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All tight correlation Bell inequalities have quantum violations
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It is by now well established that there exist nonlocal games for which the best entanglement-assisted
performance is not better than the best classical performance. Here we show in contrast that any two-player
XOR game, for which the corresponding Bell inequality is tight, has a quantum advantage. In geometric terms,
this means that any correlation Bell inequality for which the classical and quantum maximum values coincide,
does not define a facet, i.e., a face of maximum dimension, of the local (Bell) polytope. Indeed, using semidefinite
programming duality, we prove upper bounds on the dimension of these faces, bounding it far away from the
maximum. In the special case of nonlocal computation games, it had been shown before that they are not facet
defining; our result generalizes and improves this. As a by-product of our analysis, we find a similar upper bound
on the dimension of the faces of the convex body of quantum correlation matrices, showing that (except for the
trivial ones expressing the non-negativity of probability) it does not have facets.
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Introduction. In 1964, Bell [1] proved that some predic-
tions of quantum theory regarding the correlations between
distant events cannot be explained by any classical, i.e., local
realistic theory. He derived a simple observable criterion that
any classical theory must obey, and showed that particular
measurements performed by two parties on a maximally en-
tangled state could violate it. What we now call a Bell inequal-
ity was introduced in Ref. [2], as an upper bound on a single
linear function of observable probabilities, i.e., an operational
expectation value. This quantity has been experimentally mea-
sured [3,4] and shown to exceed the classical upper bound,
and thereby elevated Bell’s theorem to one of the deepest
results in science, with a momentous impact on the way we
understand the physical world. Quantum entanglement is re-
sponsible for these observed correlations and it is also the key
ingredient in most of the quantum informational advantage
in computation, communication, and sensing applications.
Nonlocality on its own has also been identified as a valuable
resource in applications such as secure key distribution [5],
certified randomness [6], reduced communication complexity
[7], self-testing [8,9], and computation [10–12].

In order to advance in the fundamental understanding of
the perplexing features of nonlocal correlations and their
technological spin-offs, in recent decades important efforts
have been devoted to their characterization and exploitation
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[13]. Tsirelson [14] computed the maximal violation of the
Clauser-Horne-Shimony-Holt (CHSH) inequality [2] attain-
able by quantum mechanics; later, Popescu and Rohrlich [15]
(see also [16]) showed that although quantum correlations
belong to the set of no-signaling correlations, which are those
not allowing for instantaneous communication, they do not
attain the full strength allowed in principle by the no-signaling
condition. These results reveal astonishing features of the
convex sets of classical (C), quantum (Q), and no-signaling
(NS) correlations, in particular the strict inclusion C ⊂ Q ⊂
NS . However, a lot remains to be understood, both at the
conceptual level and the mathematical level. For instance, the
fact that Q ⊂ NS spurred the search for underlying opera-
tional principles that would single out quantum correlations
among general no-signaling ones [17–19]. An approach that
may assist in identifying such operationally defined prin-
ciples and that may unveil new applications of nonlocality
is based on cooperative games [20], where two (or more)
remote parties cooperate to win a probabilistic game against
a referee. Indeed, an increased winning probability when the
two parties use quantum resources instead of classical ones,
is equivalent to the violation of a Bell inequality. Gill [21,22]
asked the fruitful question whether all tight Bell inequalities
are violated by quantum mechanics. Here, tightness means
that the inequality cannot be expressed as a positive linear
combination of other Bell inequalities, or in geometric terms,
that the Bell inequality defines a facet of the polytope of
classical correlations (see below). Linden et al. [23] (mo-
tivated by [24]) found the first class of two-player games,
called nonlocal computation (NLC), that have no quantum
advantage; the tightness of their Bell inequalities was posed
as an open question in Ref. [23]. Almeida et al. [25] pre-
sented another case, the multiparty guess your neighbor’s
input (GYNI) game, shown to define a tight Bell inequality
without quantum violation. Around the same time, (after
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numerical confirmation of several special cases [25, Appx.
D]), it was understood that NLC games never define facets
of the Bell polytope [26], though this result was never written
up; a proof was eventually published by Ramanathan et al.
[27].

