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Artificial neural networks have been successfully incorporated into the variational Monte Carlo method
(VMC) to study quantum many-body systems. However, there have been few systematic studies exploring
quantum many-body physics using deep neural networks (DNNs), despite the tremendous success enjoyed
by DNNs in many other areas in recent years. One main challenge of implementing DNNs in VMC is the
inefficiency of optimizing such networks with a large number of parameters. We introduce an importance
sampling gradient optimization (ISGO) algorithm, which significantly improves the computational speed of
training DNNs by VMC. We design an efficient convolutional DNN architecture to compute the ground state of
a one-dimensional SU(N) spin chain. Our numerical results of the ground-state energies with up to 16 layers of
DNNs show excellent agreement with the Bethe ansatz exact solution. Furthermore, we also calculate the loop
correlation function using the wave function obtained. Our work demonstrates the feasibility and advantages of
applying DNNs to numerical quantum many-body calculations.
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Introduction. Over the past few years, artificial neural
networks have been introduced to study quantum many-body
systems [1–8]. In their seminal paper [1], Carleo and Troyer
proposed to represent the quantum many-body states by a
restricted Boltzmann machine (RBM), which contains one
visible and one hidden layer. The many-body wave function
is represented by a visible layer after integrating out the
hidden layer. The parameters in the RBM are trained by the
variational Monte Carlo (VMC) method. Following this work,
the RBM and a few other networks have been applied to
study several quantum many-body systems with good accu-
racy [1–11]. So far, the networks that have been implemented
in quantum physics studies are not deep and hence are not
powerful enough to represent more complicated many-body
states. As a result, there has been no clear evidence that
their performance far exceeds the more traditional state-of-
the-art numerical algorithms such as quantum Monte Carlo,
density matrix renormalization group, or tensor networks, to
name a few. To overcome this problem, deep neural networks
(DNNs) have been suggested. Theoretical studies have shown
that the DNNs can efficiently represent any tensor network
states and most quantum many-body states, and possess
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distinct advantages over shallow networks [12–14]. In fact,
DNN-based deep learning has become the most successful
model of many machine learning tasks and has dominated
the field since 2012. DNNs have been demonstrated to have
a comparable or superior performance in various tasks when
compared to human experts, such as playing Atari games [15],
Go [16,17], manipulating robots [18,19], etc., and have led to
rapid advances in artificial intelligence.

Despite great interest, there have been relatively few works
in applying DNNs to quantum many-body computations
[20,21]. This perhaps is due to the fact that applying DNNs
to represent quantum many-body states faces two main chal-
lenges: inefficient optimization and insufficient information
for the proper choice of DNN architectures. The former arises
because a DNN typically contains a large number of parame-
ters to train, while a proper choice of the architecture often
requires physical insights about the nature of the quantum
systems.

In this Rapid Communication, we propose an efficient
convolutional DNN architecture to represent the ground state
of quantum many-body systems. Most of the quantum systems
consist of particles interacting with each other through a
finite range. Such a local interacting character can be ide-
ally captured by a convolutional neural network (CNN). We
have developed an importance sampling gradient optimization
(ISGO) algorithm within the VMC method, which signifi-
cantly improves the optimization speed and hence enables us
to utilize DNN architectures. Our method can take advantage
of the automatic differentiation, which automatically com-
putes the gradient update via a backward-propagation algo-
rithm [22]. We show that our method can be parallelized and
take full advantage of the acceleration provided by graphic
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processing units (GPUs). The ISGO method achieves at least
one order of magnitude speed-up when trained on GPUs [23].

For benchmark purposes, we construct DNNs to represent
the ground-state wave function of the one-dimensional (1D)
SU(N) spin chain, which has an exact solution under the Bethe
ansatz. We systematically test different DNN architectures
with ISGO for systems with different complexities. Our nu-
merical results for the ground-state energies of a 1D SU(N)
spin chain show excellent agreement with the exact solutions.
Furthermore, we are able to compute correlation functions
which are extremely difficult to obtain by the Bethe ansatz.
The convolutional DNN architecture we constructed for this
work can be readily generalized to represent the ground states
of other quantum many-body systems. The ISGO method can
also be used to accelerate the computation based on general
VMC methods.

