
and unsolved problems. Given a lattice, such as one of those
shown in Fig. 1, choose each bond to be open with probability
p and closed with probability 1 − p independently of all
others. As p is increased, there is a critical threshold pc which
marks a sharp transition to a regime with an infinite connected
cluster. Despite the problem’s apparent simplicity, the value
of pc is unknown for most lattices, with exact solutions
available only on a restricted class [4–9]. There have been
great advances in the understanding of the continuum limit
using conformal invariance and stochastic Loewner evolution
[10–13], in which the details of the underlying lattice are irrel-
evant, but progress on unsolved lattice-dependent quantities,
such as the critical probabilities of most of the Archimedean
lattices, has been limited to the derivation of rigorous bounds
[14–20] (though these are ever tightening) and numerical
studies [21–23]. For example, the critical probability for bond
percolation on the kagome lattice is known rigorously to
satisfy [20]

0.522 551 < pc < 0.526 490, (1)
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a range with a width of 10−3, and the best estimate using
traditional numerical techniques is pc = 0.524 404 99(2) [21],
an accuracy of 10−8. It is very possible that in order to
gain a complete understanding of subjects such as conformal
invariance and universality, a solution to, or at least a firmer
grasp of, these lattice-specific problems will be necessary. In
this Rapid Communication, we make progress towards this
objective by pushing the precision of pc to the order of 10−18

in the most favorable case.
Critical polynomials. The method of critical polynomials

originated from the observation that in all exactly solved
problems pc is the (unique) root, pc ∈ (0, 1), of a polynomial.
For example, on the triangular lattice [Fig. 1(a)], the bond
percolation threshold is given by [4]

p3
c − 3pc + 1 = 0, (2)

so that pc = 2 sin π/18 ≈ 0.347 296. Similar results are ob-
tained for the hexagonal [Fig. 1(b)] and square [Fig. 1(c)]
lattices. This polynomial can be generalized unambiguously
even to problems for which the exact solution is not known
[24–27]. This is done by first choosing a finite subgraph
B, called the basis, that generates the infinite lattice when
copies are arranged in some periodic way. Next, assuming
the percolation realization is identical on each copy of the
basis, we use the label 2D for the event that there is an open
cluster connecting every copy of B and 0D for the event that
no infinite set of bases can be connected by open clusters.
Denoting the probabilities of these events Zp(2D) and Zp(0D),
the critical polynomial PB(p) is defined by

PB(p) ≡ Zp(2D) − Zp(0D). (3)

This is clearly a polynomial in p as B has a finite number
of edges. For reasons related to universality [27], the root of
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FIG. 1. The 11 Archimedean lattices.

the polynomial in [0,1] provides an estimate of the critical
point that becomes more accurate as the size of B is increased.
For problems with an exact solution, remarkably, the critical
polynomial provides the correct answer for any choice of B—
even the smallest possible—and this convenient property has
been used to find some previously unknown exact solutions
[25,27].

Transfer matrix. The origins, development, and refinement
of the method can be followed in a series of papers writ-
ten over the last several years [24–31]. Although different

methods have been used to compute PB [25,26,32], the transfer
matrix [27,29] has proven to be by far the most efficient.
It is in fact not really necessary to compute the polynomial
explicitly if all one wants is the root, and in Ref. [30] it was
shown by one of us that at this root, the largest eigenvalues
of two transfer matrices, Topen(p) and Tclosed(p), are equal.
These two transfer matrices describe different topological
sectors and build up respectively Zp(2D) and Zp(0D) on a
semi-infinite cylinder of width n lattice spacings (the reader is
referred to Ref. [30] for more details). The strategy is then to
start with some value of p close to pc and continually compute
the largest eigenvalues �open and �closed, adjusting p until

�open = �closed (4)

to within some tolerance. The great advantage of this method
is that it allows bases of size as large as n = 12 to be tractable
on an ordinary desktop computer, with extrapolation used to
find the estimate on the infinite lattice.

Here, we use a parallel implementation of the method,
which is run on supercomputers, to reach n = 16 for bond
percolation on the unsolved Archimedean lattices. These are
the 11 two-dimensional lattices for which all vertices are
equivalent (see Fig. 1). The square, triangular, and hexagonal
lattices have exact solutions, such as Eq. (2), but the remaining
eight are unsolved. Our results for those are shown in Table I,
along with the best estimates using Monte Carlo [22] or
traditional transfer matrix techniques [21].

