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Coherent nonlinear multipulse processes, nonlinear waves, and echo effects in resonant media are the topical
problems of modern optics and important tools of coherent spectroscopy and quantum information science. We
generalize the McCall-Hahn area theorem to the formation of an arbitrary photon echo generated during the
multipulse excitation of the optically dense resonant media. The derived theorem made it possible to reveal
the nonlinear mechanism of generation and evolution of the photon echo signals inside the media after a two-
pulse excitation. We find that a series of self-reviving echo signals with a total area of 2π or 0π is excited and
propagates in the media depth, with each pulse having an individual area less than π . The resulting echo pulse
train is an alternative to the well-known soliton or breather. The developed pulse-area approach paves the way
for more precise coherent spectroscopy, studies of different photon echo signals, and quantum control of light
pulses in the optically dense media.
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Studies of coherent multipulse nonlinear effects such as
photon echo and four-wave mixing open wide opportunities
for understating light-atom interactions, fundamental pro-
cesses of nonlinear and quantum optics, provide power-
ful techniques for spectroscopic investigation of atoms and
molecules, and are considered as a principal tool for imple-
mentation of basic processes in practical quantum information
science [1–5]. Herein, the photon echo technique [6,7] attracts
special, long-lasting attention in coherent spectroscopy [7]
and light pulse storage [8–12]. Recently, the photon echo
in optically dense media opened promising opportunities for
quantum storage of a large number of light pulses [13–17]
and quantum processing [18] that determined a steady inter-
est and elaboration of numerous protocols of photon-echo-
based quantum memories [14,19–24], which are important for
the creation of quantum repeaters [25], microwave quantum
memory [26,27], etc.

The study of the properties of two- and three-pulse photon
echoes in optically dense media is the main task in the
development of multipulse spectroscopy and photon echo
quantum memory schemes in such media. The most general
theoretical description of the coherent resonant interaction
of multipulse light fields with resonant atoms can be pro-
vided by the pulse area theorem [28–35]. In early works on
the two-pulse (primary) photon echo, it was found that the
initial excitation could result in the generation of multiple
echo signals [30,36] followed by a long-term investigation
of the underlying mechanism [29,30,37–44]. Quite early an
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analytic solution for total area of all the echoes was obtained
[30,36,39], which proved that the total pulse area can tend
asymptotically toward 2π in the media depth if the initial
pulse area of two exciting laser pulses exceeds π . However,
this solution does not allow one to describe the behavior of
each individual echo pulse.

A previously acquired solution for the primary echo pulse
area predicted that the echo pulse area never exceeds π and
generally decays in the depth of the media [38]. This finding
again stressed the ambiguity of the known physical picture
behind the formation of the total nonlinear response to the
multipulse excitation. In recent years the stakes were raised by
the demand for an efficient optical solid-state quantum mem-
ory and the noted interest in coherent multipulse interactions
in the optically dense media.

In this Rapid Communication we find an analytical so-
lution of the photon echo pulse area theorem posed in
Refs. [29,36,37] in 1971. By analyzing the solution we dis-
cover the mechanism of self-induced transparency [28] for
two- and many-pulse excitation of the atomic media leading
to the formation of many echo pulses. To do that we find
the general analytic solution for the pulse area of an arbitrary
secondary photon echo signal. The found solutions show that
the echo signals are excited coherently one after another in
a certain area of the medium and then disappear, generating
new echo signals and creating a self-reviving echo sequence.
We show that depending on the input pulse areas this echo
pulse train forms a multipulse analog to the well-known
single-pulse 2π optical soliton or a 0π optical breather despite
each individual echo pulse area never exceeding π . Herein, by
using the highly nonlinear nature of the light-atom interaction
we can control the total response of the media. Being near the
threshold, when the incoming area of the second pulse is close
to π , and by slightly changing it to being <π or >π , one can
initiate a huge change in the outcome from an optical soliton
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to an optical breather, respectively. This also demonstrates the
potential of the pulse area approach for coherent spectroscopy
of the optically dense media.