Network architectures. We consider a homogeneous 1D
SU(N) spin chain with Nsite spins, which is the simplest
prototypical model with SU(N) symmetry, governed by the
Hamiltonian

H =
Nsite∑
i=1

Pi,i+1, (1)

where Pi,i+1 is the spin exchange operator which ex-
changes two neighboring spins: Pi,i+1|ai, bi+1〉 = |bi, ai+1〉.
This model can describe the behavior of 1D strongly interact-
ing quantum spinor gases [24–27], and has attracted signifi-
cant attention both experimentally and theoretically [28–35].
Here, we will use the DNN to represent the ground-state wave
function of this model.

A general state takes the form

|�〉 =
∑
{si}

�
(
s1, s2, . . . , sNsite

)∣∣s1, s2, . . . , sNsite

〉
,

where each si represents one of the N spin states for the SU(N)
model. The goal is to build a network that takes the basis state
|{si}〉 as the input and compute the ground-state wave function
�({si}) such that the energy functional 〈�|H |�〉/〈�|�〉 is
minimized. The first step is to encode the input basis state
into a 2D tensor S j,β , where the first and the second indices
j and β represent the spatial site and the local spin state,
respectively. In this work, we consider two kinds of state
encodings: value encoding, which encodes each spin state into
a number, and one-hot encoding, which encodes the spin state
into a one-hot Boolean vector. The tensor S is fed into the
DNN as an input. The output of the first hidden layer, which
follows immediately after the input layer, is given by

A[1]
i, f ′ = σ

⎛
⎝

K∑
k=1

Nin∑
f =1

W [1]
k, f , f ′Si+k, f + b[1]

f ′

⎞
⎠, (2)

where A[1] is the activation (or feature map) of the first
hidden layer, σ (x) = max(x, 0) is the rectified linear unit
(ReLU) activation function, which has been demonstrated to
outperform traditional sigmoid activation function for DNNs
[36], and W [1] is a 3D tensor of shape (K, Nin, F ), where K
is the convolution kernel size, F the number of channels of
the hidden layer, and Nin the number of the channels of the
input layer which is 1 for value encoding and N for one-hot

FIG. 1. The architecture of a convolutional DNN with L = 8
hidden layers. The input state is encoded into a 2D tensor of shape
[Nsite, Nin], and fed into the input layer (represented by the leftmost
pink rectangle). For value encoding Nin = 1 and for one-hot encoding
Nin = N . The blue rectangles stand for the activation (feature maps)
of the hidden layers. Convolution filters (the small pink rectangles)
transform one hidden layer to the next one. The last hidden layer (on
the right) is reduce summed and followed by a fully connected layer
to give the ln � output.

encoding. In this work, we use the same K and F , which
determines the width of the network, for every hidden layer.
b[1] is a bias vector of size F . The output from the remaining
hidden layers is given by

A[l]
i, f ′ = σ

⎛
⎝

K∑
k=1

F∑
f =1

W [l]
k, f , f ′A

[l−1]
i+k, f + b[l]

f ′

⎞
⎠, l = 2, 3, . . . , L,

(3)

where L is the total number of hidden layers that determine the
depth of the network, W [l] is a 3D tensor of shape [K, F, F ],
and b[l] is a bias vector of size F . After the last hidden layer, its
output is summed along the spatial dimension, and followed
by a single fully connected layer to give the final output of the
network,

ln �(S) =
F∑

f =1

a f

Nsite∑
i=1

A[L]
i, f , (4)

where a is a weight vector of size F . The full structure of
the network is illustrated in Fig. 1. Each magenta rectangular
object corresponds to a convolutional filter. We use periodic
padding for each convolutional layer to enforce the periodic
boundary condition. This network is fully convolutional [37],
which means the network architecture is compatible with
different system sizes, and we can easily do transfer learning.
Here, W [l], b[l], and a are the network parameters that need
to be optimized. The total number of parameters is roughly
KF 2L.