Iterative scheme. To find the eigenvalues for a given value
of p, we use the power iteration method, which involves
simply multiplying an initial vector repeatedly by the transfer
matrix, until it converges to the eigenvector with the largest
eigenvalue. We demand convergence to 40 decimal places,
which requires the use of an arbitrary precision library [34].
Note that the computations are actually done using v ≡
p/(1 − p), the bond weight in the Fortuin-Kasteleyn repre-
sentation of the corresponding Q = 1 state Potts model [35].
Once we have the values of �open(v) and �closed(v), we use
them to find the next value of v, and so on until the two
eigenvalues are identical within our tolerance of δ ≡ 10−40.
To adjust v, we use Householder’s method of order 2 [36].
That is, if the equation to solve is f (v) = 0, then the mth
iteration is given by

vm+1 = vm + 2

(
1
f

)′
(vm)(

1
f

)′′
(vm)

. (5)

TABLE I. Percolation thresholds for the nine unsolved Archimedean lattices, as compared to their previous numerical determinations. The
letters refer to Fig. 1.

Lattice pc (This work) pc (numerical) Ref.

Kagome (d) 0.524 404 999 167 448 20(1) 0.524 404 99(2) [21]
Four-eight (e) 0.676 803 124 390 011 3(3) 0.676 802 32(63) [22]
Frieze (f) 0.419 640 358 863 69(2) 0.419 641 91(43) [22]
Three-twelve (g) 0.740 420 798 850 811 610(2) 0.740 421 95(80) [22]
Cross (h) 0.693 733 124 922(2) 0.693 733 83(72) [22]
Snub square (i) 0.414 137 856 591 7(1) 0.414 137 43(46) [22]
Snub hexagonal (j) 0.434 328 317 224 0(6) 0.434 328 0(5) [33]
Ruby (k) 0.524 831 461 573(1) 0.524 832 58(53) [22]
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For our purposes, f (v) = �open(v) − �closed(v). To approxi-
mate the derivatives we use the central difference formulas

f ′(v) ≈ g2 − g0

2ε
, (6)

f ′′(v) ≈
(

g2 − g1

ε
− g1 − g0

ε

)
ε−1, (7)

where we set ε = √
δ, and

g0 ≡ f (v − ε), (8)

g1 ≡ f (v), (9)

g2 ≡ f (v + ε). (10)

One typically needs three or four Householder iterations
to get v converged to the target precision δ. We take care to
choose the initial v carefully, using extrapolations of the vc

obtained for smaller n. Indeed, if |v − vc| � 1, each second-
order Householder iteration doubles the number of correct
digits. Arriving at our largest size, n = 16, we are most
often able to pick the initial v correct to about 10−18, so a
single iteration gives sufficient precision for our purposes.
Only in the case of the snub hexagonal lattice [Fig. 1(j)], we
performed two iterations for n = 16 because we found our
initial guess to be insufficiently accurate.

Parallelization. The parallel algorithm is used to compute
�open and �closed at v and v ± ε, by the actual transfer matrix
multiplication. It will be described more fully elsewhere, but
in broad terms the goal is to distribute the components of the
vector across processors in such a way that the need for inter-
processor communication is minimized. Our implementation
was inspired by Jensen’s [37] transfer matrix enumeration of
self-avoiding polygons. In that problem, Jensen identified a
criterion for organizing the vector components that ensured
that any transfer operation performed on data on a particular
processor would not require information from any other. In
our problem, as far as we know, it is not possible to replicate
this exactly, but using a variant of Jensen’s approach we were
able to keep the need for communication to a minimum.

Up to n = 12, calculations can be done on ordinary desktop
computers. Even then, the accuracy achieved by the method is
far better than that of traditional techniques [30]; our calcula-
tions, up to n = 16, should place these quantities permanently
out of their reach. For the n = 16 computations, we used
�103 processors. The time needed to complete a single power
iteration varies with the lattice, but typically takes 3–4 h. The
number of power iterations needed to get convergence of a
single eigenvalue is likewise variable and depends strongly
on the initial vector used. When doing the first Householder
iteration, we start with a vector with only one nonzero com-
ponent. In this case, the number of power iterations needed
is in the 40–60 range. However, for subsequent Householder
iterations, we start with the final vector computed during
the previous iteration and in this way we can reduce the
number of power iterations needed to the 20–30 range as p
approaches p∗.

