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Recent experiments suggested that a homeostatic regulation of synaptic balance leads the visual system to
recover and maintain a regime of power-law avalanches. Here we study an excitatory/inhibitory (E/I) mean-
field neuronal network that has a critical point with power-law avalanches and synaptic balance. When short-
term depression in inhibitory synapses and firing threshold adaptation are added, the system hovers around
the critical point. This homeostatically self-organized quasicritical (SOqC) dynamics generates E/I synaptic
current cancellation in fast timescales, causing fluctuation-driven asynchronous-irregular (AI) firing. We present
the full phase diagram of the model without adaptation varying external input versus synaptic coupling. This
system has a rich dynamical repertoire of spiking patterns: synchronous regular (SR), asynchronous regular
(AR), synchronous irregular (SI), slow oscillations (SO), and AI. It also presents dynamic balance of synaptic
currents, since inhibitory currents try and compensate excitatory currents over time, resulting in both of them
scaling linearly with external input. Our model thus unifies two different perspectives on cortical spontaneous
activity: both critical avalanches and fluctuation-driven AI firing arise from SOqC homeostatic adaptation and
are indeed two sides of the same coin.

DOI: 10.1103/PhysRevResearch.2.012042

Experimental and theoretical evidence suggests that spon-
taneous cortical activity happens in the form of asynchronous
irregular firing patterns (AI). This could be generated by
the balance of excitatory/inhibitory (E/I) synaptic currents
entering individual neurons (see Refs. [1,2]): inhibition has
to nearly compensate excitation, such that cells remain near
their firing threshold and fire sporadically, generating a
fluctuation-driven regime [2]. These firings may be organized
in avalanches of action potentials that spread throughout the
cortex. Critical avalanches are known to enable the propaga-
tion of fluctuations through local interactions due to long-
range spatiotemporal correlations [3], generating optimized
processing, and functional features [4–8].

Two important issues remain: (i) how to self-organize
a neuronal network close to a critical point and (ii) could
a network display an AI firing pattern through this self-
organization? Concerning the first point, it has been shown
that simple local homeostatic mechanisms, such as dynami-
cal synapses [9–13] and dynamical neuronal gains [14–16],
are sufficient to drive networks towards the so-called self-
organized quasicritical state (SOqC as defined by Bonachela
and Muñoz [10,17]). Particularly, our model requires two
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independent homeostatic mechanisms to generate the SOqC
dynamics: plasticity in the inhibitory synapses [18] and adap-
tive firing thresholds [19].

As for the second point, we will show that our homeo-
static mechanisms for SOqC generate a near cancellation of
excitatory/inhibitory (E/I) synaptic currents that produces a
fluctuation-driven AI regime. Therefore AI is a direct con-
sequence of the hovering around a critical point where the
system displays quasicritical power-law avalanches. Indeed,
recent experiments show homeostatic regulation of network
activity close to a critical state happening most probably
through the adaptation of inhibitory synapses [20].

There have been attempts to model E/I networks in the
context of criticality [21–24]. However, none of these models
have shown that neuronal avalanches with the correct ex-
ponents arise when E/I synaptic currents cancel each other.
Also, none of these models show that synaptic currents bal-
ance each other in the vicinity of a critical point. Not only the
SOqC dynamics proposed here does that, but it also generates
activity where avalanches and AI spiking coexist.

Without SOqC, we have a static system presenting the
typical synchronicity states of E/I networks exemplified by
Brunel’s model [25]: synchronous regular (SR), asynchronous
regular (AR), synchronous irregular (SI), and asynchronous
irregular (AI). This system has a directed percolation (DP)
critical point with power-law avalanches, and dynamic bal-
ance of E/I currents, since inhibitory inputs follow excitatory
ones over time. Even though the E/I neuron ratio is 80%:20%
from cortical data [26], our model predicts that the ratio
of coupling strengths of inhibitory to excitatory synapses
does not need to be 4:1 to achieve the critical balanced
state.
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We first define both the static and the adaptive versions of
the model. Then, we make a mean-field calculation obtaining
the critical exponents and phase diagrams, and discuss the
dynamic states of the static network. Finally, we add SOqC
homeostatic adaptation and observe the hovering around the
critical balanced point that displays near cancellation of E/I
currents and fluctuation-driven AI activity.

