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First passage processes often seem to defy common sense. For example, consider a particle diffusing toward a
target in a spherically symmetric confined system. One might naively expect that the hitting angle distribution as
the confining boundary recedes to infinity would be the same as for an unbounded system. Here we show that this
may or may not be true depending on the spatial dimension. In two dimensions, the limiting hitting distribution
corresponds to that of the unbounded system, while in three (or more) dimensions the two differ by a nonintuitive
additive constant, even when one accounts for the well-known finite probability that the particle never reaches
the target. Confinement has other subtle effects on the features of the angular hitting distribution. For example,
depending on the dimension and the starting distance from the target, the boundary may differentially favor
arrival opposite to the entry point and lead to a maximum in the three-dimensional variance of the hitting angle
statistics.

DOI: 10.1103/PhysRevResearch.2.012019

Imagine the following scenarios. (i) A defenseless animal
is randomly searching for a source of water in a new, entirely
closed territory, e.g., a national park, where a small lake is
hidden [1–6]. The shoreline of this water point is particularly
dangerous since well-camouflaged predators are on the prowl,
except at one small location at the rear of the lake where it is
safe. Will the wandering animal be able to ease its thirst with-
out being devoured? (ii) Therapeutic molecules are diffusing
in a cell and to be effective they must reach a specific part
of the nucleus [7–11]. In both situations we are interested in
the probability for a diffusive agent to hit a specific point on a
target in a confined space and, more subtly, does the degree of
confinement play any significant role in this random search?
As we will see in the rest of this Rapid Communication, the
answer may be dramatically different depending on whether
the diffusive search is in two (the animal) or three (the drug
molecule) dimensions.

The questions naturally fall within the scope of first pas-
sage processes [12–15] that find wide application. In ecology,
examples include animal foraging [16–20], prey location [21],
mating encounters [22], and the effect of physical barriers
on animal movement [23] and predator-prey dynamics [4–6].
Diffusion limited reactions like the binding time of a polymer
to a surface receptor [24], the escape time from one pheno-
typic state to another during breast cancer growth [25] or
the time needed for proteins to search for particular DNA
locations [26–28] can also be formulated in terms of first
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passage times. Diffusion of cold atoms in optical lattices [29],
oxygen transport in muscle tissue [30], and self-assembly of
macromolecules [31] are yet further examples.

First passage processes in confined geometries [32–37] are
of particular interest because of their relevance for problems in
biophysics. The boundary may be totally or partially reflect-
ing [38], with narrow [39,40] or large escape zones and/or
absorbing areas which play the role of the target. A recent
application of such confined processes concerns intracellular
targeting for therapeutic intervention on, e.g., autoimmune,
oncogenic, and degenerative diseases [7–11,41–44].

The eventual hitting location of a diffusing particle on an
object is controlled by its harmonic measure [45]. Physically,
this corresponds to the gradient of the electrostatic potential
at the object’s boundary. The harmonic measure of fractal
structures formed by diffusion limited aggregation has been
well studied [46–49]. For regular, nonfractal, targets, however,
there are very few studies on the effect of confinement on
the hitting position [48,50] and recent studies of first passage
processes [51–55] focus on the first passage time rather than
the hitting location.

In the following we present analytic solutions for the hit-
ting angle distribution on a uniform circular [two-dimensional
(2D)] or spherical (3D) target contained within a spherically
symmetric reflecting wall. The diffusing particle is absorbed,
and its trajectory ends, the first time it touches any point on
the target. We suppose that there is a preferred location on
the target, and for the sake of argument we assume that it is
somewhere behind the target relative to the starting position.
Our model should be contrasted with narrow escape problems
[40,56,57] in which the trajectory of the diffusing particle
ends only when it exits through one or more small windows.