TABLE II. Bond percolation thresholds for the kagome lattice
computed on semi-infinite cylinders of width n.

n pc

1 0.524 429 717 521 274 793 546 879 681 534 455 071 6205
2 0.524 406 057 896 062 634 245 378 836 666 345 666 7920
3 0.524 405 092 218 718 391 406 491 710 278 995 604 5159
4 0.524 405 013 882 343 450 677 924 933 274 891 201 3263
5 0.524 405 002 666 098 533 997 468 638 043 799 737 1046
6 0.524 405 000 252 138 641 166 065 238 385 312 009 4089
7 0.524 404 999 570 802 604 857 648 689 641 603 340 3853
8 0.524 404 999 338 748 706 184 041 906 677 709 350 6317
9 0.524 404 999 247 980 209 806 701 838 958 679 653 4330
10 0.524 404 999 208 475 451 262 855 277 119 432 089 6813
11 0.524 404 999 189 755 973 511 801 309 010 812 928 2307
12 0.524 404 999 180 248 443 779 969 638 346 824 671 7858
13 0.524 404 999 175 132 845 053 820 303 018 487 609 0453
14 0.524 404 999 172 242 908 087 780 703 763 071 248 1530
15 0.524 404 999 170 540 780 670 080 646 173 449 291 2196
16 0.524 404 999 169 501 410 335 190 170 832 654 998 6109

∞ 0.524 404 999 167 448 20 (1)

Extrapolation. Our extrapolation scheme for the resulting
sequences is based on the empirical scaling form

pc(n) = pc +
∞∑

k=1

Ak

n�k
, (11)

where the amplitudes Ak and exponents �k are dependent
upon the lattice. There is currently little theoretical under-
standing of this scaling, but its form has previously been
well established from fits to data [30,38]. The parameters
Ak and �k must be determined from these fits, and the new
data points added by the present work allow us to compute
these for larger k and thus to improve the accuracy of the
extrapolations. While, given the large number of data points
we have computed across a range of lattices (see Table II
for the kagome thresholds for n � 16), we have confidence
that (11) is indeed the correct scaling behavior, it would
obviously be preferable to have some means of computing the
coefficients and exponents from theory. It is not yet known
how to do this, but in recent work [39] Mertens and Ziff
have shown that the critical polynomial can be reformulated
in terms of the cluster density. Perhaps it will eventually be
possible to relate the scaling theory of the latter [40] to that
of the former. For now, however, we simply use (11) as an
empirical law and we briefly describe below the method used
to calculate the parameters Ak,�k and the the extrapolations
to infinite width.

To begin, we determine �1 from the truncated form
pc(n) = pc + A1n−�1 . To eliminate the unknowns pc and A1,
we form the combination q(n) ≡ p(n)−p(n−1)

p(n−1)−p(n−2) . Assuming the
truncated form, we have

q(n) =
(

1 − 2

n

)�1 n�1 − (n − 1)�1

(n − 1)�1 − (n − 2)�1
,

a nonlinear relation that determines �1(n) from three suc-
cessive data points, pc(n), pc(n − 1), and pc(n − 2). Upon
supposing a reasonable starting value, this determination is
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(a) (b)

FIG. 2. Effective scaling exponents �1(n) and �2(n), for the
kagome lattice, shown against n−1 with their extrapolations.

unique. Figure 2(a) plots �1(n) against n−1 for the kagome
lattice along with a low-order polynomial fit. Trying various
orders of the fit and eliminating the lowest values of n [the
figure shows a fifth-order fit in n−1 to the last seven �1(n)],
we conclude that limn→∞ �1(n) = 6.00(2); cf. Table III. It
appears safe to conjecture that this asymptotic value is �1 = 6
exactly for this lattice.