In this Rapid Communication we prove that XOR games
without a quantum advantage never define a facet of the Bell
polytope (thus extending the result for NLC). Moreover, since
XOR games fully characterize the correlation polytope, we
answer Gill’s question in the affirmative for the correlation
polytope: all nontrivial tight correlation Bell inequalities (in
particular those violated by no-signaling) have quantum vio-
lations. The remainder of this Rapid Communication is struc-
tured as follows: (i) we first introduce the general formalism
to describe the set of no-signaling, local classical and quantum
correlations; (ii) we briefly present the XOR games and give
general expressions for the winning probabilities under differ-
ent locality scenarios; (iii) we present our main theorem and
the main ideas of its proof; and (iv) we extend our result to the
quantum set of correlations, and conclude with a discussion
and outlook. In the Supplemental Material (SM) [28] we give
the full proofs of our result, and present a simplified analysis
in the particular case of NLC, reconstructing the argument
alluded to in Ref. [26], and improving [27] by giving a bound
on the dimension of the face.

No-signaling behaviors. Consider a bipartite system where
two parties, Alice and Bob, can perform measurements x ∈
[mA] and y ∈ [mB], respectively, obtaining the respective
outcomes a and b, which are binary. The event of obtain-
ing a and b when the local measurements x and y are
performed, is given according to a conditional probability
p(a, b|x, y). In addition p must satisfy the no-signaling prop-
erty, i.e.,

∑
b p(a, b|x, y) = ∑

b p(a, b|x, y′) ∀a, x, y, y′ and
analogously summing Alice’s outcomes, which in physical
terms excludes that any party signals to another party by their
choice of input.

The set of all probabilities satisfying the above no-
signaling property, NS set, constitutes a polytope of dimen-
sion D = mAmB + mA + mB [29]. In an attempt to explain
the phenomena locally, one may consider the existence
of classical local (hidden) variables λ ∈ �, distributed ac-
cording to a probability law ρ(λ), such that the probabil-
ity of an observed event can be written as p(a, b|x, y) =∫
�

dλρ(λ)p(a|x, λ)p(b|y, λ). The set of such probabilities
forms the so-called Bell or local polytope C and has the same
dimension as the no-signaling polytope [29]. A polytope P
can equivalently be defined as the convex hull of a finite
set of points, P = conv{v j : j = 1, . . . , k}, or as a bounded
intersection of finitely many closed half-spaces, P = {�v :
∀i = 1, . . . , � �ui · �v � wi} [30]. A linear inequality for P
is a �u · �v � w that holds for all �v ∈ P; in geometry, H =
{�v : �u · �v = w} is also called a supporting hyperplane of P .
For a given supporting hyperplane, the set of point �v ∈ P
achieving the equality is called a face of the polytope P ,
F = P ∩ H . In the case of C, its corresponding inequalities
are precisely the Bell inequalities. The faces of maximum
dimension D − 1 are called facets (see Fig. 1); when dealing
with C, the corresponding inequalities are called tight, or
facet, Bell inequalities. Facet inequalities give the minimal
characterization of the polytope in terms of half-spaces in the

FIG. 1. Three-dimensional schematic of a local correlation poly-
tope and the convex body of quantum correlations. Shared bound-
aries correspond to XOR games without quantum advantage. The
green-striped region is a facet of the Bell polytope, while the red line
is a face (not a facet). Theorem 1 excludes the former.

sense that any other inequality that holds for the polytope
can be written as a positive linear combination of the facet
inequalities.

To state and prove our results, we use a convenient
minimal parametrization of the no-signaling polytopes.
For outcomes a, b ∈ {0, 1}, any no-signaling behavior
p(a, b|x, y) is fully characterized by the first moments αx =
〈(−1)a〉x,y = ∑

a,b(−1)a p(a, b|x, y) and βy = 〈(−1)b〉x,y =∑
a,b(−1)b p(a, b|x, y) (which, due to the no-signaling

property, are independent of y and x, respectively); and the
correlators cxy = 〈(−1)a+b〉x,y = ∑

a,b(−1)a+b p(a, b|x, y).
Indeed, from these D = mAmB + mA + mB values we recover
4p(a, b|x, y) = 1 + (−1)aαx + (−1)bβy + (−1)a+bcxy. The
polytope of NS distributions can hence be described by
the tuple (|α〉, |β〉,C) ∈ RD, where |α〉 = ∑

x αx|x〉 ∈ RmA

and |β〉 = ∑
y βy|y〉 ∈ RmB are the local moment vectors,

and C = ∑
x,y cxy|x〉〈y| is the correlation matrix. The local,

or Bell, polytope arises when restricting the strategies to
convex combinations of local deterministic ones [31]. We
use the subscript c to label such extremal classical strategies
|αc〉 ∈ {−1, 1}mA , |βc〉 ∈ {−1, 1}mB , for which we note that
cxy = αxβy, that is, C = |αc〉〈βc|. The Bell polytope is then
given by the convex hull