The model. We use discrete-time stochastic integrate-and-
fire neurons [14,27,28]. A Boolean variable denotes if a neu-
ron fires (X [t] = 1) or not (X [t] = 0) at time t . The membrane
potentials of neurons in E and I populations evolve as

V E
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where N = NE + NI is the total number of neurons, μ is a
leakage parameter and I (E )/(I )

i [t] are external inputs over E
and I populations, respectively. The second index in W ab

i j , with
a, b ∈ {E , I}, refers always to the presynaptic neuron. All the
W ’s are positive (inhibition is explicitly given by the minus).
The term (1 − Xi[t]) resets the voltage to zero after a spike,
resulting in one time step of refractoriness. Our network is
fully connected with K = N − 1 neighbors.

The individual neurons fire following a piecewise linear
probability function [see Fig. 1(a)]:

P(X = 1|V ) ≡ �(V )

= (V − θ ) � �(V − θ ) �(VS − V ) + �(V − VS ), (3)

where � is the neuronal firing gain parameter, θ is a fir-
ing threshold, VS = θ + 1/� is the saturation potential and
�(x) is the Heaviside function. The firing probability �(V )
captures the effects of membrane noises, inducing stochastic
spiking. The limit � → ∞ reduces to the leaky integrate-and-
fire (LIF) neuron with hard threshold VS = θ .

Order and control parameters. We assume that the synaptic
weights have finite variance (are self-averaging), approxi-
mating them by their mean values W ab = 〈W ab

i j 〉 (for all
the a, b ∈ {E , I}). We also define the firing densities (the
fraction of active sites) ρE [t] = 1/NE

∑
j X E

j [t] and ρI [t] =
1/NI

∑
j X I

j [t]. The fractions of excitatory and inhibitory
neurons are p = NE/N and q = 1 − p = NI/N , respectively.
Finally, we consider only the case with a stationary average
external input I = 〈Ii[t]〉 with finite variance over both popu-
lations.

We introduce the synaptic balance parameter g by let-
ting the synaptic weights obey W EE = W IE = J , and W II =
W EI = gJ (Brunel’s model A [25]). This is not a necessary
assumption, but it reduces Eqs. (1) and (2) to a single iterative
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FIG. 1. Firing rate function and phase transitions. (a) Solid: soft
firing threshold (� = 1), dashed: hard threshold (� → ∞). (b) Order
parameter vs g (inset: vs Y ), highlighting the activity states high
(H), low (L), intermediary (I, unstable, from a fold bifurcation),
and quiescent (Q ≡ ρ0 = 0). (c) Order parameter ρ∗ vs W for
h = 0 (inset: vs g for Y = 1); notice as the critical point shifts
away from Wc = 0 (gc = 4) as � decreases (Wc = 1/�). [(b) and
(c)] Dot-dashed lines are marginally stable cycle-2 attractors (SR
state). Dotted lines in the ρ+(L) branch are cyclic attractors of the
network (quasicycle-2 SI states). Density ρ is given by Eqs. (11)
and (14). (d) Phase diagram in the balanced notation (g,Y ) plane for
the hard threshold neurons. The critical point lies at (Wc = 0, hc = 0)
or (gc = 4,Yc = 1) [bullet, Eq. (13)]. The Q phase loses stability
at the horizontal dashed line Yc = 1 − μ (or hc = 0); μ = 0 (black
and thin dashed line) and μ = 0.2 (blue dashed line). This diagram
should be compared to Fig. 1 A of Ref. [25].

map that is equal for both E/I populations:

Vi[t + 1] = [μVi[t] + I + pJρE [t] − qgJρI [t]](1 − Xi[t]),

(4)

where we may omit the E/I superscripts. Letting the excita-
tory synaptic current be1 IE [t] = pJρE [t] and the inhibitory
be2 II [t] = −qgJρI [t], we define the average net synaptic
current,

�IE/I = IE + II = pJρE − qgJρI = W ρ , (5)

where we used ρE = ρI = ρ (due to the constraints added to
the synaptic weights) and defined W = (p − qg)J as our first
control parameter. This holds because, after a neuron spikes,
the voltage reset erases initial conditions and the voltages for
both E/I populations evolve following Eq. (4). The firing
density ρ is our order parameter, equivalent to the network
firing frequency ν0 of Brunel’s model [25].