First we reproduce the McCall-Hahn area theorem and
derive the general equation for the pulse area of an arbitrary
echo pulse starting with the usual reduced set of Maxwell-
Bloch equations [30] for the light field and atomic system:

[∂z + c−1∂t ]� = i
μ

2
〈P〉,

∂t u = −�v − γ u,

∂tv = �u − γ v + �w,

∂tw = −�v, (1)

where �r = �r(t, z,�) = (u, v,w)T is the Bloch vector, each
component depending on time t , spatial coordinate z, and
atomic detuning �; P = u − iv is the atomic polariza-
tion; electric field E (t, z) = ε(t, z) exp[i(kz − ωt )] + c.c. is
described by a complex light field envelope ε(t, z) with
corresponding Rabi frequency �(t, z) = (2d/h̄)ε(t, z); μ =
4πNd2ω/h̄c; γ = 1/T2, T2 is the coherence lifetime of the
atomic transition; and 〈. . .〉 ≡ ∫ ∞

−∞ G(�) . . . d� is the aver-
aging over the inhomogeneous broadening. From now on for
simplicity, we do not denote the existing dependence on z in
atomic and field variables �r and �.

We transfer to the pulse area θ = ∫ ∞
−∞ dt�(t ) and follow

[28,31] to find that incoming pulse areas θ1, θ2 satisfy the
well-known pulse area theorem

∂zθ = 1
2αw0(z) sin θ (z), (2)

where w0 is the initial inversion of the atomic system and α is
the resonant absorption coefficient [30]. The first pulse prop-
agates in the undisturbed media, with w0 = −1, and partially
inverts for the second pulse, so w0 = − cos θ1. Substituting
w0 into Eq. (2) we get the well-known solutions [30]

θ1(z) = 2 arctan

[
e−αz/2 tan

θ1(0)

2

]
,

θ2(z) = 2 arctan

[
κ sech

(
β − α

2
z

)]
, (3)

where β = ln{tan[ θ1(0)
2 ]} and κ = tan[ θ2(0)

2 ]/ sin[θ1(0)].
Equations (2) and (3) can be used to find the total area of

all excited photon echoes [30,36,37,39]:

θe(z) = 2 arctan

[
e−αz/2 tan

θ1(0) + θ2(0)

2

]
− θ2(z) − θ1(z).

(4)

This solution predicts that if θ2(0) < π, θ1(0) + θ2(0) > π ,
the total area of all echo pulses asymptotically tends to 2π

[36]. It leaves however a lot of uncertainty about the mech-
anism and physics of the photon echo generation, since any
information about the particular photon echo signals remains
hidden. How exactly do different echoes combine into the
2π pulse area? What is the contribution of an individual
echo? Moreover, if input pulse areas θ1(0) < π/2, θ2(0) >

π , Eq. (4) predicts the sum of all echoes to be 0. What
happens with the different echo signals in this case, and does
that mean that there will be no echoes? To answer all these

FIG. 1. Time delays and intervals between the pulses involved
in the formation of primary and secondary echoes. The pulses
are well separated and resonant with atomic transition with large
inhomogeneous broadening and long coherence lifetime: 1/�inh �
δt1,2 � τ � T2.

questions, we have to analyze the generation of each echo
signal individually.

To find the area theorem for an arbitrary individual photon
echo signal we integrate the first of Eqs. (1) over time around
the time of echo emission te, from t0 = te − τ/2 to t1 = te +
τ/2, where τ is the delay between the pulses (see Fig. 1). We
should also clarify the timescales assumed for the following
derivation. First, we assume nonoverlapping pulses τ � δt1,2

with pulse duration being much smaller than coherence time
δti � T2, i = 1, 2, e1, . . ., to neglect the relaxation during
the pulses. Second, inhomogeneous broadening of the atomic
system is much larger that the pulse spectrum �in > 1/δt1,2.
Third, for simplicity we consider a solid-state system, mean-
ing T1 � T2, and thus we can neglect the population decay
between the pulses. In short, 1/�in < δt1,2 � τ � T2.

