
PHYSICAL REVIEW RESEARCH 2, 012009(R) (2020)
Rapid Communications
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We propose the ZQ Berry phase as a topological invariant for higher-order symmetry-protected topological
(HOSPT) phases for two- and three-dimensional systems. It is topologically stable for electron-electron
interactions assuming the gap remains open. As a concrete example, we show that the Berry phase is quantized
in Z4 and characterizes the HOSPT phase of the extended Benalcazar-Bernevig-Hughes (BBH) model, which
contains the next-nearest-neighbor hopping and the intersite Coulomb interactions. In addition, we introduce
the Z4 Berry phase for the spin-model analog of the BBH model. Furthermore, we demonstrate the Berry
phase is quantized in Z4 for the three-dimensional version of the BBH model. We also confirm the bulk-corner
correspondence between the Z4 Berry phase and the corner states in the HOSPT phases.
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Introduction. Topological phases of matter, which are not
characterized by the local order parameter but by the topolog-
ical order parameter, have been one of the central topics of the
condensed matter physics. Even ten years after the celebrated
ten-fold-way classification [1–3] of the topological insulators
and superconductors [4,5], the notion of topologically non-
trivial states has greatly extended its scope by incorporating
the crystalline symmetries [6–15]. It was further revealed that
short-range entangled quantum many-body states can also
host topologically nontrivial state protected by symmetries,
which is so-called symmetry protected topological phases
(SPT phases) [16–20].

Recently, a novel topological states of matter associated
with crystalline symmetries, called a higher-order topological
insulator (HOTI), were proposed [21–32] as a generalization
of the bulk-edge correspondence [33]. This state has topologi-
cally protected boundary states with co-dimension larger than
one, e.g., corner states in two- and three-dimensional systems.
Together with these theoretical developments, experimental
realization of the HOTIs has also been intensively pursued
both in solid-state systems and artificial materials [34–39].

So far, to identify the HOTI phase, several topological
invariants have been proposed, such as the nested Wilson loop
[26,30], the quantized Wannier center [28], the entanglement
polarization/entropy [40,41] and the multiple moment [42].
The K-theoretic classification was also proposed [43]. Yet,
not many examples are known to be applicable to the quan-
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tum many-body analog of the HOTI phase, or the higher-
order symmetry protected topological phase (HOSPT phase)
[44–46], which includes not only interacting fermion systems
but also spin (bosonic) systems. It is therefore highly desirable
to find a topological invariant which can be used to identify
the HOTI and HOSPT phases, ranging from noninteracting
fermion systems, to bosonic/fermionic many-body systems.

In this Rapid Communication, we propose that the quan-
tized Berry phase with respect to the local twist of the Hamil-
tonian characterizes the HOTI and HOSPT phases. In the
literature, the quantized Berry phase has been used for char-
acterizing various SPT phases, including both noninteracting
systems and quantum many-body systems [16,47–55]. The
key observation in those examples is that, finite Berry phase
indicates that the ground state is adiabatically connected with
the “irreducible cluster state”, which cannot be decomposed
in to the smaller elements under the symmetries which protect
the topological phases. Here, we demonstrate that the HOSPT
state can also be connected to the irreducible cluster state,
and that the characteristic higher-order boundary states can
be obtained by “amputating” the clusters at the boundary.
As such, the quantized Berry phase serves as a topological
invariant for the HOSPT phase, similarly to the conventional
SPT phases.