C = conv {(|αc〉, |βc〉, |αc〉〈βc|)}. (1)

Finally, there are at least two definitions of sets of quan-
tum behaviors that we have to consider: the most general
setting is of a state |ψ〉 in a Hilbert space H, together
with Alice’s and Bob’s observables âx and b̂y, respectively,
with eigenvalues 0 and 1 (i.e., they are projectors), and
such that for all x, y, [âx, b̂y] = 0. Then, p(a, b|x, y) =
〈ψ |âxb̂y|ψ〉, and hence in the above parametrization for NS ,
we have αx = 〈ψ |(−1)âx |ψ〉, βx = 〈ψ |(−1)b̂y |ψ〉, and cxy =
〈ψ |(−1)âx (−1)b̂y |ψ〉. The set of such behaviors is denoted
Qcom, the subscript standing for “commuting” strategies, and
it is known to be a closed convex set contained in NS . The
other, traditionally considered setting is that H = HA ⊗ HB

is a tensor product Hilbert space, and that âx = âA
x ⊗ 1B and

b̂y = 1A ⊗ b̂B
y , with observables âA

x on HA and b̂B
y on HB. The
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FIG. 2. Representation of a XOR game. The goal is that Alice
and Bob output a and b such that a ⊕ b = f (x, y).

corresponding set of behaviors is convex, but recently has
been shown not to be closed [32] for mA, mB � 5 [33], which
is why we define Q⊗ to be its closure. By definition, Q⊗ ⊆
Qcom, and while it is open whether the two sets are equal,
this would be equivalent to Connes’ long-standing embedding
problem in the theory of von Neumann algebras [34,35].
The sets of quantum behaviors are convex sets, but unlike
the classical and no-signaling sets, they are not polytopes:
they have uncountably many extreme points, and part of their
boundary is curved.

The study of nonlocal correlations is often carried out in a
simplified scenario, the so-called correlation polytope, which
is given by the set of correlators C (without including the
local terms). The corresponding linear criteria that define the
set of classical/local correlations C0 are called correlation
Bell inequalities [31,36,37]. The projection of quantum and
no-signaling behaviors onto the correlator subspace are the
quantum Q0 and no-signaling NS0 correlations, respectively.
Note that by Tsirelson’s results [14], both Qcom and Q⊗ give
rise to the same quantum correlator set, realized in fact with
local Hilbert spaces HA and HB of bounded dimension. See
also [38–40] for recent developments on the geometry of the
sets Q0 and Q⊗.

XOR games. Nonlocal games provide an intuitive opera-
tional setting in which to cast Bell inequalities, and relate
those to the well-established field of interactive proofs in
computer science. Here we will focus on the particular class
of two-player (Alice and Bob) XOR games [20], where the
outcomes of each party are binary and the winning condition
depends on the exclusive disjunction (XOR) of the outcomes.
XOR games have a prominent role in nonlocality: the paradig-
matic CHSH inequality [2], the Greenberger-Horne-Zeilinger
paradox [41], and NLC [23] can all be phrased as XOR
games; and most importantly, they provide a characterization
of the correlation Bell polytope as will become apparent
below.

In an XOR game (see Fig. 2), the referee provides queries
x ∈ [mA] to Alice and y ∈ [mB] to Bob, sampled from a prior
probability distribution q(x, y) known to both players. In order
to win the game, upon receiving their inputs x and y, Alice
and Bob must produce a binary output a, b ∈ {0, 1}, respec-
tively, such that a ⊕ b = f (x, y), where f is a given Boolean
function also known to both players. The performance of their
strategy is quantified by the average winning probability

