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Theory of the two-loop self-energy correction to the g factor in nonperturbative Coulomb fields
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Two-loop self-energy corrections to the bound-electron g factor are investigated theoretically to all orders
in the nuclear binding strength parameter Zα. The separation of divergences is performed by dimensional
regularization, and the contributing diagrams are regrouped into specific categories to yield finite results. We
evaluate numerically the loop-after-loop terms, and the remaining diagrams by treating the Coulomb interaction
in the electron propagators up to first order. The results show that such two-loop terms are mandatory to take
into account for projected near-future stringent tests of quantum electrodynamics and for the determination of
fundamental constants through the g factor.
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The g factor of one-electron ions can be measured and
calculated with exceptional accuracy [1–10]. Its theoretical
and experimental values in 28Si13+ were found to be in ex-
cellent agreement [1]. Since then, experimental uncertainty
has decreased by an order of magnitude [2]. Such measure-
ments allowed an improved determination of the electron
mass [11] (see also Refs. [12,13]). It is anticipated that, in
the foreseeable future, bound-electron g-factor measurements
will enable an independent determination of the fine-structure
constant α [14–16], and an unambiguous extraction of nuclear
magnetic momenta [17,18]. To push forward the boundaries
of theory, quantum electrodynamic (QED) corrections at the
one- and two-loop level need to be calculated with increasing
accuracy. One-loop corrections have been evaluated both as
a power series in Zα (with Z being the atomic number) and
nonperturbatively in this parameter (see, e.g., Refs. [19–21]).
Two-loop corrections were evaluated up to fourth order in
Zα [19,22]. Contributions of order α2(Zα)5 were completed
recently [10]. At high nuclear charges, where Zα ≈ 1, an
expansion in Zα is not applicable. So far, two-loop diagrams
with two electric vacuum polarization (VP) loops and those
with one electric VP and one self-energy (SE) loop were
evaluated nonperturbatively in Zα [23].

For a broad range of Z , the two-loop SE corrections,
which are by far the hardest to calculate, constitute the largest
source of uncertainty. This holds true even at Z = 6, after a
recent high-precision evaluation of the one-loop SE correc-
tions [4,21]. We thus see that higher-order terms in Zα are
also necessary at lower nuclear charges, if ultimate precision
is required. Therefore, in the current Rapid Communication
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we present a theoretical framework for the nonperturbative
evaluation of the two-loop SE terms.

There are three two-loop SE diagrams contributing to the
binding energy of a hydrogenlike ion, namely, the loop-after-
loop (LAL), the nested loop (N), and the overlapping loop
(O) diagrams. Their calculation has been presented in detail
in Refs. [24–30]. The corresponding diagrams for the g factor
can be generated by magnetic vertex insertions into the Lamb
shift diagrams, yielding three nonequivalent diagrams in each
of the above classes, shown in Fig. 1.

Basic analysis. We derived formulas for energy shifts
induced by each diagram using the two-time Green’s function
formalism [31]. The corresponding g-factor contribution �g
is related to the energy shift by �E = − eB

4me
�g (in relativistic

units), where e and me are the electron’s charge and mass,
respectively, and B is the magnetic field strength.

We begin our analysis with the N and O diagrams. The
diagrams with the magnetic field acting on one of the electron
propagators inside the SE loops [Figs. 1(e), 1(f), 1(h), and
1(i)] are called vertex diagrams. There are two types of elec-
tron propagators the magnetic field can act on: Following the
nomenclature of Ref. [24], we call a vertex diagram a “ladder”
contribution if the magnetic field acts on the central electron
propagator [Figs. 1(e) and 1(h)], and a “side” contribution
if the magnetic interaction is connected with the leftmost
or rightmost electron propagator [Figs. 1(g) and 1(i)]. The
energy shifts corresponding to these diagrams can be written
as

�Ever,i, j = 〈a|γ 0�
μ
i jeAμ|a〉. (1)

Here, i ∈ {N, O} and j ∈ {side, ladder}, |a〉 denotes the 1s
reference state, γ 0 is the timelike Dirac matrix, Aμ is the
magnetic four-potential with the Lorentz index μ, and the �

μ
i j

are the two-loop vertex functions. The formulas for the latter
are lengthy and will be presented elsewhere.