The expressions under the integrals, P0(z,�) and
w(t, z,�), are complex expressions consisting of several
oscillating components. However, most of these components
will give 0 after averaging over � in Eq. (1). To find the proper
expression for the echo area we need to only take into account
the phasing components of polarization and inversion that
contribute to the echo formation. The details of the integration
and equation handling can be found in the Supplemental
Material [46].

As a result we obtain the general equation for an arbitrary
echo pulse area:

∂zθ (z) = 1

2
α

[
2v0(z) cos2 θ (z)

2
+ w0(z) sin θ (z)

]
, (5)

where w0(z) and v0(z) are the initial values (t = te − τ/2) of
the Bloch vector resonance components with � = 0 which
only give nonzero response in the field equation in Eq. (1). Af-
ter transition to η = tan θ (z)

2 we get a linear equation ∂zη(z) =
α
2 [v0(z) + w0(z)η(z)] with a clear solution.

Equation (5) describes the pulse area of a chosen echo sig-
nal given the phasing coherence v0 in the presence of spectral
uniform inversion w0 and Eq. (5) comes down to finding v0(z)
and w0(z) for each echo signal. In the Supplemental Material
[46] we describe the algorithm that allows to find the v0,w0

for an arbitrary echo. But whatever they may be, we note
that |θ | never exceeds π . Below we investigate the analytic
solutions for the pulse areas of all the echo signals.

For the primary echo we have �r(t ) = U (t −
τ )T (θ2)U (τ )T (θ1)�r(0), t0 = 3τ/2, and the correct phasing
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components of ṽ0(3τ/2), w̃0(3τ/2) [38,45]:

v0(3τ/2, z) = �2
τ sin θ1(z) sin2 θ2(z)

2
,

w̃0(3τ/2, z) = − cos θ1(z) cos θ2(z), (6)

where �τ = e−γ τ is the relaxation term. An equation cor-
responding to Eq. (5) gives the primary photon echo pulse
area:

θe1(z) = 2 arctan

[
�2

τ sin θ1(0) sin2 θ2(z)

2
sinh

αz

2

]
. (7)

After the incoming pulses and the primary echo pulse we
have �r(t ) = U (t − 2τ )T (θe1)U (τ )T (θ2)U (τ )T (θ1)�r(0), t0 =
5τ/2, and the phasing components v0(5τ/2, z),w0(5τ/2, z)
are

v0 = v01 + v02

= 1

2
�2

τ sin θ1(z) sin θe1(z) sin θ2(z)

+�2
τ cos θ1(z) sin2 θe1(z)

2
sin θ2(z),

w0 = w01 + w02

= −�2
τ sin θ1(z) sin2 θ2(z)

2
sin θe1(z)

− cos θ1(z) cos θ2(z) cos θe1(z). (8)

The first terms in both equations v01(z) =
1
2�2

τ sin θ1 sin θ2 sin θe1 and w01(z) = −�2
τ sin θ1 sin2 θ2

2 sin θe1

are proportional to sin θ1(z) and vanish when the first pulse is
absorbed. They are responsible for the stimulated photon echo
generated by incoming pulses and the primary echo pulse.
The other two components v02(z) = �2

τ cos θ1 sin θ2 sin2 θe1
2

and w02(z) = − cos θ1 cos θ2 cos θe1 are proportional to cos θ1

and correspond to the secondary two-pulse photon echo
created by the second pulse and the primary echo pulse.

