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Nonlinear evolution and signaling
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We propose a condition, called convex quasilinearity, for deterministic nonlinear quantum evolutions.
Evolutions satisfying this condition do not allow for arbitrary fast signaling, therefore, they cannot be ruled out
by a standard argument. We also give an explicit example of a nonlinear qubit evolution satisfying quasilinearity.
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I. INTRODUCTION

For almost a century, quantum mechanics (QM), in a
version based on the Hilbert space, was formulated as a
linear theory preserving the superposition principle for pure
states. However, many authors for different reasons undertook
attempts to generalize this theory by also including nonlinear
operations (see, e.g., Refs. [1–5] and references therein). In
fact, a part of the QM formalism related to the measurement
description uses nonlinear (stochastic) operations such as the
selective projection postulate. Most of the proposed attempts
lie in the replacement of the linear time evolution of quantum
systems by a nonlinear one (see, e.g., Refs. [1,3]). It is widely
believed that such deterministic nonlinear generalizations of
the Schrödinger equation allow for signaling, i.e., allows one
to send signals over arbitrarily large distances in a finite
time (see, e.g., Ref. [6]). Arguments supporting this claim (in
the context of the Weinberg model [3]) were clearly given by
Gisin in Ref. [7] (compare also Refs. [8,9]). Gisin’s arguments
are based on the observation that deterministic nonlinear time
evolution destroys the equivalence of quantum ensembles
defining the same mixed state of the considered system. As
a consequence, it creates the possibility of an instantaneous
communication for spacelike separated observers with the
help of systems of entangled particles. Evidently such a
possibility is in an apparent conflict with the special relativity.

Let us mention here that some authors gave arguments that
deterministic nonlinear dynamics in special circumstances
does not allow for signaling [8,10–15]. However, these ar-
guments seems to be insufficient (compare Refs. [16,17]).
For example, the Czachor and Doebner [11] approach implies
the modification of the state reduction postulate while Helou
and Chen [15] postulate the extension of the Born rule. Our
goal is different: We are looking for such an extension of
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deterministic linear dynamics that does not allow for faster
than light signaling and at the same time does not require
anything to be changed in the remaining part of the quantum
formalism.

Notice also that there exist nonlinear stochastic evolu-
tion equations free of the problems with signaling [6]. Such
models were proposed in various contexts, with one of the
most important being collapse models (see Refs. [18,19] and
references therein).

In this Rapid Communication we propose another con-
dition for deterministic nonlinear quantum evolutions—
quasilinearity [Eq. (7)]. This condition guarantees that evo-
lution preserves the equivalence of quantum ensembles. Con-
sequently, the Gisin argument [7] does not work in this case.

II. GISIN’S ARGUMENT

Following Gisin [7], let us assume that two distant ob-
servers, say, A and B, want to establish instantaneous com-
munication. In the half of the distance between them there is
a source emitting pairs of spin-1/2 particles. The initial spin
state of the particle is the Bell state. Particles move along the
z axis, one towards A and the second one towards B. Observer
A performs a polarization procedure of the flux of particles
directed to him. To this end, A measures without selection the
projector πϕ = 1

2 (I + ζϕ · σ) ⊗ I with a possibility of chang-
ing the polarization angle ϕ. Here, the polarization vector

ζϕ = (cos ϕ, sin ϕ, 0). (1)

As an effect, the Bell state converts into the mixture

ρϕ = πϕρBellπϕ + (I − πϕ )ρBell(I − πϕ ) ≡ 1
2ρ1 + 1

2ρ2. (2)

Consequently, the reduced density matrix ρB = TrA(ρϕ ), ac-
cessible to observer B, has the form of an appropriate ensem-
ble,

ρB = 1
2ρB1

ϕ
+ 1

2ρB2
ϕ

= 1
2 I, (3)

with

ρB1
ϕ

= 1
2 [I − (ζϕ · σ)], (4)

ρB2
ϕ

= 1
2 [I + (ζϕ · σ)]. (5)
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The ensemble accessible to observer B is equivalent to the
fully depolarized state. Thus, any quantum-mechanical mea-
surement of observer B is incapable of distinguishing between
different ensembles of this form for different values of the
polarization angle ϕ. Consequently, arbitrary fast communi-
cation is excluded by the QM rules.