Two dimensions. The eventual hitting angle distribution
in an unbounded system may be found by using a map-
ping to the equivalent electrostatic system [12] (see Fig. 1).
More precisely, the hitting probability at a boundary point
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FIG. 1. The two-dimensional system consists of a Brownian par-
ticle diffusing in an annulus formed from an inner absorbing target
of radius a and an outer reflecting wall of radius b. The particle starts
its diffusive trajectory at a distance r0 from the center and terminates
when it touches the target for the first time. We are interested in the
distribution of the angle of the point of first contact on the target, θ .

corresponds to the electric field at the same location when
a charge of appropriate magnitude is placed at a distance r0

and the boundary surface is grounded. The electric field can
be found using the method of images and the result for the
eventual hitting probability is

f ∗
2D(θ ) = 1

2π

1 − a2/r2
0

1 − (2a/r0) cos θ + a2/r2
0

, (1)

where the asterisk indicates the absence of a confining
boundary (see, e.g., [12]). The distribution is normalized∫ π

−π
f ∗
2D(θ )dθ = 1, as the particle is certain to eventually

hit the target, and has maximum and minimum values at
θ = 0 and θ = π , respectively. Few published studies have
attempted to extend these results to confined systems, but
see [48,50], with the former considering confinement by flat
planes.

More generally, it can be shown [58] that f (r, θ ) satisfies
the harmonic equation

1

r0

∂

∂r0

(
r0

∂ f2D

∂r0

)
+ 1

r0
2

∂2 f2D

∂θ2
= 0, (2)

with boundary conditions f (a, θ ) = δ(θ ) and ∂ f (r0, θ )/
∂r0|r0=b = 0. This leads to the solution

f2D(r0, θ ) = 1

2π

[
1 + 2

∞∑
m=1

cm cos(mθ )

]
, (3)

where

cm = r2m
0 + b2m

a2m + b2m

(
a

r0

)m

(4)

is a decreasing function of b and r0.
This distribution is clearly normalized,

∫ π

−π
dθ f2D(θ ) = 1,

which is consistent with the certainty of (eventually) hitting
the target. Some results are shown in Fig. 2. One observes that
the more confined the system, the sharper the distribution: The

FIG. 2. Eventual hitting angle distribution in a 2D system (3) for
a starting distance r0 = 3 and different confinements b = 3, 4, 5 (a =
1). The limiting distribution (b = ∞), shown as the dashed curve, is
the same as the unbounded one (1). The inset shows the ratio of the
maximum to the minimum hitting probability ψ (b, r0).

particle is more likely to hit at θ = 0 and less likely to reach
the rear of the target at θ = π than in an unconfined system.

One can show that for large b the bounded and unbounded
[Eq. (1)] hitting angle distributions are related as

f2D(θ ) = f ∗
2D(θ ) + a

r0

[( r0

a

)2
− 1

](a

b

)2
cos θ + O((a/b)4),

(5)

showing that they are equal in the limit of an infinitely distant
boundary. Moreover, convergence to this limit is rapid unless
the diffusing particle starts close to the external confining
boundary r0 ≈ b.

The mean and mean square of the cosine of the hitting
angle are given by

〈cos θ〉 = c1 = r2
0 + b2

a2 + b2

(
a

r0

)
, (6)

〈cos2 θ〉 = (1 + c2)/2 = 1

2

[
1 + r4

0 + b4

a4 + b4

(
a

r0

)2
]

(7)

and these decrease monotonically with increasing b for fixed
initial position r0 and with increasing r0 for fixed b. For a
confined 2D system (b finite), the mean of the cosine of the
hitting angle is always larger than for the unbounded system.
The variance increases monotonically with increasing r0 for
fixed b and with increasing b for fixed r0 and is always smaller
than for the unbounded system [58].

Further insight into the effect of confinement on the hitting
angle distribution is provided by the ratio of the maximum to
the minimum probabilities ψ (r0) = f (r0, 0)/ f (r0, π ) [12]. In
two dimensions confinement always increases this ratio com-
pared to an unconfined system with the same starting distance
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ψ (r0) > ψ∗(r0), i.e., confinement preferentially favors hitting
the front compared with the back of the disk, decreasing both
the mean angle and the probability of hitting the preferred
region of the target (see Fig. 2).