ω =
∑

x,y

q(x, y)p(a ⊕ b= f (x, y)|x, y) = 1

2
(1 + ξ ), (2)

where ξ = ∑
x,y q(x, y)(−1) f (x,y)cxy is the gain (or bias). Note

that XOR games can always be won with at least probability

1
2 if Alice (or Bob) produces a random output independently
of the input. Since q(x, y) and f (x, y) are a given, we can
characterize the game by the so-called game matrix � =∑

x,y(−1) f (x,y)q(x, y)|x〉〈y|, so that the gain can be written in
terms of the correlation matrix as ξ = tr C�T . Every correla-
tion Bell inequality, as it is based on a linear function of the
correlators C, can be written in the form tr C�T � ξ , and by
rescaling if necessary, � can be chosen as the game matrix
of a suitable XOR game. The optimal classical success prob-
ability can always be attained by extremal (i.e., deterministic)
strategies |αc〉 and |βc〉, with C = |αc〉〈βc|. Hence the gain of
the local classical average winning probability can be written
as

ξc = max
αc,βc

〈αc|�|βc〉. (3)

In the SM (A) we present various useful ways to write the
quantum gain, which are employed in the proofs of our main
results.

It is easy to see that no-signaling behaviors allow one
to win XOR games with ωNS = 1 [42], and therefore any
XOR game with ωc < 1 will correspond to a nontrivial Bell
inequality, i.e., one that can potentially be violated quantumly.
See the SM (B) for further discussion of this point.

Observe finally that without loss of generality, we may
restrict ourselves to XOR games with game matrices � that
have no all-zero rows or columns. Indeed, because such a
row or column of zeros implies that the marginal q(x) or
q(y) is zero for some inputs, we can redefine the set of
possible queries (decreasing mA or mB accordingly) to ob-
tain an equivalent game without all-zero rows or columns
in its game matrix. We refer to such games with q(x) > 0
and q(y) > 0 for all x ∈ [mA] and y ∈ [mB] as exhaustive
games.

Results. For a long time, it was implicitly assumed that
strategies using entangled strategies can attain a greater suc-
cess probability than those limited to classical resources, for
any nontrivial Bell inequality. As explained in the Introduc-
tion, it took a while to find examples of nontrivial games that
do not show any quantum advantage.

Here we show that XOR games (which characterize the
correlation polytope) without quantum advantage never define
a facet of the Bell polytope (full behaviors or correlations).
This in turn implies that all (nontrivial) tight correlation Bell
inequalities have quantum violations.

In Ref. [42] Ramanathan et al. derived a necessary and
sufficient condition for a two-player XOR game to have no
quantum advantage, which will turn out to be fundamental for
the proof of our first result.

Theorem 1. If an exhaustive XOR game has no quantum
advantage, the corresponding Bell inequality does not define
a facet of the Bell polytope, or of the correlation Bell polytope.

The proof [see the SM (C) for full details] proceeds by
bounding the dimension of the face F in the Bell polytope
corresponding to the maximum classical bias ξc of the given
XOR game:

F = {(|α〉, |β〉,C) ∈ C : tr C�T = ξc}
= conv {(|αc〉, |βc〉, |αc〉〈βc|) : 〈αc|�|βc〉 = ξc}.
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The first ingredient is the characterization of the maximum
quantum bias ξQ by semidefinite programming (SDP) [43],
which by SDP duality leads to strong constraints on any
optimal strategy via complementary slackness. From the as-
sumption that ξQ = ξc, this leads to the second, and key,
insight of the proof, namely, that in any pair (|αc〉, |βc〉) of
optimal classical strategies, Alice’s and Bob’s local answers
uniquely determine each other linearly: as we show in the
proof, |βc〉 = F |αc〉 for a certain matrix F . Assuming without
loss of generality mA � mB, we thus have

F = conv{(|αc〉, F |αc〉, |αc〉〈αc|F T ) : |αc〉opt.},

and its dimension can be upper bounded by that of

aff{(|αc〉, F |αc〉, |αc〉〈αc|F T ) : |αc〉 ∈ {±1}mA},

which is mA + 1
2 mA(mA − 1) < D − 1. In the case of the cor-

relation polytope, the dimension is similarly upper bounded
by 1

2 mA(mA − 1) < mAmB.
Theorem 2. All nontrivial tight correlation Bell inequali-

ties for bipartite systems with binary outcomes have a quan-
tum violation.