The N and O diagrams in which the magnetic field acts
on an external line [Figs. 1(d) and 1(g)] need to be divided
into two parts. The electron propagator between the mag-
netic interaction and the SE loops can be represented as a
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FIG. 1. Furry-picture diagrams of two-loop SE corrections to the
g factor. Double lines represent electron wave functions or propa-
gators, and the wavy line represents a virtual photon. A wavy line
terminated by a triangle represents the interaction with the magnetic
field. Loop-after-loop (LAL), nested loop (N), and overlapping loop
(O) diagrams are shown in the respective rows.

sum over the spectrum of the Coulomb-Dirac Hamiltonian,
G(Ea) = ∑

n
|n〉〈n|

Ea−En(1−i0) , with the En being eigenenergies of
the eigenstates |n〉. The cases En �= Ea and En = Ea need to
be analyzed separately. Following the usual convention in the
literature (e.g., Refs. [7,20]), we call these two contributions
the irreducible (“irred”) and the reducible (“red”) parts, re-
spectively. The energy shifts corresponding to these diagrams
are

�Ei,irred = 2〈a|γ 0�i|δBa〉,

�Ei,red = �Emag〈a|γ 0 ∂�i

∂E

∣∣
∣∣
Ea

|a〉. (2)

Here, the �i are the two-loop SE functions which are
discussed in detail in Ref. [24]. |δBa〉 is the wave func-
tion perturbed by the magnetic field, given as |δBa〉 =∑

n �=a
|n〉〈n|−eα·A|a〉
Ea−En (1−i0) , with α being the usual 3-vector of Dirac

matrices. A closed expression for |δBa〉 is known [32]. �Emag

is the energy shift corresponding to the leading g-factor dia-
gram [33].

The LAL diagrams [Figs. 1(a)–1(c)] give a large variety
of contributions. In Fig. 1(c), a separation into the irreducible
and the reducible part needs to be made for the propagator
between the two SE loops, similarly to the case of the N
and O diagrams. The reducible part can be represented as a
product of two one-loop functions, and the irreducible part
consists of two one-loop functions connected by a reduced
Green’s function Gred(Ea) = ∑

n,n �=a
|n〉〈n|

Ea−En(1−i0) . In Figs. 1(a)
and 1(b), there are two propagators for which this separation
needs to be made. We therefore distinguish between the cases
of En �= Ea for both propagators (“irred, irred”), En �= Ea for
one propagator and En = Ea for the other propagator (“irred,
red”), and En = Ea for both propagators (“red, red”). The
“irred, irred” contributions consist of diagrams with two SE
loops connected by Gred. The “red, red” contributions can
be represented as products of three diagrams, namely, the
leading order g-factor diagram and two one-loop diagrams.
Finally, there are two kinds of “irred, red” contributions. First,
there are contributions which can be represented as products
of two one-loop diagrams. Second, there are contributions

FIG. 2. Two-loop SE diagrams with the loop-after-loop structure
(“LAL, irred” contribution). Double lines between two SE loops or
between a SE loop and the magnetic interaction represent here the
reduced Green’s functions. A dot on an electron propagator denotes
a derivative with respect to the energy, ∂G(E )

∂E

∣
∣
E=Ea

.

which can be represented as a product of the leading-order
g-factor diagram and a diagram which contains two SE loops
connected by Gred. We cast all LAL contributions into the
“LAL, irred” and the “LAL, red” categories, shown in Figs. 2
and 3, respectively.

Regularization of divergences. Self-energy corrections suf-
fer from ultraviolet (UV) divergences, which have to be sepa-
rated carefully [24]. The standard renormalization method has
been elaborated in momentum space for diagrams containing
free Dirac propagators, while the Coulomb-Dirac propagators
are only known in coordinate space. Therefore, in our regular-
ization scheme we subtract diagrams with the Coulomb-Dirac
propagators replaced by propagators containing zero or one
interaction with the Coulomb field in such a way that the cor-
responding difference is rendered UV finite. The subtracted
diagrams can then be evaluated in momentum space or in a
mixed momentum-coordinate representation. In the case of
a one-loop Lamb shift or a one-loop SE correction to the g
factor, this approach was implemented in Refs. [20,34,35].
In the case of a two-loop SE correction to the g factor,
one encounters overlapping UV divergences, e.g., the O SE
function in Fig. 1(g) consists of two overlapping one-loop
vertex functions, each of which gives rise to UV divergences.
This property renders the isolation of divergences much more
cumbersome.

Furthermore, infrared (IR) divergences may appear when-
ever the energy of an intermediate state coincides with Ea

FIG. 3. Reducible two-loop SE diagrams which can be rep-
resented as products of one- or zero-loop diagrams (“LAL, red”
contribution).
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[24]. Such reference-state IR divergences are present in the
one-loop g-factor correction as well as in the two-loop Lamb
shift. In both cases, it is possible to identify diagrams which
are each IR divergent on their own but whose sum is IR
finite. The situation for the two-loop SE correction to the
g factor is more complicated, requiring an adequate regroup-
ing of different terms. Our analysis of divergences shows
a partial cancellation of UV and IR divergences between
the different N and O diagrams. The remaining UV and IR
divergences in the N and O diagrams are canceled exactly by
the divergences in the “LAL, red” contribution. The “LAL,
irred” contribution is both UV and IR finite.