As a concrete example, we employ the seminal model of
the HOTI introduced by Benalcazar-Bernevig-Hughes (BBH)
[26] with the additional next-nearest-neighbor (NNN) hop-
ping term. We show that four-fold rotational (C4) symmetry
gives rise to the Z4 Berry phase. We then extend our target
to the many-body analogs of the BBH model, namely, the
BBH model with the intersite repulsive interaction and the
spin-model analog of the BBH model, which are the platforms
of the HOSPT phases. In both of these two models, the
correspondence between the Z4 Berry phase and the gapless
corner excitation for the finite system is confirmed, which
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FIG. 1. (a) Hopping terms of the square lattice model. The
amplitude of the hopping on red (blue) lines are t1 (t2). The phases
of the hopping are e−iπ/4 along the arrows. (b) The twist parameters
θ1, . . . , θ4 for the Z4 Berry phase. (c), (d) Schematic picture about the
correspondence between the corner state and the Berry phases. The
red (blue) plaquettes are the type-I (II) plaquettes. Thick (dashed)
lines denote the strong (weak) bonds. In (c), (d), the plaquettes
with strong or weak bonds are cut to make a corner. In (c), the
corresponding Berry phase for strong or weak plaquettes are γ I =
0/γ II = π and the corner state appears, while in (d), γ I = π/γ II = 0
and no corner states appear. (e) The total density of four corner states
is plotted for the system with (t1/t2 = 0.4, λ = 0.2). The system size
is 20×20. (f) The Berry phase for the model with λ = 0.2 against
t1/t2. The nontrivial Berry phase corresponds to the HOTI phase.

clearly demonstrates that the quantized Berry phase charac-
terizes the HOSPT phases beyond the noninteracting fermion
systems. Finally, the application of the present formalism
to the three-dimensional BBH model (3D BBH model)
is discussed.

Z4 Berry phase for noninteracting fermions. The Hamil-
tonian for the extended BBH model reads H0 = HNN +
HNNN , where HNN = −∑

〈i j〉 ti jeiαi, j c†
i c j , and HNNN =

−λ
∑

〈〈i j〉〉 ui jc
†
i c j . HNN represents the NN-hopping term, and

ti j = t1 (t2) for bonds colored in red (blue) in Fig. 1(a). The
phase factor eiαi, j is chosen such that the π flux is inserted
to every square plaquette, which is essential to obtain the
bulk energy gap [24,31]. We set αi, j = π/4 along the arrows
shown in Fig. 1(a) to explicitly represent the C4 symmetry.
Note that HNN is equivalent to the original form shown in
Ref. [26], which seemingly lacks the C4 symmetry, under the
gauge transformation. For convenience, we label the square
plaquettes in three types: type-I, where all bonds have the

hopping amplitude t1, type-II, where all bonds have the hop-
ping amplitude t2, and type-III, where two of four bonds have
the hopping amplitude t1 and the rest have t2. Then, in the
NNN-hopping term HNNN , ui j is set according to the type
of the plaquette to which the NNN bond belong, namely,
ui j = t1, t2, and (t1 + t2)/2 if the bond (i, j) is in the type-I,
type-II, and type-III plaquettes, respectively. The parameter
λ in HNNN controls the ratio between HNN and HNNN . We
emphasize that the model with finite λ has the C4 symmetry
but broken chiral symmetry. In the following, if not mentioned
otherwise, we consider the case of half-filling.

Now, let us define the Berry phase with respect to the local
twist of the Hamiltonian [56]. To begin with, we rewritten H0

as H0 = ∑
η=I,II

∑
P∈type−η hP, where hP is the Hamiltonian

of the plaquette P. We choose one of the square plaquettes
P0 which belongs to either type-I or type-II. We then mod-
ify hP0 in such a way that hP0 (�) = −∑

〈i j〉∈P0
ti jeiαi, j c̃†

i c̃ j −
λ

∑
〈〈i j〉〉∈P0

ui j c̃
†
i c̃ j , where c̃ j := eiϕ j c j with ϕ j = ∑ j

q=1 θq for
j = 1, 2, 3, 4 and ϕ4 = 0. The parameter space � is de-
fined by three independent parameters (θ1, θ2, θ3) and θ4 =
−∑3

j=1 θ j . Note that the Hamiltonians on all the other pla-
quettes are not changed. We write the total Hamiltonian with
the twist as H(�) := hP0 (�) + ∑

P �=P0
hP. We define trajecto-

ries Lj ( j = 1, 2, 3, 4) in the parameter space: E j−1 → G →
E j where E1 = (2π, 0, 0), E2 = (0, 2π, 0), E3 = (0, 0, 2π ),
E0 = E4 = (0, 0, 0), and G = 1/4

∑4
j=1 E j . The Berry phase

for the parameter space is defined as a contour integral of
the Berry connection, A(�) = 〈	(�)| ∂

∂�
|	(�)〉, along the

path Lj , γ
η
j = −i

∮
L j

d� · A(�), where |	(�)〉 represents the
many-body ground state for H(�).