To understand this behavior, we recall that in two dimen-
sions all particles eventually hit the target. Those that take a
long time to arrive are more likely to have a random orienta-
tion with respect to the starting position, thus enhancing the
probability to arrive at the rear of the target. When a barrier
is present, it tends to suppress this effect by preventing the
particles from drifting too far away from the target. Thus they
retain some correlation with the starting position and are more
likely to hit the front of the target.

Three dimensions. The eventual hitting probability for an
unbounded system

f ∗
3D(θ ) = a

2r0

1 − a2/r2
0[

1 − (2a/r0) cos θ + a2/r2
0

]3/2 (8)

is not normalized
∫ π

0 dθ sin θ f ∗
3D(θ ) = a/r0 < 1, as in three

dimensions there is a finite probability that the particle never
reaches the target. For the bounded system consisting of a
spherical target contained within a spherical reflecting bound-
ary of radius b we obtain, using a similar approach as for the
2D system,

f3D(θ ) = 1

2
+

∞∑
m=1

(
m + 1

2

)
αmPm(cos θ ), (9)

where Pm(x) is the Legendre polynomial and

αm = (m + 1)r2m+1
0 + mb2m+1

(m + 1)a2m+1 + mb2m+1

(
a

r0

)m+1

. (10)

Clearly,
∫ π

0 dθ sin θ f3D(θ ) = 1, i.e., the particle is certain to
hit the target as a result of the confining wall.

Naively, we might expect that the distribution of the
bounded system as the reflecting wall recedes to infinity
f ∞
3D(r0, θ ) would just be the unbounded distribution normal-

ized (r0/a) f ∗
3D(r0, θ ). However, this significantly underesti-

mates the probability of hitting the backside of the target in
the confined system. In fact, one can show that

f3D(θ ) = f ∗
3D(r0, θ ) + 1

2

(
1 − a

r0

)

+3

(
a

r0

)2[( r0

a

)3
− 1

](a

b

)3
cos θ + O

((((a

b

)5
)))

,

(11)

so in the limit of infinite b the two differ by the additive
constant 1

2 (1 − a
r0

). This can be understood in the follow-
ing way. In the unbounded system, a fraction of particles
1 − a/r0 never reaches the target. If a (distant) reflecting
barrier is present, however, these particles are not lost and
will eventually hit the target. Their hitting angle, however, is
largely uncorrelated with the initial orientation and they there-
fore contribute a constant term to the bounded hitting angle
distribution (the factor of 1

2 results from the normalization
factor

∫ π

0 dθ sin θ ). A graphical illustration of the difference
is presented in Fig. 3. The first correction to the infinite limit
occurs at order (a/b)3 [Eq. (11)], explaining why the hitting

FIG. 3. Eventual hitting angle distribution in a 3D system for
r0 = 3 and b = 3, 4, 5 (a = 1). The dotted curve shows the limiting
distribution (11) and the dashed curve shows the distribution in the
unbounded system (8). The insets show ψ (b, r0) for two different
values of the starting distance, r0 = 1.2 < r0c and r0 = 3 > r0c, with
r0c defined in the text.

angle distribution converges rapidly to the infinite limit with
increasing b. For example, for r0 = 2a, the confined distribu-
tion differs from the asymptotic one f ∗

3D(r0, θ ) + 1
2 (1 − a

r0
) by

less than 10% for b � 4a.
The behavior of the probability ratio ψ (r0) =

f3D(r0, 0)/ f3D(r0, π ) is more subtle than in two dimensions.
If the starting point r0 is farther than a specific distance
r0c = 2.7944a, then ψ (r0) < ψ∗(r0), i.e., any degree of
confinement reduces the relative probability of hitting the
front compared with the back, which is the opposite of the
behavior observed in two dimensions. In three dimensions,
only a fraction of the particles hits the target and those that do
typically follow direct trajectories [37]. If a confining barrier
is present, it channels some of the particles that would have
escaped to the rear of the target, thus lowering ψ compared
with ψ∗.