Separation into categories. In order to handle divergences,
we split all diagrams into different categories. One-loop func-
tions can be split into the zero-, one- (if necessary), and many-
potential terms. The zero-potential and, in some cases, the
one-potential contributions are UV divergent. These divergent
contributions are evaluated in momentum space, using the di-
mensional regularization procedure [36]. The many-potential
functions which are UV finite are computed in coordinate
space, as these involve the Coulomb-Dirac propagator. The
“LAL, irred” and the “LAL, red” contributions are dealt with
using a straightforward generalization of this procedure.

The situation is more complex for the N and O diagrams.
While in the one-loop case, diagrams can always be divided
into UV-divergent terms, and contributions which contain the
Coulomb-Dirac propagator, two-loop diagrams need to be
divided into three different categories: (i) diagrams which
contain UV divergences, (ii) diagrams which contain the
Coulomb-Dirac propagator, and (iii) diagrams which contain
both. Using the nomenclature introduced for the two-loop
Lamb shift, we refer to these categories as the F, M, and P
terms, respectively [29].

Replacing |δBa〉 with |a〉 in the “N, irred” and “O, irred”
diagrams [Figs. 1(d) and 1(g)], one obtains the known Lamb
shift contributions. Therefore, the separation of these dia-
grams into F, M, and P terms is identical to the case of the
Lamb shift [24]. For the N and O reducible and vertex dia-
grams, we consider the expansion of the electron propagators
in powers of the interactions with the nuclear potential and
analyze the superficial degree of divergence d , as defined in
Ref. [36]. We divide the contributions into F, P, and M terms
according to the following definitions,

d � 0: F term,

d < 0, UV-divergent subgraph: P term,

d < 0, no UV-divergent subgraph: M term.

The separation of the “N, vertex” diagrams is illustrated in
Fig. 4. The “O, vertex,” “O, red,” and the “N, red” diagrams
can be treated analogously.

Numerical results. In order to assess the relevance of a
nonperturbative theory, we evaluate first the F term. This
term is expected to be the dominant one as it incorporates
the free-electron two-loop SE correction. The calculation
typically involves the evaluation of matrix elements of two-
loop SE functions which are partially known [24], or in the
case of a magnetic insertion, were derived in the current
work. Matrix elements are calculated either with Coulomb-
Dirac wave functions in coordinate or momentum space, or
with the wave function |δBa〉. Complex γ matrix expressions

FIG. 4. Separation of the “N, vertex” diagrams [Figs. 1(e) and
1(f)] into F (first line), P (second line), and M terms (third line). A
wavy line terminated by a cross represents a Coulomb interaction.

were reduced by computer algebraic methods [37]. Feynman
integrals were either carried out analytically, again with the
help of symbolic computing [37], or numerically, employing
standard or the recently developed extended Gauss-Legendre
quadratures [38]. We tested our numerical codes by replacing
|δBa〉 with the regular bound-electron wave function in certain
diagrams, reproducing known Lamb shift contributions [24].

For the free-electron case, i.e., in the limit of an infinites-
imally weak Coulomb potential, all P and M terms and the
one-potential F terms vanish. Furthermore, we expect all
“LAL, irred” contributions to converge to zero, as well as
those “LAL, red” diagrams which contain the one-loop SE
correction [Figs. 3(a), 3(b), 3(e), and 3(g)], or the irreducible
one-loop SE wave-function correction to the one-loop g factor
[Fig. 3(c)] as a factor.

We define the total zero-potential F-term contribution to
consist of the N and O vertex and reducible diagrams, the
zero-potential contributions (of both factors) to the “LAL,
red” diagrams in Figs. 3(d) and 3(f), and the irreducible zero-
potential N and O contributions. The reducible F-term con-
tribution consists of the remaining “LAL, red” diagrams with
free internal lines. The one-potential F term consists of the
irreducible one-potential N and O contributions. Numerical
values and their uncertainties are given in Table I.

TABLE I. The zero-, one-potential, and reducible F and LAL
term contributions for different atomic numbers. For Z → 0,
FF,0pot the F term converges to the free-electron limit F (0) =
−0.688 33 . . . .