However, according to Gisin’s gedanken prescription, a
selective measurement by observer B can be prefaced by a
nonlinear evolution (as the Weinberg nonlinear evolution [3])
applied to the reduced density ρB and to the related ensem-
bles. Gisin shows that the Weinberg nonlinear time evolu-
tion does not respect the equivalence of ensembles so the
evolved ensemble is polarization dependent (ζϕ dependent).
Consequently, changes in the polarizations made by observer
A can be registered by observer B, i.e., instantaneous com-
munication is possible. Thus, to avoid contradiction with
relativity, nonlinear evolution must be ruled out of the QM
formalism.

We show that this argument does not work for nonlinear
evolutions satisfying the quasilinearity condition.

III. THE CONVEX QUASILINEAR MAP

Let us consider ensembles of the form

λρa + (1 − λ)ρb ≡ ρ, (6)

where 0 � λ � 1 and ρa, ρb belong to the convex set S of
density matrices [S ⊂ End(H), dim H = n < ∞]. A trace-
preserving map � in S is convex quasilinear if for each
non-negative λ � 1 and for arbitrary density operators ρa, ρb

there exists such λ̄, 0 � λ̄ � 1, that it holds,

�[ρ] = �[λρa + (1 − λ)ρb] = λ̄�[ρa] + (1 − λ̄)�[ρb].

(7)

This class of quantum operations also contains linear maps.
The essence of this map is that it transforms convex com-
binations of density operators into convex combinations of
their images so it preserves the convex structure of S. More-
over, it preserves the equivalence of ensembles related to
each fixed density matrix. Indeed, let ρ = λρa + (1 − λ)ρb

and ρ = pρA + (1 − p)ρB, where 0 � λ and p � 1 are two
decompositions of the density matrix ρ. Now, applying
a convex quasilinear map �, we obtain �[ρ] = �[λρa +
(1 − λ)ρb] = λ̄�[ρa] + (1 − λ̄)�[ρb] and �[ρ] = �[pρA +
(1 − p)ρB] = p̄�[ρA] + (1 − p̄)�[ρB]. But � is defined on
the whole set S, consequently both of these expressions
are well defined and are equal since equality is transitive.
Therefore, � gives the same result when applied to these
decompositions.

Usually, it is assumed that deterministic quantum evolution
preserves mixtures; it is realized by the requirement of the lin-
earity of � [13,20–23]. However, in our opinion, this assump-
tion is too restrictive and can be generalized to condition (7).
In fact, standard quantum-mechanical selective measurements
belong to the class of quasilinear transformations. Indeed, let
us define the trace-preserving nonlinear map corresponding
to a selective measurement, �[ρ] = �ρ�

Tr(�ρ�) , where � is a

projector. Applying � to the density matrix (6), we get

�[ρ] = λ�ρa� + (1 − λ)�ρb�

Tr(�ρ)

= λ
Tr(�ρa)

Tr(�ρ)
�[ρa] + (1 − λ)

Tr(�ρb)

Tr(�ρ)
�[ρb]. (8)

Now, Eq. (8) has the form (7) provided that

1 − λ
Tr(�ρa)

Tr(�ρ)
= (1 − λ)

Tr(�ρb)

Tr(�ρ)
. (9)

But using (6) one can easily verify that (9) really holds.
Therefore, Eq. (8) can be cast in the form (7) with

λ̄ = λ
Tr(�ρa)

Tr(�ρ)
(10)

and 0 � λ̄ � 1. From a technical point of view there is a prob-
lem with the definition of � in the case when Tr(�ρ) = 0.
In standard discussions of the state reduction postulate this
is not a problem because the state �[ρ] after the measure-
ment is realized with the probability p = Tr(�ρ). Conse-
quently, when Tr(�ρ) = 0, then the state �ρ�

Tr(�ρ�) is not
realized. In our example we want to have � defined on the
whole space of states, thus it should be defined also in the
case when Tr(�ρ) = 0. In such a case we set �[ρ] = �

Tr �
.