Proof. Consider a (nonexhaustive) XOR game with MA

(Alice) and MB (Bob) inputs. Without loss of generality, the
first mA (mB) inputs of Alice (Bob) have nonzero probability;
the rest are never asked, so we can apply Theorem 1 to the
reduced exhaustive game, which relates the optimal strategies
for the indices x ∈ [mA] and y ∈ [mB], but leaves completely
unconstrained the remaining ones. Hence, given a strategy
by Alice |αc〉 ⊕ |α′

c〉, Bob’s strategy must be (F |αc〉) ⊕ |β ′
c〉,

where |α′
c〉 ∈ {±1}MA−mA and |β ′

c〉 ∈ {±1}MB−mB .
We thus arrive at a codimension � = D − dim F of the

face of � � mB + MA(mB − mA) + mA
2 (mA + 1) > 1. That is,

XOR games with quantum equal to classical value do not
define a facet of the full Bell polytope. Following the same ar-
gument for the correlation polytope leads to the codimension
�0 � MA(mB − mA) + 1

2 mA(mA + 1), and this is greater than
1 unless mA = mB = 1, corresponding precisely to the trivial
inequalities |cxy| � 1. �

In the SM (D) we give a different proof of the above result
for nonlocal computation games, showing also that the dimen-
sion bounds are asymptotically attained for nontrivial games.

From the proof of Theorem 1 we learn that the optimal
extremal behaviors in an exhaustive XOR game with no
quantum advantage are fully determined by the strategy of
one of the parties. We will now show that this feature actually
extends to all optimal quantum behaviors of arbitrary XOR
games.

To understand the following theorem, we recall the def-
inition of a face F ⊂ Q of a general compact convex set
Q: namely, that whenever F 
 �p = t �q + (1 − t )�r, 0 < t < 1,
then both �q, �r ∈ F . An exposed face is obtained as F =
Q ∩ H with a supporting hyperplane H of Q; all exposed
faces are faces of Q, but not vice versa [38,44]. However, for
polytopes every face is an exposed face [30]. Also, facets, and
more generally maximal faces, are always exposed.

Note that this result explains the previous two theorems on
the classical behaviors as being due to broader properties of
the quantum sets.

Theorem 3. Nontrivial XOR games, or equivalently non-
trivial correlation Bell inequalities, never define a facet of the
quantum sets of behaviors Qcom and Q⊗. As a consequence,
the set Q0 of quantum correlations has no nontrivial facets.

See the SM (C) for the complete proof. To give the broad
outline, we start with an exhaustive XOR game. The com-
plementary slackness condition in the proof of Theorem 1
for the optimal quantum strategy leads to |βy〉 = ∑

x′ Fyx′ |αx′ 〉,
with the same matrix F as before. In other words, once again
Alice’s optimal quantum strategy uniquely determines Bob’s,
and vice versa.

Thus, we get for an optimal quantum correlation matrix
Cxy = 〈αx|βy〉 = ∑

x′ Fyx′ 〈αx|αx′ 〉, and hence the dimension
of their affine span is bounded by that of the Gram matrices
[〈αx|αx′ 〉]xx′ , with dimension 1

2 mA(mA − 1), leading to the
same dimension bound as in the proof of Theorem 1.
Nonexhaustive XOR games are treated as in the proof of
Theorem 2.

Discussion and outlook. We have shown that a two-party
correlation Bell inequality (XOR game) with no quantum
violation (quantum advantage) cannot define a facet of the
Bell polytope. The contrapositive of this statement has deep
physical implications: all tight correlation Bell inequalities
exhibit a quantum violation. In fact, we have proven lower
bounds on the codimension of the defined face (increasing
with the number of inputs). As a consequence, when the
codimension is lower bounded by � > 1, not only all tight
correlation inequalities will have quantum violations, but also
those corresponding to faces F with dim F � D − �.

On the way, we have proved that this in fact is due to a
broader property of the convex set of quantum correlations,
namely, that it does not have any nontrivial facets, only lower-
dimensional faces. It remains to be seen what the physical
meaning of this curious geometric observation is, which com-
plements recent insights into the the geometry of the quantum
set, such as the existence of nontrivial faces, of nonexposed
extreme points, and of “quantum voids” (postquantum faces
of NS) [38–40].

While two-player, binary outcome XOR games cover a
large class of Bell inequalities, including CHSH and many
other classic examples, there are of course more general
settings. For instance, we leave open the interesting questions
whether XOR games for more than two players can define
common facets of the quantum and classical sets (note that
GYNI defines such a facet, but it is not an XOR game), or
whether for two players there are any tight Bell inequalities at
all without quantum violations. On the other hand, it might be
possible to extend our results at least to two-player MOD-q
games, where each player has a q-ary outcome.
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