Z FF,0pot FF,red FF,1pot FLAL

1 −0.693181(19) 0.005715(2) 0.00213(27)
2 −0.701989(10) 0.015596(2) 0.00576(27)
3 −0.712496(9) 0.026977(2) 0.01011(18)
4 −0.723816(6) 0.038885(2) 0.014544(44)
6 −0.747062(4) 0.062437(2) 0.023242(27) 0.00026(53)
8 −0.769444(6) 0.084105(2) 0.030852(6) 0.00064(53)
10 −0.789865(4) 0.103024(2) 0.037022(16) 0.00123(53)
30 −0.842748(4) 0.132908(9) 0.023105(1) 0.0196(27)
40 −0.781697(4) 0.072266(9) −0.015710(1) 0.0281(27)
50 −0.683620(4) −0.006450(14) −0.066763(1) 0.0201(12)
60 −0.560628(4) −0.077985(13) −0.134018(2) −0.0252(12)
70 −0.419265(4) −0.112472(14) −0.231468(2) −0.1405(12)
92 −0.016259(15) 0.183186(32) −0.732700(4) −0.9734(39)
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FIG. 5. The zero-, one-potential, and the reducible F-term contri-
butions as a function of Z , expressed in terms of the scaled function
F (Zα), defined as �g = (

α

π

)2
F (Zα). See text for further details.

According to the above discussion, we expect the sum of
the zero-potential F-term contribution to converge to the free-
electron two-loop SE correction for Z → 0. The free-electron
g-factor contribution can be determined using the form factors
[19], and our results converge well to this value in the low-
Z limit (see Fig. 5 and Table I). Figure 5 shows a complex
dependence of the calculated F terms on the atomic number
Z , which largely deviates from the result of the Zα expansion
up to fourth order, highlighting the need for a nonperturbative-
in-Zα theory.

In the case of the Lamb shift, the LAL correction gives
an estimate of the total two-loop SE correction in a wide Z
range [24,30]. To check whether this also holds in our case, we
evaluate the LAL g-factor contributions. To this end, it is con-
venient to define a “SE-perturbed wave function” (see, e.g.,
Ref. [39]) |δ�a〉 = ∑

n,n �=a
|n〉〈n|�R |a〉

Ea−En
, with the regularized one-

loop SE operator �R. The most difficult aspect of the LAL cal-
culation is the numerical determination of |δ�a〉, for which we
used the B-spline method [40,41]. The g-factor contribution
corresponding to Fig. 2(e) is �gLAL,e = −gD〈δ�a|δ�a〉. The
computation of Fig. 2(c) is similar to the formula for the com-
putation of the Dirac value gD = − 8me

3

∫ ∞
0 drr3 fa(r)ga(r),

with the radial components ga(r), fa(r) of the usual wave
function replaced by those of |δ�a〉. The remaining LAL
diagrams can be rewritten as matrix elements of the one-loop
SE or vertex functions, with either the usual wave function or
|δBa〉 on one side and |δ�a〉 on the other side. The one-loop
operator has to be expanded into zero-, one- (if necessary), and
many-potential terms. Numerical results for the total “LAL,
irred” contribution are given in the last column of Table I
and shown in Fig. 6. Unlike in the case of the Lamb shift,
in the g factor the F terms dominate due to the nonvanishing
free-electron limit up to high Z values. Figure 6 demonstrates
that the behavior of the “LAL, irred” term at intermediate and
high Z largely deviates from its low-Z characteristics, and it

FIG. 6. The complete “LAL, irred” contribution, as a function of
Z , given in terms of the scaled function F (Zα).

even changes sign around Z = 55. A highly nonperturbative
behavior of the LAL term was also observed in Lamb shift
calculations [30].

In order to ascertain the significance of our numerical
calculations, we compared the numerical uncertainties of the
evaluated contributions with the unknown higher-order two-
loop effects, estimated in Ref. [10] based on the expansion
in Zα. We found that, for Z = 30, both uncertainties are
approximately 1.5×10−8, while for Z � 40, our uncertainties
are significantly smaller than the ones estimated in Ref. [10].
We therefore conclude that our all-order calculations will
enable a significant improvement of the theoretical accuracy
of the g-factor of high-Z ions, provided the M- and P-term
contributions can be evaluated with an accuracy comparable
to that of the LAL contributions.

Summary. The theoretical framework for the evaluation of
two-loop SE corrections to the g factor in a nonperturbative
nuclear field has been developed. The isolation of divergences
was carried out by separating the LAL, N, and O Furry-
picture diagrams into terms consisting of diagrams with UV
divergences, diagrams which contain a Coulomb-Dirac propa-
gator, and diagrams which contain both. Such a rearrangement
assures finite results. Numerical results are given for the
dominating group of terms, the F terms, namely, those in
which the interaction of the nucleus in the intermediate states
is treated up to first order, and for the LAL diagrams. The
results show that a nonperturbative treatment is essential in
a rigorous description of the bound-electron g factor, and will
be relevant to projected tests of QED in strong Coulomb fields
and to the determination of α [14,42] in planned experiments
with highly charged ions [42].
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