Next, we set pc(n) = p̃c(n) + Ã1n−6, defining a new se-
ries p̃c(n), obtained from two successive sizes, in which the
leading n−6 scaling term has been eliminated. We then repeat
the above work, using now the truncated form p̃c(n) = pc +
A2n−�2 . The determinations of �2(n) are shown against n−1

in Fig. 2(b), and polynomial fits now lead to �2 = 7.00(5),
from which we conjecture that �2 = 7 exactly.

Table III compiles the scaling exponents computed in this
way for the various lattices. For the first four lattices, we
have data for all n � 16. For the last four, the construction
of their bases B requires n to be even [29], so we have
only eight data points. Obviously this leads to more reliable
determinations in the former cases. Taken jointly, the data of
Table III suggest that there exist two classes of nonsolvable
Archimedean lattices: those (kagome, three-twelve, and snub
hexagonal) for which the first three exponents are 6,7,8, and
the remaining five lattices for which they are 4,6,8. We find
it compelling to conjecture that the complete set of exponents
are all integers �6 for the former class, and all even integers
�4 for the latter one.

Assuming this conjecture, we can extrapolate the pc(n) by
means of the scaling form (11). This is done by identifying
a stable compromise between the number of terms used in
(11) and the number of low-n data points not included in
the fits; see Refs. [30,38] for details. The end result is the
central values and error bars given in Table I. We have checked
that these are not sensitive to reasonable modifications of the
values of �k with k � 4, and hence do not depend on the
complete validity of the conjecture just made.

Discussion. Using a parallel implementation of the eigen-
value approach to critical polynomial roots, �3 × 106 CPU
hours of supercomputer resources, and a comprehensive ex-
trapolation method, we have obtained extremely accurate
values of the bond percolation thresholds (see Table I) on the
Archimedean lattices. In retrospect, the more naive extrapola-
tion method used in Ref. [29] now makes some of the error

TABLE III. Scaling exponents for the Archimedean lattices.
Blank entries cannot be determined with sufficient precision.

Lattice �1 �2 �3

Kagome (d) 6.00(2) 7.00(5) 8.1(2)
Four-eight (e) 4.00(2) 6.0(1)
Frieze (f) 4.00(2) 6.00(5) 8.1(2)
Three-twelve (g) 6.04(2) 7.00(2) 8.0(1)
Cross (h) 4.0(2) 6.0(5)
Snub square (i) 4.000(2) 6.2(4)
Snub hexagonal (j) 5.9(1)
Ruby (k) 4.5(5)

bars cited there stand out as too optimistic. In the same vein,
the leading scaling exponents reported in Ref. [31] can now
be relegated to effective exponents for small n. However, the
pc given in Ref. [30], based on the same scaling exponents as
here, and also those of Ref. [31] are fully confirmed by the
more precise values now obtained. This agreement—as well
as other checks, including leaving out the n = 16 data point
from the present analysis—lends credence to the error bars
given in Table I.

Our analysis for the scaling exponents reveals two different
classes of nonsolvable Archimedean lattices. This distinction
cannot be explained solely from the difference between three-
fold and fourfold rotational symmetries of the lattices [31],
although it certainly is remarkable that all members of the first
class (kagome, three-twelve, snub hexagonal) enjoy threefold
symmetries. The proposed scaling exponents are compatible
with conformal field theory predictions [30], but it remains
unclear how to derive them analytically.

In addition to the interesting open problems related to the
critical polynomial method, it is yet to be determined how
widely applicable it is. The definition (3) is easily generalized
to the Q-state Potts model and gives excellent estimates for
any Q [31,41], even in the imaginary temperature regime
[42]. The eigenvalue method presented here was also adapted
to compute the growth constant of self-avoiding walks and
was able finally to rule out a longstanding conjecture [38].
Generalizations to site percolation, coupled Potts models, or
to nonplanar models are currently under investigation.
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pean Research Council under the Advanced Grant NuQFT.
This work was granted access to the HPC resources of
IDRIS under the allocation 2016-057751 attributed by GENCI
(Grand Equipement National de Calcul Intensif).

[1] S. R. Broadbent and J. M. Hammersley, Proc. Cambridge
Philos. Soc. 53, 629 (1957).

[2] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).