Equations (8)–(10) are consistent with this definition.
Notice that, in a special case when � is a rank one pro-

jector, then �[ρ] = � for all ρ. In such a situation � is con-
vex linear but in a somewhat trivial way: �[ρ] = λ�[ρa] +
(1 − λ)�[ρb] = λ� + (1 − λ)� = �, for all λ, ρa and ρb,
i.e., the result of �[ρ] has no dependence on ρ. However,
in a general case, �[ρ] = �ρ�

Tr(�ρ�) is nonlinear but convex
quasilinear.

The convex quasilinearity of some classes of quantum
operations was noted by Kraus in Ref. [24] (although Kraus
did not use this name). In fact, the applicability of the selective
measurements to the quantum mechanics is strongly related
to the quasilinearity property of this stochastic operation.
Indeed, it implies that the set of ensembles representing a
fixed density matrix ρ is mapped on the set of ensembles
representing �(ρ).

IV. NONLINEAR EVOLUTION SATISFYING
THE QUASILINEARITY CONDITION

In view of the above discussion it seems that there are no
objections to consider deterministic convex quasilinear evolu-
tions. Such an evolution map ρ(t ) = �t [ρ0], with the initial
condition ρ(0) = ρ0, should form a semigroup satisfying
relation (7) for each value of the time parameter t ; namely, if

λρa0 + (1 − λ)ρb0 = ρ0, (11)

then

�t [λρa0 + (1 − λ)ρb0] = λ(t )�t [ρa0] + [1 − λ(t )]�t [ρb0],

(12)

with the conditions λ(0) = λ and 0 � λ(t ) � 1. To show
that the set of deterministic convex quasilinear evolutions
is nonempty, we will construct a simple model of a qubit
evolution satisfying (12).
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To define the evolution of a qubit, we should determine
the nonlinear evolution of its Bloch vector. In the construction
of our model we use the well-known transformation rule for
a three-velocity v under Lorentz boosts in a given direction,
say, e (|e| = 1),

v′ = v + e[sinh η + (cosh η − 1)(e · v)]

cosh η + (e · v) sinh η
, (13)

where η is the rapidity (we work in natural units with h̄ =
c = 1). The above transformation (13) is one of the standard
examples of nonlinear transformations appearing in physics.

Let us notice two obvious facts: (i) Boosts in a given direc-
tion form a one-parameter subgroup of the Lorentz group, and
(ii) the length of a three-velocity is always less than or equal
to 1.

Observation (i) allows us to treat the transformation
rule (13) as an equation defining the time evolution of a
three-vector. Namely, we can rewrite Eq. (13) as

n(t ) = ξ + e[sinh(gt ) + [cosh(gt ) − 1](e · ξ)]

cosh(gt ) + (e · ξ) sinh(gt )
, (14)

where the constant g has been introduced for dimensional
reasons and n(0) ≡ ξ and ξ2 � 1. Now, point (i) implies that
if we write n(t ) = ft (ξ), then ft2 ◦ ft1 = ft1+t2 , therefore, (14)
is a nonlinear time evolution of n(t ).

Next, point (ii) gives us the possibility of identifying the
vector n(t ) with the Bloch vector defining a qubit density
matrix ρ(t ),

ρ(t ) = 1
2 [I + n(t ) · σ]. (15)

It means that the evolution ft corresponds to a nonlinear
evolution of a qubit density matrix,

ρ(t ) = �t [ρ0], (16)

where ρ0 = 1
2 (I + ξ · σ ). Point (ii) implies that the condition

n(t )2 � 1 is preserved for all t . Because the magnitude of
a unit vector does not change under the evolution (14), the
subset of pure states is invariant under the evolution �t .

Moreover, we can easily check that n(t ) → e in the limit
t → ∞. Therefore, under the evolution (14) mixed states
evolve into pure states. In such cases the von Neumann
entropy of the state (15) decreases during the evolution. This
observation, together with the second law of thermodynamics,
suggest that a carrier physical system (e.g., a spin-1/2 parti-
cle or a two-level atom) of the qubit evolving according to
Eq. (14) cannot be isolated. Instead, it should be treated as
an open quantum system interacting with an environment. Of
course, it does not exclude the use of the evolution (14) in the
considered Gisin gedanken experiment.