Analysis of the successive echoes follows the same pro-
cedure but requires more calculations since v0 and w0 have
more terms with each step. In the Supplemental Material
[46] we introduce the phasing polarization and inversion
components for the third and the fourth echoes and discuss
the physical meaning of different contributions. It is obvious
that the described procedure can be applied for the case with
comparable transverse and longitudinal relaxations and for
other light-atom equations.

We will now proceed to clarify the mechanism of the total
2π pulse area formation when θ1(0) + θ2(0) > π . Figure 2
shows the spatial behavior of the area of incoming pulses
and echo pulses, and the total area depending on the optical
density of the medium for θ1(0) = 0.1π, θ2(0) = 0.999π . We
see that incoming pulses excite primary and secondary echoes
that in turn excite subsequent echoes. Each echo pulse is
born, propagates, and eventually dies out within a finite spatial
interval. However the total area of all existing pulses behaves
strictly in accordance with the McCall-Hahn area theorem
Eq. (4) and remains close to 2π . This is realized due to the
precise spatial consistency of all the echoes involved.

The case of θ2(0) > π really helps to highlight the benefits
of looking at an individual echo signal rather than at the sum
of all echo signals. The second incoming pulse is big enough

FIG. 2. The multipulse excitation in an optically dense medium.
Incoming pulse areas are θ1(0) = 0.1π, θ2(0) = 0.999π . The dashed
lines show the approximate solution for the second echo θe2 (αz1 =
4.1; blue dashed line) and the third echo θe3 (αz2 = 16.3; green
dashed line).

to form a 2π soliton on its own, and the McCall-Hahn area
theorem predicts that the sum of all echoes will equal 0π .
The impression could be that after some point in the medium
there are no echoes at all. The real picture, however, is much
more vivid: there are many hidden echoes with nontrivial
areas working together to comply with the McCall-Hahn area
theorem. Figure 3 showcases this echo pulse behavior for
θ1(0) = 0.1π, θ2(0) = 1.001π . Each two of the subsequent
echoes have opposite phases, so they are canceling each other
in a dynamical equilibrium, resulting in 0π total pulse area at
any point of the medium. Figure 3 also shows that the primary
echo assists the formation of the 2π total area, which would
otherwise happen much further into the medium.

We note that the echo areas in Figs. 2 and 3 behave very
similarly, differing only in their spatial delays. This is the case
when we can neglect the stimulated echo terms in Eqs. (8)
and find a highly accurate approximate analytic solution for
each pulse area. For example, we write for the secondary

FIG. 3. Evolution of the multipulse excitation in an optically
dense medium. Incoming pulse areas are θ1(0) = 0.1π, θ2(0) =
1.001π . The dashed lines show the approximate solution for the
second echo θe2 (αz1 = 4.1; blue dashed line) and the third echo θe3

(αz2 = 16.3; green dashed line).
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echo area (z > z1)

tan
θe2

2
= �τ sin θ2(z1) sin2 θe1(z)

2
sinh

α

2
(z − z1), (9)

where θe1 is given in Eq. (7) with the initial pulse areas taken
at the transition point z1: (θ1(0), θ2(0)) → (θ2(z1), θe1(z1)).
By doing so we assume that at z = z1 the first pulse was
successfully absorbed by the media and neglect polarization
and inversion components acquired at z < z1. The solution for
θe2 is shown with dashed lines in Figs. 2 and 3.

Equations (7) and (9) describe the pulse area at the output
of the optically dense media. Moreover, given δt1 > δt2 they
can also accurately describe the peak energy of the echo
pulse [41,45]. This easy-to-measure quantity can be used
for coherent multipulse spectroscopy of the optically dense
media, where the usual spectroscopy is complicated due to
strong nonlinear light-atom interaction. In this highly nonlin-
ear regime the conventional Beer law Iecho = I0�

2
τ is not valid

while Eq. (7) can be used to measure �τ dependence.
It also is interesting to discuss the experimental detection

of photon echo train generation and what it can lead to. As
seen in Figs. 2 and 3, one can experimentally observe only 2
or 3 light pulses at the output of the optical density medium,
while other pulses will be highly suppressed. Thus in media
with higher optical densities, we will see only higher order
echo pulses, characterized experimentally by later arrival
times. The photon echo experiments in such media are quite
typical for many quantum memory protocols. In particular, an
interesting opportunity is to try detecting the spatial evolution
of the photon echo inside such media, for example in the
rare-earth ion doped crystals [14,47,48].