Consider the stationary state (1 − μ)V ∗ = I for ρ = 0
in Eq. (4). When V ∗ = θ , �(V ∗) = 0, so we have ρ > 0

1Not to be confused with external input over the excitatory popula-
tion I (E )

i [t] in Eq. (1).
2Not to be confused with external input over the inhibitory popula-

tion I (I )
i [t] in Eq. (2).
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for I > (1 − μ)θ . Thus we define the external field h = I −
θ (1 − μ) as the average suprathreshold external current. The
h variable is our second control parameter. The parameters
(W, h) are usual for Statistical physics. By introducing the
external current ratio, Y = I/θ , we may switch from (W, h) to
describe the system in the balanced notation (g,Y ) by using
g = p/q − W/(qJ ) and Y = (h/θ ) + 1 − μ.

Homeostatic mechanisms. To obtain a quasicritical bal-
anced state without fine tuning, we introduce two indepen-
dent homeostatic biological mechanisms: inhibition depres-
sion [20] and firing threshold adaptation [29]. We use the
Levina-Hermann-Geisel short-term plasticity for the synaptic
weights [9]:

W II/EI
i j [t + 1] = W II/EI

i j [t] + 1

τW

(
A − W II/EI

i j [t]
)

− uW W II/EI
i j [t]X I

j [t] , (6)

where τW is a (large) recovery time, A is the synaptic baseline
and uW is the fraction of the synaptic strength depressed
when a presynaptic neuron fires. This dynamic generates
homeostatic tuning because g is then g[t] = 〈W EI/II

i j [t]〉/J in
Eq. (4). The 〈.〉 bracket is an average over neurons i and j.

To self-organize towards zero-field hc = I − (1 − μ) θ =
0 or Yc = I/θ = 1 − μ, we add threshold adaptation:

θi[t + 1] = θi[t] − 1

τθ

θi[t] + uθ θi[t]Xi[t] , (7)

where the parameter uθ is the fractional increase in the neuron
threshold after it fires, and τθ is a recovery timescale. This
dynamic is inspired by the biological mechanism of firing rate
adaptation [29]. It enters the model through Eq. (3), changing
θ to θ [t] = 〈θi[t]〉.

Mean-field calculations. We consider only the μ = 0, since
μ > 0 does not present any new phenomenology (although it
admits numerical solutions and analytic approximations close
the critical point [14,15]). For this case, the stationary voltage
distribution has only two delta peaks, Pt (V ) = ρ[t]δ(V ) +
(1 − ρ[t]) δ(V − V [t]), and the number of active sites is the
average of �(V ) over V [14,16],

ρ[t + 1] =
∫

�(V ) Pt (V ) dV , (8)

with V [t] given by Eq. (4), resulting in

ρ[t + 1] = (1 − ρ[t])�(W ρ[t] + h)�(W ρ[t] + h) . (9)

This map has, in principle, three fixed points. For h � 0, there
is a quiescent solution ρ0 = 0 (also called the Q state) since
the Heaviside �(x) function is zero in the right-hand side in
Eq. (9).

The active states are the two other fixed points of the firing
density (9), given by

�W ρ2 + (1 + �h − �W )ρ − �h = 0 , (10)

with solutions

ρ± = �W − �h − 1

2�W
±

√
(�W − �h − 1)2 + 4�2W h

2�W
.

(11)

For h > 0 (Y > 1), there is a single solution ρ+ (correspond-
ing to high activity H and low activity L) because ρ− < 0. For
h < 0 (Y < 1), we have a positive but unstable branch ρ− (the
intermediary solution I) that separates the stable branch ρ+
(H) from the absorbing state ρ0 (Q), see Fig. 1(b). When h = 0
(Y = 1), the unstable branch vanishes into a critical point with
W = Wc = 1/� [g = gc, Eq. (13)].