Let us notice that the Bloch vector (14) is a solution of the
following nonlinear differential equation,

ṅ = g(e − n(e · n)), (17)

under the initial condition n(0) = ξ.
Now, using the evolution (14), we can show that if Eq. (11)

holds, then

ρ(t ) = λ(t )ρa(t ) + [1 − λ(t )]ρb(t ), (18)

where

ρa(t ) = 1
2 [I + na(t ) · σ], ρb(t ) = 1

2 [I + nb(t ) · σ], (19)

and both Bloch vectors na and nb evolve according to the
nonlinear law (14) under the replacement ξ → ξa or ξb, re-
spectively. Using Eqs. (19), (18), and (14) we can find the
coefficient λ(t ). It is given by

λ(t ) = 1 + (e · ξa) tanh(gt )

1 + (e · ξ) tanh(gt )
λ. (20)

Therefore, we can conclude that each ensemble (11) equiva-
lent to ρ0 evolves under prescription (14) into ensemble (18)
equivalent to ρ(t ). We see that the coefficient λ(t ) explicitly
depends on time. However, in view of our previous remark
that a qubit evolving according to Eq. (14) cannot be treated
as an isolated system, the dependence of λ on time is rather
expected.

Returning to the Gisin gedanken experiment, the ensemble
ρB = TrA(ρϕ ), accessible to observer B [Eq. (3)], evolves
under (14) as follows,

ρB(t ) = 1
2 [I + (e · σ ) tanh(gt )], (21)

and

ρB1
ϕ
(t )

= 1

2

(
I + −ζϕ+ [sinh(gt )− (e · ζϕ )[cosh(gt )− 1]]e

cosh(gt )− (e · ζϕ ) sinh(gt )
· σ

)
,

(22)

ρB2
ϕ
(t )

= 1

2

(
I + ζϕ + [sinh(gt ) + (e · ζϕ )[cosh(gt ) − 1]]e

cosh(gt ) + (e · ζϕ ) sinh(gt )
· σ

)
,

(23)

where ζϕ is given in Eq. (1). So, using (20), we find that in
this case

λ(t ) = 1
2 [1 − (e · ζϕ ) tanh(gt )]. (24)

Therefore, finally, it really holds that

λ(t )ρB1
ϕ
(t ) + [1 − λ(t )]ρB2

ϕ
(t )

= 1
2 [I + (e · σ ) tanh(gt )] = ρB(t ). (25)

Thus, observer B cannot register any change of the polariza-
tion by observer A, exactly as in the standard case.

We can notice that the differential equation for the Bloch
vector (17) resembles the equation for the Bloch vector in the
simplified Weinberg model, discussed in Ref. [7], adapted to
the qubit case,

ṅ = g(e × n(e · n)). (26)

The solution of the last equation reads

n(t ) = ξ cos θ (t ) + (e × ξ) sin θ (t ) + e(e · ξ)[1 − cos θ (t )],

(27)
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where θ (t ) = gt (e · ξ) and n(0) = ξ. However, it can be ex-
plicitly shown that in general solution (27) does not satisfy
the quasilinearity property (18). Consequently, evolution in
the Weinberg model does not preserve the equivalence of
ensembles and allows for arbitrary fast signaling.

V. CONCLUSIONS

We have shown that time evolutions satisfying the quasilin-
earity property (12) are admissible in the convex set of density
operators even if they are nonlinear. As an example, we
discussed the nonlinear time evolution of a qubit explicitly sat-
isfying this property and we applied it to the famous gedanken
nonlocal correlation experiment by Gisin [7]. We explicitly
showed that this evolution does not allow for arbitrary fast
signaling. The reason is that the equivalence of ensembles
is preserved during the evolution. It is a general property of
convex quasilinear evolutions. Therefore, such evolutions are
not in contradiction with the special relativity at this level.

It remains an open question how big is the class of convex
quasilinear evolutions. In Ref. [25] we have shown that each
linear non-trace-preserving quantum operation generates a
convex quasilinear operation. Thus, besides the example we
have presented in this Rapid Communication, there exists a
wide class of convex quasilinear operations. However, the
question regarding the form of the most general convex quasi-
linear operation still remains open.

It is also interesting that, in the considered example of
convex quasilinear evolution, mixed states evolve into pure
states. It suggests that this kind of evolution might have
potential applications in collapse models.
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