The Berry phase for the present model is quantized in Z4

because of the following reason: First, due to the cancellation
of the trajectories in each path Lj , we have

4∑

j=1

γ
η
j ≡ 4γ ≡ 0 mod 2π. (1)

Second, the C4 symmetry enforces

γ
η

1 ≡ γ
η

2 ≡ γ
η

3 ≡ γ
η

4 ≡ γ η mod 2π. (2)

Combining these two equations, we obtain γ
η
j ≡ 2π n

4 mod
2π, n ∈ Z for j = 1, 2, 3, 4. In the following, we abbreviate
γ

η
j as γ η.

Physical consequences of the nontrivial Berry phase can
be well illustrated by considering two “decoupled” limits,
namely, t1 = 0, t2 �= 0, and t1 �= 0, t2 = 0. In the former
limit, the Hamiltonian is given by H = ∑

P∈type−II hP, thus the
ground state is nothing but the product state of the plaquette
state, |	II

0 〉 = ∏
P∈type−II (ψ†

P,2ψ
†
P,1 |0〉P ), where ψ

†
P,1 and ψ

†
P,2

are the lowest and the second-lowest energy states of hP,
respectively, and |0〉P is the vacuum of P. We refer to |	II

0 〉
as the type-II plaquette state. Then, one can show that γ I = 0
since the Hamiltonian on type-I plaquettes is switched off in
this limit, and that γ II = π = 2π× 1

2 , reflecting the fact that
the Berry phase for the decoupled cluster corresponds to the
filling factor multiplied by 2π (see Supplemental Material for
details [57]). Now, let us switch on t1. As far as |t1| < |t2| is
satisfied, the bulk band gap does not close upon increasing
t1, thus the Berry phase does not change even for finite t1.
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This implies that the ground state for |t1| < |t2| is adiabatically
connected to the type-II plaquette state [Fig. 1(c)]. One can
also show that, if we start from the latter limit, i.e., t1 �=
0, t2 = 0, the ground state is adiabatically connected to the
type-I plaquette state |	I

0〉 as far as |t1| > |t2| is satisfied.
Thus, the ground state has the Berry phase γ I = π [Fig. 1(d)].
We emphasize that the plaquette states discussed above are
minimally decoupled states connected to the ground state of
H0. Since the plaquette states cannot be adiabatically con-
nected to the atomic insulator, they are the “reference states”
of the HOSPT phase in the present model.

Having the decoupled picture at hand, the boundary states
on the finite systems are naturally inferred, namely, if the
ground state is connected to the type-η plaquette state and
the type-η plaquette is cut off at the corner, there has to be
a zero energy state at the corner which does not belong to any
type-η plaquette. We demonstrate this picture for the model
H0. Consider the system under the open boundary condition,
whose corner configuration is chosen such that the type-II
plaquette is cut off. In this model, the exact corner states can
be constructed for |t1/t2| < 1 at any λ [Fig. 1(e)] [57], whereas
the corner state does not exist for |t1/t2| > 1, meaning that
the phase transition from the HOTI phase to the trivial phase
occurs at t1/t2 = ±1. Turning to the system under periodic
boundary conditions, the Z4 Berry phase γ II becomes non-
trivial for |t1/t2| < 1 [Fig. 1(f)], which completely coincides
with the HOTI phase. Note that there is a relation between γ I

and γ II such that γ I(t1/t2) = γ II(t2/t1), indicating the duality
between type-I and type-II plaquettes. Considering these, we
conclude that the bulk-boundary correspondence between the
Z4 Berry phase and the zero-energy corner states of the HOTI
phase holds, thus the Z4 Berry phase indeed serves as a
topological invariant for the HOTI phase.