Critical exponents. For zero-field, Eq. (10) yields ρ0 = 0
(the absorbing quiescent phase, Q), stable for W < Wc ≡ 1/�

and an active state:

ρ∗ = �W − 1

�W
= W − Wc

W
∼ (W − Wc)β , (12)

with β = 1, stable for W > Wc = 1/�. The field exponent is
obtained by isolating h from Eq. (10) and expanding for small
ρ (due to small external h) with W = Wc, resulting in ρ∗ ∼
(h/Wc)1/δh with δh = 2. The exponent of the susceptibility,
χ = ∂ρ/∂h ∼ |W − Wc|−γ , using � = 1/Wc, is γ = 1.

These exponents pertain to the mean-field directed per-
colation (DP) universality class [30–32], the framework that
has been proposed to describe neuronal avalanches [33,34].
The variance of the network activity is Var(ρ) ∼ |W − Wc|−γ ′

with γ ′ = 0 [30]. This explains the jump in the coefficient of
variation of ρ observed by Brunel [25].

In the balanced notation, h = hc = 0 is the same as Yc =
(hc/θ ) + 1 − μ = 1 (recalling that μ = 0 and θ = 1). The
equivalent of Wc = 1/� is given by

gc = p

q
− Wc

qJ
= 4 − 5

�J
, (13)

where the usual cortical estimates p = 80% and q = 20%
were used [26]. This generalizes the usual condition gc ≈ 4:
if neurons have a soft threshold (finite �) or the synapses are
weak (finite J), the critical balance point shifts towards lower
values of g [Fig. 1(c)]. The phase diagram for large �J (i.e.,
hard threshold LIF neurons) is shown in Fig. 1(d) and matches
exactly the one obtained by Brunel [25].

Synaptic currents of the static model. We can write Eq. (11)
in the balanced notation by letting h = (Y − 1)θ and W =
(p − qg)J [see Fig. 1(b)]:

ρ± = 1

2
+ ρ1

2�θ (Y − 1)
+ ρ1

2

±
√(

1

2
+ ρ1

2�θ (Y − 1)
+ ρ1

2

)2

− ρ1 , (14)

where ρ1 = (Y − 1)θ/[Jq(g − p/q)] is the first-order expan-
sion of Eq. (14).

The synaptic currents are balanced if the net synaptic
current from Eq. (4) is zero, �IE/I = W ρ = 0, such that
either W = (p − qg)J = 0 (i.e., g = gbal = p/q for Y > 1),
or ρ = 0 (i.e., the quiescent solution of the subcritical and
critical states, g � gc and Y � 1). For g �= p/q, the synaptic
currents scale linearly with the external input. We can see that
by expanding Eq. (14) for small Y , giving ρ ≈ ρ1:

IE = pJρ1 = p/q

g − p/q
(Y − 1), (15)

II = −qgJρ1 = − g

g − p/q
(Y − 1) . (16)
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FIG. 2. Avalanches and firing patterns. (a) Phase diagram for μ = 0, and �J = 10; a critical line starts at gc = 3.5, see Eq. (13), for Y = 1.
The critical point, the subcritical region with g > gFold; Y � 1, and the supercritical region g = 4; Y > 1 have balanced synaptic currents, such
that the net current is �IE/I = IE + II ≈ 0. At Y = 1.2, from left to right: SR/cycle-2 (g = 3), AR/High (g = 3.5), AI/Low (g = 4.3), and
SI/fast oscillations (g = 4.7). SR and AR are separated by a bifurcation tho cycle-2 due to the refractory period; SI and AI are separated by
a flip bifurcation. (b) Distribution of avalanche sizes (main plot, τ = 1.5) and duration (bottom inset, τt = 2) at the critical point. Top inset:
size and duration scaling law 〈s〉 ∼ T a has a crossover with a = 2.5 for small avalanches (a finite-size effect) and a = 2 for the rest of the
data. (c) Network simulation results (N = 106 neurons), ρ[t], for the points in (a). From the top left to the bottom right panel: critical point
absorbing-state avalanches (peaks); SR, AR, SO (slow waves for Y � Yc = 1 − μ, μ = 0.9, Y = 0.101), SI, and AI. The background shows
the raster plot of 1,000 randomly selected neurons.

The variable ρ ≈ ρ1 = IE/(pJ ) is shown in the inset of
Fig. 1(b). These currents saturate for large enough �J . This
linear scaling highlights the dynamic balance of synaptic
inputs, as inhibition tracks excitation over time [25,35].