[3] M. W. Choptuik, Phys. Rev. Lett. 70, 9 (1993).
[4] M. F. Sykes and J. W. Essam, J. Math. Phys. 5, 1117 (1964).
[5] J. C. Wierman, J. Phys. A: Math. Gen. 17, 1525 (1984).
[6] C. R. Scullard, Phys. Rev. E 73, 016107 (2006).

012050-4

https://doi.org/10.1017/S0305004100032680
https://doi.org/10.1017/S0305004100032680
https://doi.org/10.1017/S0305004100032680
https://doi.org/10.1017/S0305004100032680
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRevLett.70.9
https://doi.org/10.1103/PhysRevLett.70.9
https://doi.org/10.1103/PhysRevLett.70.9
https://doi.org/10.1103/PhysRevLett.70.9
https://doi.org/10.1063/1.1704215
https://doi.org/10.1063/1.1704215
https://doi.org/10.1063/1.1704215
https://doi.org/10.1063/1.1704215
https://doi.org/10.1088/0305-4470/17/7/020
https://doi.org/10.1088/0305-4470/17/7/020
https://doi.org/10.1088/0305-4470/17/7/020
https://doi.org/10.1088/0305-4470/17/7/020
https://doi.org/10.1103/PhysRevE.73.016107
https://doi.org/10.1103/PhysRevE.73.016107
https://doi.org/10.1103/PhysRevE.73.016107
https://doi.org/10.1103/PhysRevE.73.016107


BOND PERCOLATION THRESHOLDS ON ARCHIMEDEAN … PHYSICAL REVIEW RESEARCH 2, 012050(R) (2020)

[7] R. M. Ziff, Phys. Rev. E 73, 016134 (2006).
[8] R. M. Ziff and C. R. Scullard, J. Phys. A: Math. Gen. 39, 15083

(2006).
[9] B. Bollobás and O. Riordan, in An Irregular Mind, Bolyai

Society Mathematical Studies Vol. 21 (Springer, Berlin, 2010),
pp. 131–217.

[10] J. L. Cardy, J. Phys. A: Math. Gen. 25, L201 (1992).
[11] H. Saleur and B. Duplantier, Phys. Rev. Lett. 58, 2325

(1987).
[12] O. Schramm, Electron. Commun. Probab. 6, 115 (2001).
[13] S. Smirnov, C. R. Acad. Sci., Ser. I: Math. 333, 239 (2001).
[14] W. D. May and J. C. Wierman, Combin. Probab. Comput. 14,

549 (2005).
[15] J. C. Wierman, Combin. Probab. Comput. 12, 95 (2003).
[16] J. C. Wierman, Combin. Probab. Comput. 11, 629 (2002).
[17] J. C. Wierman, G. Yu, and T. Huang, Electron. J. Combin. 22,

P2.52 (2015).
[18] W. D. May and J. C. Wierman, Combin. Probab. Comput. 16,

285 (2007).
[19] O. Riordan and M. Walters, Phys. Rev. E 76, 11110 (2007).
[20] J. C. Wierman, J. of Phys. A: Math. Theor. 50, 295001 (2017).
[21] X. Feng, Y. Deng, and H. W. J. Blöte, Phys. Rev. E 78, 031136

(2008).
[22] R. Parviainen, J. Phys. A: Math. Gen. 40, 9253 (2007).
[23] P. N. Suding and R. M. Ziff, Phys. Rev. E 60, 275 (1999).
[24] C. R. Scullard and R. M. Ziff, Phys. Rev. Lett. 100, 185701

(2008).

[25] C. R. Scullard and R. M. Ziff, J. Stat. Mech. (2010) P03021.
[26] C. R. Scullard, Phys. Rev. E 86, 041131 (2012).
[27] C. R. Scullard and J. L. Jacobsen, J. Phys. A: Math. Theor. 45,

494004 (2012).
[28] J. L. Jacobsen and C. R. Scullard, J. Phys. A: Math. Theor. 45,

494003 (2012).
[29] J. L. Jacobsen, J. Phys. A: Math. Theor. 47, 135001 (2014).
[30] J. L. Jacobsen, J. Phys. A: Math. Theor. 48, 454003 (2015).
[31] C. R. Scullard and J. L. Jacobsen, J. Phys. A: Math. Theor. 49,