Importance sampling gradient optimization. Before intro-
ducing the ISGO method, we first revisit the conventional
gradient optimization method in VMC. The wave function
�({w}) is encoded by the set of network parameters w ∈
{W [l], b[l], a}. In every iteration step, Nsample quantum states
following the distribution P0

x ∝ |�0
x |2 are sampled using a

Markov chain. Here, �0 is the input wave function from
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FIG. 2. The flowchart comparing the conventional VMC algo-
rithm and the VMC with ISGO algorithm.

the previous step, and x indexes the sampled states. The
variational energy functional Ev ({w}) = 〈�0({w})|H |�0({w})〉

〈�0({w})|�0({w})〉 is
then computed. To minimize Ev ({w}), the network parameters
are updated as w ← w − α∂wEv , where the “learning rate” α

is a small parameter [38]. In our work, we use Adam [39],
a variant of the stochastic gradient descent algorithm. Here,
∂wEv is approximated by the variational wave function �0

with the Nsample samples,

∂wEv ≈
∑

x

I0E0
x ∂w ln �0

x −
∑

x

I0E0
x

∑
x

I0∂w ln �0
x , (5)

where E0
x = ∑

x′ Hx,x′�0
x′/�

0
x is the local energy under �0 and

I0 = 2/Nsample. After the parameters w are updated, the wave
function changes from �0 to � which serves as the input for
the next iteration step, where a new set of states is sampled
based on � and the previously sampled states based on �0

are discarded.
Inspired by the off-policy policy gradient method in re-

inforcement learning (RL) [40,41], we develop an efficient
importance sampling gradient optimization (ISGO) method
that utilizes the mismatched samples, as shown in Fig. 3(a).
The key is to renormalize the distribution of those mismatched
samples to |�x|2 by multiplying the local energies and deriva-
tives in Eq. (5) with importance sampling factors,

∂wEv ≈
∑

x

IxEx∂w ln �x −
∑

x

IxEx

∑
x

Ix∂w ln �x, (6)

where Ex is the local energy under the last updated wave
function �, and Ix

I0 = Px
P0

x
= C |�x |2

|�0
x |2 with C the normalization

factor which can also be approximated using
∑

x Ix/I0 = 1.
The key difference as summarized in Fig. 2, in comparison to
the conventional method, is that, within each iteration step,
the network parameters w (and hence the wave functions)
are updated multiple times. This enables us to use the Nsample

sampled states much more efficiently. Furthermore, the update
procedure can be efficiently parallelized and run on GPUs.

We plot the variational energies versus iteration step and
wall time for a 60-site SU(2) chain with a 16-layer CNN in
Figs. 3(b) and 3(c) [23]. As can be seen, the ISGO method
converges with much fewer samples and much faster GPU
than the conventional method. We also implement the ISGO
method using TENSORFLOW with autodifferentiation [42],

FIG. 3. (a) The flowchart of the ISGO algorithm within the
VMC method. A network is used to represent the ground-state
wave function. In every iteration step, the sampler generates Nsample

samples following distribution P0
x ∝ �∗0

x �0
x . Then the importance

sampling optimizer updates the network parameters through back
propagation in a loop for Noptimize times. Noptimize = 1 corresponds to
the conventional gradient optimization method. The whole process is
iterated until convergence. The sampler and the optimizer share the
same wave function. We compare the training curves for a Nsite = 60
SU(2) spin chain using a (L, F, K ) = (16, 8, 3) CNN with one-hot
encoding. (b) Variational energy vs iteration steps. (c) Variational
energy vs wall time on GPU/CPU. The initial learning rate for Adam
is 10−4.

which allows us to try different network architectures much
more easily. Our code for both RBM and CNN can be found
in Ref. [43]. We emphasize that, although we choose a partic-
ular gradient optimization algorithm Adam in our work, the
concept of ISGO is general and can be implemented with any
other optimization methods.