One possible candidate for high optical density and large
Rabi frequency is the 4I9/2- 4F3/2 transition of Nd3+ : YVO4

at 897.705 nm with dipole moment d = 9.16 × 10−32 C m.
Considering P = 100 mW and a beam radius of r = 1 μm
one could reach up to � ∼ 250 MHz. The π pulses can be
as brief as several nanoseconds, which is much shorter than
T2. These pulses are spatially squeezed in the medium up to
4 orders of magnitude by the group velocity reduction in the
presence of a spectral hole in the optical transition [49]; this
would allow us to observe the spatial evolution of the solitons
and echo pulses inside the medium.

It is worth noting that only soliton-like pulses can prop-
agate through the medium without changing their temporal
form and transferring atoms to their initial state. Accordingly,
the photon echo pulses in the generated train will be stretched
in time and ultimately overlap with each other deep in the
medium forming a single 2π soliton in the case of Fig. 2.
Similarly the stretching echo pulses will asymptotically form
a 0π breather, for the case of Fig. 3. In the core of these
transformations lies the conservation laws of the Maxwell-
Bloch equations [50].

This concludes the long-lasting derivation of the two-
pulse photon echo area theorem started over 45 years ago in
Refs. [29,36,37], providing an analytic solution for the pulse
area of any desired photon echo signal. We showcase the
power of the pulse area approach by exploring the rich
physics behind the two-pulse echo excitation of an optically
dense medium in two previously understudied cases: θ1(0) <

π, θ2(0) � (�) π . We demonstrate that in both these cases a
self-reviving echo train is excited deep in the medium with
total pulse area 2π in the first case and 0π in the second
previously unknown case. Thus a slight change in the second
pulse area can lead to a dramatic change in the nonlinear
multipulse media response: an optical soliton in one case or
a soliton followed by a breather in the other case. At the same
time the complex spatial dynamic of the total nonlinear media
response after the two-pulse excitation is precisely aligned
with the general McCall-Hahn area theorem prediction.

The developed pulse area approach might serve as an
intensity-independent universal tool for deeper studies of pho-
ton echo quantum memory protocols, especially for intensive
light pulses. The application of this approach to few-photon
and single-photon fields is of particular interest when a few
atoms (quantum dots, superconducting qubits) are placed in
a high-Q resonator and nanowaveguide with strong nonlinear
photon-atom interaction. It was shown in such case that even
4–5 absorbers could be enough to create an inhomogeneous
broadening and implement an effective photon echo quantum
memory protocol [27,51]. This means that interaction of the
few-photon field with 4–5 two-level atoms will be highly
nonlinear and the pulse area approach could be useful. The
case of a single-photon field is special because its consid-
eration in the James-Cumming interaction model is reduced
to a system of linear equations. However, even here the
application of the area theorem can be relevant, when there
are additional intense controlling laser fields. Detailed study
of these problems requires special research.

In conclusion, the photon echo pulse area theorem can
provide insights in general analysis of coherent multipulse
interactions with various photon echo experiments, coherent
spectroscopy, and generation of nonlinear waves in optically
dense media. It can be used for deeper studies of quantum
memory protocols in both optical and microwave wavelength
regions, for two- and three-level atomic ensembles with ar-
bitrary transverse and longitudinal relaxation times, etc. The
next important analytic step could be to generalize and extend
the results acquired here for multipulse excitation using an
inverse scattering transform, as was done in Ref. [52] for the
McCall-Hahn area theorem.
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