Interacting fermions. We now turn to the results of the
many-body systems. The many-body eigenvalues and eigen-
states are calculated by the exact diagonalization using the
lattice-model solver H� [58]. We begin with the BBH model
with the NN repulsive interaction H = H0 + Hint with Hint =
V

∑
〈i j〉 n̂in̂ j where n̂i = c†

i ci represents the density operator.
We employ a finite system with N = L×L sites. For simplic-
ity, we set λ = 0 in the following.

We have numerically confirmed that the ground state is
gapped for V � 0 under the periodic boundary condition.
Note, however, that the quantum phase transition to the charge
density wave will occur at V = Vc upon increasing V , if we
consider the thermodynamic limit (L → ∞). Nevertheless,
one can expect that the Vc is larger than the bulk band gap, thus
the following result will be valid if V is smaller than the bulk
band gap. In Fig. 2(a), we plot the Berry phase for V = 0.4 as
a function of t1/t2. Clearly, the Berry phases are quantized and
the topological phase transition occurs upon changing t1/t2.

Similarly to the noninteracting-fermion analog, π -Berry
phase indicates the topologically nontrivial state, or the
HOSPT phase. To confirm this, we examine the spacial
profile of the particle distribution of the charge excitation
under the open boundary condition in both of two directions.
To be more concrete, we increase the number of particles
from L×L

2 to L×L
2 + 2, and investigate the occupation number

of each site. If the low-energy excitation is localized at the

FIG. 2. (a) The Z4 Berry phase for the interacting fermion
model. The Berry phases are nicely quantized even with the inter-
actions. The nontrivial phase is adiabatically connected to the nonin-
teracting HOTI phase. The inset is a plot of the occupation numbers
with open boundary conditions, where (L×L)/2 + 2 particles are
filled. The results are obtained for the systems with L = 4. (b) The
Z4 Berry phases for the BBH-type spin model.

corners, one can expect that the occupation number becomes
1 only at the corners while it remains to be 1/2 in the bulk,
which becomes a hallmark of the HO topological phase.

The result is shown in the inset of Fig. 2(a). We see that
the occupation numbers at corner sites are enhanced, while
the occupation numbers at bulk sites remain 1/2. This means
that gapless excitations that are reminiscent of the corner zero
mode of the HOTI in the noninteracting case are localized at
the corner, as expected. We then conclude that the HOSPT
phase which is characterized by the gapless corner excitation
exists for the interacting BBH model, and the Z4 Berry phase
serves as a topological invariant as is in the noninteracting
case.

Spin model. As the second example of the quantum
many-body system with the HOSPT phase, we study
the spin-model analog of the BBH model [45], Hspin =∑

〈i, j〉 Ji j[ 1
2 (S+

i S−
j + S−

i S+
j ) + Sz

i Sz
j], where Si is the spin

operator of S = 1/2 at the site i, Ji j = J1, J2 are the exchange
parameters on the NN bonds and  is the Ising anisotropy;
 = 0 and  = 1 correspond to the quantum XY model and
the Heisenberg model, respectively. The spacial configuration
of Ji j is the same as that for the noninteracting-fermion
analog, obtained by the replacement t1 → J1 and t2 → J2. The
existence of the corner modes in this model is discussed by
using Jordan-Wigner transformation in Ref. [45].

To define the Berry phase, we again decomposed the
Hamiltonian into the sum over the plaquettes and introduce
the twist parameters as S−

j → eiϕ j S−
j and S+

j → e−iϕ j S+
j , on

one of the plaquettes which belongs to either type-I or type-II.
Then, the Berry phase is given by the same form as that
of fermion systems. Figure 2(b) shows the Berry phase γ II.
Again, the clear change of γ II is seen, and γ η = π indicates
that the state can be adiabatically connected to the irreducible
cluster state on the type-η plaquette, i.e., the state is in
the HOSPT phase. Interestingly, in contrast to the fermionic
systems, the transition point for the XY model is deviated
from J1/J2 = 1, meaning that there is an intermediate phase
where both of the Berry phases are equal to zero, which cannot
be connected to either of the decoupled cluster states. This can
be an artifact arising from the finite size effect, and identifying
the nature of this phase requires further studies.
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FIG. 3. (a) The unit cell of the 3D BBH model is shown. On the
blue line, the hopping term has the phase e−iπ = −1. Then the model
has a π flux for each plane. The Z4 operation changes the basis of
the unit cell from left to right. (b) The total density of eight corner
states is plotted with t1/t2 = 0.1. The system size is 10×10. (c) The
Berry phase for the model against t1/t2.