Phase diagram. The soft threshold neurons’ phase diagram
is shown in Fig. 2(a). The curves are bifurcations of the stable
fixed point ρ+ in Eq. (14): (i) a fold bifurcation, i.e., a first-
order phase transition for Y < 1 that ends in the critical point
(gc,Yc). (ii) a bifurcation to cycle-2 that separates SR from
AR when ρ+ = 1/2, because the refractory period does not
allow a stable fixed point with ρ+ > 1/2, generating bursts of
synchronized activity with period 2 ms. (iii) a flip bifurcation
at gFlip = p/q + 1/(q�J ) that separates the uniform AI from
the oscillatory SI in the low activity regime. (iv) the line
Yc = 1 is a continuous transcritical bifurcation for g > gc and
g < gFlip; and a synchronization phase transition for g > gFlip

[Fig. 1(c), inset].
The critical balanced point at (gc,Yc) displays power-

law distributed avalanches with exponents τ = 1.5 and τt =
2 for size and duration, respectively, see Fig. 2(b). The

avalanches also respect the scaling law 1/(σνz) = (τt −
1)/(τ − 1) [inset in Fig. 2(b)], as expected for the DP uni-
versality class [30,36,37], and observed in experiments [38].

The simulated network activity in all the six dynami-
cal regimes is shown in Fig. 2(c). The critical point (gc =
3.5,Y = 1) displays avalanches sparked by a vanishing
external stimulus. The self-sustained activity regime (g < gc),
when summed up to an external current Y > 1, generates the
regular microscopic behaviors, SR or AR. The SR state is a
marginally stable cycle-2 of the firing density and the AR is a
state of high and homogeneous activity [the ρ+ in Eq. (11)].
The addition of an external current to the inhibition dominated
quiescent regime results in the low irregular activity AI (and
SI if g > gFlip). Slow oscillations (SO) are observed when
Y � Yc = 1 − μ and g � gc for μ � 0.

Homeostatic SOqC dynamics. The dynamics in the in-
hibitory weights tunes the system along the g axis of the phase
diagram. Threshold adaptation regulates the system along the
Y axis. Both mechanisms contribute to self-organize the net-
work towards the critical point. For the parameters considered
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FIG. 3. Self-organization towards the balanced critical point.
Parameters: τW = τθ = 100, A = 73.5, uW = uθ = 0.1, � = 1 and
J = 10. (a) Time series for ρ[t], g[t] = W II/EI [t]/J , Y [t] = I/θ [t],
and the synaptic currents with �I

E/I = 0.08(7). IE and II have been
displaced by their means. The amplitude of IE and II are one order
of magnitude larger than �IE/I for all N (bottom inset). (b) Detail
of the SOqC ρ[t] dynamics with a raster plot of 1000 randomly
selected neurons displaying AI-like activity. (Inset) Self-organization
trajectories in the g vs Y plane. The system hovers around the critical
balanced point of the static model, gc = 3.5 [ḡ = 3.59(7)] and Yc = 1
¯[Y = 1.02(2)], which displays power-law avalanches.

in Fig. 2 a, the critical point is gc = 3.5 and Yc = 1, and the
two independent dynamics yield ḡ = 〈gi j[t]〉 = 3.59(7) and
Ȳ = 〈Yi[t]〉 = 1.02(2) [Fig. 3(a)].

This homeostatic tuning, however, is not perfect, since
stochastic oscillations make the system hover around the criti-
cal point—a distinctive feature of self-organized quasicritical-
ity or SOqC [10,17]—see Fig. 3(b) inset. This oscillation is
triggered by finite-size (demographic) noise and its amplitude
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FIG. 4. Synaptic balance in SOqC. Net synaptic current �I
E/I

as function of external input I . The mean net synaptic current
decreases with increasing I , making the network more balanced.
Insets: Amplitude of the fluctuations of �IE/I for different intensities
of the external input (top) and for increasing network size (bottom).
The decrease of the amplitude with increasing N shows that the
fluctuations in �IE/I are due to finite-size effects.

decreases with increasing N [inset in the bottom panel of
Fig. 3(a) and bottom inset of Fig. 4]. Thus the larger the
network, the closer the system gets to the critical point [16].