125003 (2016).
[32] C. R. Scullard, J. Stat. Mech. (2011) P09022.
[33] R. M. Ziff (private communication).
[34] B. Haible, CLN – Class Library for Numbers, http://www.ginac.

de/CLN/.
[35] C. M. Fortuin and P. W. Kasteleyn, Physica 57, 536 (1972).
[36] A. S. Householder, The Numerical Treatment of a Single Non-

linear Equation (McGraw-Hill, New York, 1970).
[37] I. Jensen, J. Phys. A: Math. Gen. 36, 5731 (2003).
[38] J. L. Jacobsen, C. R. Scullard, and A. J. Guttmann, J. Phys. A:

Math. Theor. 49, 494004 (2016).
[39] S. Mertens and R. M. Ziff, Phys. Rev. E 94, 062152

(2016).
[40] R. M. Ziff, S. R. Finch, and V. S. Adamchik, Phys. Rev. Lett.

79, 3447 (1997).
[41] J. L. Jacobsen and C. R. Scullard, J. Phys. A: Math. Theor. 46,

075001 (2013).
[42] H. Saleur, Nucl. Phys. B 360, 219 (1991).

012050-5

https://doi.org/10.1103/PhysRevE.73.016134
https://doi.org/10.1103/PhysRevE.73.016134
https://doi.org/10.1103/PhysRevE.73.016134
https://doi.org/10.1103/PhysRevE.73.016134
https://doi.org/10.1088/0305-4470/39/49/003
https://doi.org/10.1088/0305-4470/39/49/003
https://doi.org/10.1088/0305-4470/39/49/003
https://doi.org/10.1088/0305-4470/39/49/003
https://doi.org/10.1088/0305-4470/25/4/009
https://doi.org/10.1088/0305-4470/25/4/009
https://doi.org/10.1088/0305-4470/25/4/009
https://doi.org/10.1088/0305-4470/25/4/009
https://doi.org/10.1103/PhysRevLett.58.2325
https://doi.org/10.1103/PhysRevLett.58.2325
https://doi.org/10.1103/PhysRevLett.58.2325
https://doi.org/10.1103/PhysRevLett.58.2325
https://doi.org/10.1214/ECP.v6-1041
https://doi.org/10.1214/ECP.v6-1041
https://doi.org/10.1214/ECP.v6-1041
https://doi.org/10.1214/ECP.v6-1041
https://doi.org/10.1016/S0764-4442(01)01991-7
https://doi.org/10.1016/S0764-4442(01)01991-7
https://doi.org/10.1016/S0764-4442(01)01991-7
https://doi.org/10.1016/S0764-4442(01)01991-7
https://doi.org/10.1017/S0963548305006802
https://doi.org/10.1017/S0963548305006802
https://doi.org/10.1017/S0963548305006802
https://doi.org/10.1017/S0963548305006802
https://doi.org/10.1017/S0963548302005370
https://doi.org/10.1017/S0963548302005370
https://doi.org/10.1017/S0963548302005370
https://doi.org/10.1017/S0963548302005370
https://doi.org/10.1017/S0963548302005345
https://doi.org/10.1017/S0963548302005345
https://doi.org/10.1017/S0963548302005345
https://doi.org/10.1017/S0963548302005345
https://doi.org/10.37236/5117
https://doi.org/10.37236/5117
https://doi.org/10.37236/5117
https://doi.org/10.37236/5117
https://doi.org/10.1017/S0963548306007905
https://doi.org/10.1017/S0963548306007905
https://doi.org/10.1017/S0963548306007905
https://doi.org/10.1017/S0963548306007905
https://doi.org/10.1103/PhysRevE.76.011110
https://doi.org/10.1103/PhysRevE.76.011110
https://doi.org/10.1103/PhysRevE.76.011110
https://doi.org/10.1103/PhysRevE.76.011110
https://doi.org/10.1088/1751-8121/aa76f0
https://doi.org/10.1088/1751-8121/aa76f0
https://doi.org/10.1088/1751-8121/aa76f0
https://doi.org/10.1088/1751-8121/aa76f0
https://doi.org/10.1103/PhysRevE.78.031136
https://doi.org/10.1103/PhysRevE.78.031136
https://doi.org/10.1103/PhysRevE.78.031136