3D BBH model. Finally, we apply the Berry phase analysis
to the 3D BBH model. The Hamiltonian for the 3D BBH
model reads [26,27] H3D

0 = −∑
〈i j〉 e−iαi, j ti jc

†
i c j , where ti j =

t1 for bonds in unit cells and otherwise ti j = t2. The phases of
the hopping are α = π (0) for bonds along the blue (black)
lines in Fig. 3(a), hence all the surfaces have π flux per
unit surface. The model has the HOTI phase when t1/t2 < 1.
Figure 3(b) shows the total density plot of the corner states
with t1/t2 = 0.1.

To define the Berry phase, we again introduce the
twist in the Hamiltonian as c̃ j := eiϕ j c j with ϕ j = ∑ j

q=1 θq

for j = 1, 2, . . . , 8 and ϕ8 = 0. Then we have seven
independent parameters � = (θ1, . . . , θ7). As shown in
Fig. 3(a), the Hamiltonian is invariant under (Z8)2 symme-
try. In the parameter space, we define trajectories Lj ( j =
1, 2, . . . , 8): E j−1 → G → E j where E1 = (2π, 0, . . . , 0),
. . . , E7 = (0, 0, . . . , 2π ), E0 = E8 = (0, 0, . . . , 0), and G =
1/8

∑8
j=1 E j . Due to the (Z8)2 symmetry, the Berry phase

γ j = −i
∮

L j
d� · A(�) has an equation γ1 + γ2 ≡ γ3 + γ4 ≡

γ5 + γ6 ≡ γ7 + γ8 ≡ γ mod 2π . Then the Berry phase γ is
quantized in Z4. Figure 3(c) shows the Berry phase γ against
t1/t2, which clearly shows that the nontrivial Berry phase
corresponds to the HOTI phase in t1/t2 < 1.

Summary and discussions. We have demonstrated that the
Z4 Berry phase characterizes the HOSPT phases in the C4

symmetric square lattice models. The key idea comes from
the fact that the ground states are adiabatically connected to
the product states of the decoupled irreducible clusters. The
bulk-corner correspondence in these systems is then naturally
understood as a consequence of the boundary cutting the clus-
ters such that the isolated site(s) appears. Numerical evidences
of the above are presented for the free-fermion BBH model,
the BBH model with the NN interaction, and the spin-model
analog of the BBH model. Further, we have shown that the
quantized Berry phase characterizes the HOSPT phase in the
3D BBH model as well.

In this Rapid Communication, we have focused on the
BBH-type models with the C4 symmetry, and it is worth
noting the protecting symmetries of the BBH model. It was
argued that two mirror symmetries are enough to protect the
HOTI phase [27,42], instead of the C4 symmetry. If the C4

symmetry is broken while two mirror symmetries are kept,
the ground state can be adiabatically connected to the valence-
bond solid state on the strong bonds, which can be captured
by the conventional Z2 Berry phase [16,49,59]. However, at
the C4-symmetric point, the valence-bond state is not the irre-
ducible cluster state since it does not respect the C4 symmetry.
Consequently, the Z2 Berry phase becomes ill defined, and we
need to use the Z4 Berry phase, which we introduced in this
Rapid Communication.

It is also worth noting that the quantized Berry phase can be
straightforwardly applied to systems with the ZQ symmetry or
the CQ symmetry. The examples include the Z3 Berry phase
for the C3-symmetric breathing kagome model [56,57,60] and
the Z6 Berry phase for the C6-symmetric honeycomb lattice
model [61]. Since various HOTI and HOSPT phases with the
ZQ or CQ symmetry have been proposed [62], we believe that
the ZQ Berry phase is a powerful tool to study such phases.
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