Numerical results for 1D SU (N ) spin chain. We test our
DNN on the Sutherland model, the 1D homogeneous SU(N)
spin chain governed by Hamiltonian (1). We pick this model
for two main reasons. First, the ground-state energy of this
model can be exactly solved by the Bethe snsatz [44], which
allows us to benchmark our results [23]. Second, the number
of spin states N controls the complexity of the system, which
allows us to systematically study the efficiency and accuracy
of the DNN as the complexity of model grows. Numerical
details can be found in Ref. [23].

Figure 4 shows our main results of the ground-state ener-
gies for various N on an Nsite = 60 chain with a DNN with
varying depth (i.e., number of layers L) and width (i.e., kernel
size K). We tested two encoding methods for the input state.
Figures 4(a) and 4(b) correspond to the value encoding, while
Figs. 4(c) and 4(d) correspond to the one-hot encoding. The
value encoding imposes ordinality, i.e., different spin states
are encoded into a number with the average value to be zero.
For one-hot encoding, different spin states are encoded into
a vector orthogonal to each other, and thus are not ordinal.
For example, for an N = 3 system, the three spin states are
encoded into values of −1/2, 0, 1/2 in value encoding, and
into vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) in one-hot encoding.
The one-hot encoding requires more computational resources
(in terms of both memory and computational time) than
the value encoding, and scales linearly with respect to N .
However, in general it yields better accuracy than the value
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FIG. 4. The ground-state energy for Nsite = 60 SU(N) spin
chains (N = 2, 3, 4, 5) using CNN with (a), (b) value encoding and
(c), (d) one-hot encoding. (a) and (c) are for one layer L = 1 with
fixed channel number F = 8 and different kernel size K . (b) and
(d) are for fixed channel number and kernel size (F = 8, K = 3) but
different number of layers L. In (b), the black squares are for F = 8
and K = 5. The horizontal black dashed lines are exact results from
the Bethe ansatz.

encoding method. This could be due to the fact that one-
hot encoding encodes each spin state into a vector which
effectively enlarges the dimension of the parameter space.
Optimization in such an artificially enlarged space helps to
prevent the system from being stuck in the metastable states
[45].

Figures 4(a) and 4(c) display the results from a single-layer
network with varying width. As one can see, increasing the
kernel size K helps bring the ground-state energy closer to the
exact solution represented by horizontal dashed lines, which
indicates that, for such a shallow network, a large kernel
size is necessary for capturing long-range effects mediated
by nearest-neighbor interactions. Here, one-hot encoding per-
forms significantly better than value encoding, especially for
SU(N > 2), where, no matter how large the kernel size is,
the energies computed via value encoding do not converge to
exact solutions. In Figs. 4(b) and 4(d), we fix the width of the
network, but vary its depth by adjusting the number of layers
L. Even for a relatively small kernel size K = 3, increasing L
helps to bring the computed ground-state energy closer to the
exact result. Therefore, a DNN can capture a long-range effect
even with a small kernel size. For the SU(5) model (the largest
N we used in the calculation), the energy does not converge
to an exact solution using value encoding with a kernel size
3. Simply by increasing the kernel size to 5, we can reduce
the computed ground-state energy and match it with the exact
solution as the black squares shown in Fig. 4(b). We vary the
number of channels F and find that the energy results are not
sensitive to F . More details can be found in the Supplemental
Material [23].

FIG. 5. (a) Real-space loop correlation functions Sr for the
SU(N) spin chain with N = 5, 4, 3, 2 from top to bottom. (b) The
Fourier transform of Sr : Sk = | ∑r Sreikr | with peaks at k = ±π/N .