https://doi.org/10.1103/PhysRevE.78.031136
https://doi.org/10.1088/1751-8113/40/31/005
https://doi.org/10.1088/1751-8113/40/31/005
https://doi.org/10.1088/1751-8113/40/31/005
https://doi.org/10.1088/1751-8113/40/31/005
https://doi.org/10.1103/PhysRevE.60.275
https://doi.org/10.1103/PhysRevE.60.275
https://doi.org/10.1103/PhysRevE.60.275
https://doi.org/10.1103/PhysRevE.60.275
https://doi.org/10.1103/PhysRevLett.100.185701
https://doi.org/10.1103/PhysRevLett.100.185701
https://doi.org/10.1103/PhysRevLett.100.185701
https://doi.org/10.1103/PhysRevLett.100.185701
https://doi.org/10.1088/1742-5468/2010/03/P03021
https://doi.org/10.1088/1742-5468/2010/03/P03021
https://doi.org/10.1088/1742-5468/2010/03/P03021
https://doi.org/10.1103/PhysRevE.86.041131
https://doi.org/10.1103/PhysRevE.86.041131
https://doi.org/10.1103/PhysRevE.86.041131
https://doi.org/10.1103/PhysRevE.86.041131
https://doi.org/10.1088/1751-8113/45/49/494004
https://doi.org/10.1088/1751-8113/45/49/494004
https://doi.org/10.1088/1751-8113/45/49/494004
https://doi.org/10.1088/1751-8113/45/49/494004
https://doi.org/10.1088/1751-8113/45/49/494003
https://doi.org/10.1088/1751-8113/45/49/494003
https://doi.org/10.1088/1751-8113/45/49/494003
https://doi.org/10.1088/1751-8113/45/49/494003
https://doi.org/10.1088/1751-8113/47/13/135001
https://doi.org/10.1088/1751-8113/47/13/135001
https://doi.org/10.1088/1751-8113/47/13/135001
https://doi.org/10.1088/1751-8113/47/13/135001
https://doi.org/10.1088/1751-8113/48/45/454003
https://doi.org/10.1088/1751-8113/48/45/454003
https://doi.org/10.1088/1751-8113/48/45/454003
https://doi.org/10.1088/1751-8113/48/45/454003
https://doi.org/10.1088/1751-8113/49/12/125003
https://doi.org/10.1088/1751-8113/49/12/125003
https://doi.org/10.1088/1751-8113/49/12/125003
https://doi.org/10.1088/1751-8113/49/12/125003
https://doi.org/10.1088/1742-5468/2011/09/P09022
https://doi.org/10.1088/1742-5468/2011/09/P09022
https://doi.org/10.1088/1742-5468/2011/09/P09022
http://www.ginac.de/CLN/
https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1088/0305-4470/36/21/304
https://doi.org/10.1088/0305-4470/36/21/304
https://doi.org/10.1088/0305-4470/36/21/304
https://doi.org/10.1088/0305-4470/36/21/304
https://doi.org/10.1088/1751-8113/49/49/494004
https://doi.org/10.1088/1751-8113/49/49/494004
https://doi.org/10.1088/1751-8113/49/49/494004
https://doi.org/10.1088/1751-8113/49/49/494004
https://doi.org/10.1103/PhysRevE.94.062152
https://doi.org/10.1103/PhysRevE.94.062152
https://doi.org/10.1103/PhysRevE.94.062152
https://doi.org/10.1103/PhysRevE.94.062152
https://doi.org/10.1103/PhysRevLett.79.3447
https://doi.org/10.1103/PhysRevLett.79.3447
https://doi.org/10.1103/PhysRevLett.79.3447
https://doi.org/10.1103/PhysRevLett.79.3447
https://doi.org/10.1088/1751-8113/46/7/075001
https://doi.org/10.1088/1751-8113/46/7/075001
https://doi.org/10.1088/1751-8113/46/7/075001
https://doi.org/10.1088/1751-8113/46/7/075001
https://doi.org/10.1016/0550-3213(91)90402-J
https://doi.org/10.1016/0550-3213(91)90402-J
https://doi.org/10.1016/0550-3213(91)90402-J
https://doi.org/10.1016/0550-3213(91)90402-J