If, on the other hand, r0 < r0c, we observe a crossover. For
b < r01(r0), ψ (r0) > ψ∗(r0), while if b > r01(r0), ψ (r0) <

ψ∗(r0). In the former case, i.e., with a high degree of con-
finement, the barrier tends to reflect the particles directly back
towards the target, thus enhancing the front to back hitting
probability ratio ψ .

The first and second moments of cos θ are

〈cos θ〉 = 2r3
0 + b3

2a3 + b3

(
a

r0

)2

, (12)

〈cos2 θ〉 = 1

3
+ 2

3

(
3r5

0 + 2b5

3a5 + 2b5

)(
a

r0

)3

, (13)

with asymptotic limiting values 〈cos θ〉∞ = (a/r0)2 and
〈cos2 θ〉∞ = 1

3 + 2
3 (a/r0)3. These are different from the
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FIG. 4. Variance of the cosine of the hitting angle in the 3D
system as a function of the starting position r0 for different values
of b (solid red curves), compared with the unbounded system [1 −
(a/r0)2]/3 (dashed blue curve), and the uniform case (dot-dashed
gray curve). The crosses indicate the position of the maxima. The
inset shows the spherical target surface density plots for r0 = 2 for
different values of b and for the unbounded system (bottom right).

unbounded values 〈cos θ〉∗ = a/r0 and 〈cos2 θ〉∗ = 1
3 +

2
3 (a/r0)2. This is in stark contrast to the 2D system for which
the corresponding quantities are the same, i.e., 〈cos θ〉∗ =
limb→∞〈cos θ〉 and 〈cos2 θ〉∗ = limb→∞〈cos2 θ〉.

In Fig. 4 we examine the variance of the cosine of the
hitting angle as a function of the starting distance r0. In the
unbounded system it increases monotonically and approaches
an asymptotic value of 1

3 , corresponding to a uniform distribu-
tion. We also show results for various degrees of confinement

b. For b < 3.21a the variance increases monotonically, reach-
ing a maximum value for r0 = b. For b > 3.21a a maximum
occurs at r0 < b. As b → ∞ the position of the maximum
approaches r0 = 2a. This should be compared with the 2D
system for which the variance always increases monotonically
(see [58]). In addition, this maximum becomes more pro-
nounced as the confinement eases (b → ∞) and may exceed
that of the uniform distribution, 1

3 . For the same starting
position r0, the variance in the confined system is always
larger than in the unbounded one if b > 2.93a. For b less than
this value there is a crossover and for strong confinement the
variance maximum is suppressed for all values of r0 < b (see
Fig. 4).

In summary, the qualitative difference between 2D and 3D
random searches is consequential for the hitting angle distri-
butions. Our principal results are embodied in Eqs. (5) and
(11), which describe the effect of confinement on the hitting
angle distribution in two and three dimensions, respectively.
In the former, the distribution in the presence of a reflecting
barrier approaches that of the unbounded system rapidly with
increasing wall distance. In three dimensions the bounded dis-
tribution also converges quickly as the degree of confinement
is reduced, but the limit differs from the unbounded system
by a constant additive factor. It may be possible to obtain
the full hitting distribution in two dimensions for an arbitrary
confining boundary using a recently introduced conformal
mapping approach [52]. We have focused on the physically
most interesting dimensions, but one could generalize to an
arbitrary dimension [36].

Returning to the scenarios presented in the introduction,
the animal searching for water in a closed territory always
suffers from the presence of the boundary which indirectly
pushes it to the front, dangerous part, of the lake. The effect is
reversed for a diffusive therapeutic molecule in a cell if the
molecular gateway is farther than ∼2.8a from the targeted
nucleus of radius a. In this case, the boundary differentially
favors arrival opposite the entry point.
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