The Bethe ansatz method can yield an energy spectrum
and, in principle, the many-body wave function for exactly
solvable models such as the one considered here. However,
due to the complexity of a general many-body wave function,
it remains a tremendous challenge to compute other useful
quantities such as the correlation functions. Often, advanced
numerical techniques are needed for such tasks [46,47]. To
further demonstrate the power of DNN, here we show our
results for the loop correlation function,

Sm,n = (−1)m−n〈(m · · · n)〉, (7)

where the expectation value is taken with respect to the
ground state, and (m · · · n) is the loop permutation operator
that permutes the spatial indices in the wave function by m →
m + 1, m + 1 → m + 2, . . . , n − 1 → n, n → m. Physically,
this operator puts the spin in the original nth position to
the mth position and correspondingly moves the spins at the
original ith (with i = m, . . . , n − 1) positions to their neigh-
boring position on the right. The loop correlation function
appears in the definition of the one-body density matrix of 1D
strongly interacting quantum spinor gases whose ground state
can be represented by a strong-coupling ansatz wave function
[24,26,27,48,49] due to the fact that such wave functions
must obey the permutation symmetry rule originating from
quantum indistinguishability.

For the homogeneous system we considered here, Sm,n=Sr

with r ≡ n − m. We plot Sr for an SU(N) spin chain with
Nsite = 60 spins in Fig. 5(a), and its discrete Fourier trans-
form Sk = |∑r Sreikr | in Fig. 5(b). Sr and Sk characterize
the correlation in the real and the momentum space, re-
spectively. By taking the Jordan-Wigner transformation, an
SU(N) spin chain with each spin component having Nsite/N
spins can be mapped to a nearest-neighbor interacting N-
component fermionic system with each component having
Nsite/N fermions [49,50]. The peaks of Sk at k = ±π/N , that
can be clearly seen in Fig. 5(b), correspond to the Fermi points
of those fermions. These peaks lead to the singularities of
momentum distribution of strongly interacting spinor Fermi
gases at the same momentum point [49,50].
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Conclusion and outlook. We have constructed a DNN,
combined with VMC, to study the ground state of the 1D
SU(N) spin chain. The key in our work is the development of
the ISGO algorithm, which can be straightforwardly applied
to any type of variational wave function, for the optimization
procedure. This algorithm allows us to efficiently train the
network, and is particularly suitable for training DNNs which
typically contain a large number of parameters. Note that
the VMC with the ISGO algorithm may be interpreted as an
RL process if we identify the Markov-chain state trajectories
in the former as the state transitions/policies in the latter.
We tested the network to solve the 1D SU(N) spin chain
model and systematically investigated the performance of the
network by varying its depth and width. We have found that,
when using value state encoding, as the complexity of the
model increases by increasing N , it is not sufficient just to
increase the width (i.e., kernel size) of the network, one needs
to add more depth to capture the long-range correlation of the
quantum state. We only show numerical results computed by
the DNN up to 16 layers. We do not observe any significant
benefit by using much deeper networks up to 100 layers on
this model. This could be due to a potential problem of van-
ishing gradients in very deep networks (see Refs. [51,52] and

references therein), which may be alleviated via using other
network architectures such as ResNet [52], which we leave for
future studies. Finally, we note that another key finding from
our work is the importance of input state encoding. We find
that one-hot encoding, although requiring more computational
resources, in general leads to much more accurate results than
value encoding.

In conclusion, our study clearly demonstrates that it is
feasible to use DNNs to represent quantum many-body wave
functions and to significantly enhance the efficiency of numer-
ical quantum many-body computations. Applying machine
learning techniques to quantum many-body physics is still
a young and emerging field with many open questions. We
believe that such investigations will not only benefit quantum
physics, but may also help us to gain deeper insights into
neural networks.
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