The spiking pattern of the SOqC dynamics is very similar
to standard AI activity [compare Fig. 3(b) with Fig. 2(c)].
This happens because the E/I synaptic currents [defined in
Eq. (5)] cancel each other in fast timescales, generating a net
current �IE/I that is always one order of magnitude smaller
than either IE or II [bottom panel in Fig. 3(a)].

Contrary to the static version of the model, increasing the
external input I on the homeostatic system slightly decreases
the average net current, but increases the fluctuations of �IE/I

(see Fig. 4): the network gets more balanced and more noisy
at the same time. On the other hand, independently of I , the
fluctuations of the net synaptic current decrease with N due to
finite-size effects.

The nearly total cancellation of E/I currents generates
sporadic fluctuations of activity the spread throughout the
network (the avalanches) in an AI fashion. These avalanches
should converge to nearly perfect power-law distributions
for large enough τW = τθ [15]. Such stochastic oscillations
should have low amplitude [16], but rare large events (dragon-
kings) also occur [15]. Although the demographic noise van-
ishes in the thermodynamic limit, other sources of biological
noise (not included in the model and that does not vanish for
large N) will continue to trigger the stochastic oscillations and
the AI behavior.

Discussion. In contrast to our model, Brunel [25] used a
random network, deterministic LIF neurons, noisy inputs and
a distribution of delays in the synapses. In our model, noise
is captured by the intrinsic stochasticity of the neurons. Our
model does not have a distribution of synaptic delays, but its
discrete time step implies that spikes are transmitted with a
fixed delay of 1 ms. Also, since �(0) = 0, the reset of voltages
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after spiking implements a refractory period of 1 ms. The
other ingredients do not seem to be crucial to obtain either
the synchronicity/activity states or the critical balanced point.

Our mean-field calculation is valid for fully connected
networks where the number of neighbors is K = N − 1. When
there is no threshold θ nor external current I , the condition
W = (p − qg)J allows our model to be directly mapped on
the Kinouchi et al. [16] model. In turn, the authors showed
that the latter model presents exactly the same dynamics as
the sparse random network of probabilistic cellular automata
where K = O(1), both in the static version [5,39] and in the
homeostatic version [12]. All these models share the mean-
field DP results obtained here [14]. Calculations for the case
K = O(

√
N ), as studied in [35,40], should be done to check

the performance of the homeostatic mechanisms.
Heavy-tailed synaptic distributions are also expected to

generate a critical point for threshold neurons [41]. Our mean-
field calculations do not apply directly in this context, but our
homeostatic mechanisms could still be employed to synaptic
weights and thresholds to check whether the critical point
would also become an attractor of that model.

While inhibition frequently increases together with ex-
citation after the stimulation of a neuron, the reverse does
not seem to happen; that is, excitation does not compen-
sate for inhibition when the neuron is suppressed [1,18,20].
This suggests a self-organizing homeostatic mechanism reg-
ulating the inhibitory synapses, which was suggested to
be necessary to re-establish power-law neuronal avalanches
in rats [20].

This fact motivated the addition of adaptation to our model.
We showed that two homeostatic mechanisms are sufficient to
take the network towards any critical balance point. Adding
homeostasis, we avoided fine tuning of the g and Y param-

eters towards gc and Yc. However, that comes at the cost
of introducing five new parameters (A, τW , uW , τθ , uθ ) that
perhaps should also be fine tuned. This is not the case: the
dependence on these parameters is weak, representing a kind
of gross tuning [12,15]. Also, if necessary, metaplasticity in
longer timescales can be employed to tune these homeostatic
parameters [11].

Concluding remarks. Homeostatic adaptation in synapses
and firing thresholds are sufficient mechanisms to self-
organize a neuronal network towards its DP critical (and
synaptically balanced) point. The hovering around this attrac-
tor is due to small fluctuations in the net synaptic current,
such that there is always some residual excitation driving
the network activity (a sort of fluctuation-driven AI regime
due to SOqC). The underlying critical point shows power-law
avalanches with exponents compatible with in vitro experi-
ments [38]. Our model thus unifies two different perspectives
on the spontaneous activity of the brain: power-law neuronal
avalanches and fluctuation driven asynchronous-irregular fir-
ing patterns are indeed two sides of the same coin.
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