
PHYSICAL REVIEW RESEARCH 1, 033211 (2019)

Edge-based formulation of elastic network models
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We present an edge-based framework for the study of geometric elastic network models to model mechanical
interactions in physical systems. We use a formulation in the edge space, instead of the usual node-centric
approach, to characterize edge fluctuations of geometric networks defined in d-dimensional space and define
the edge mechanical embeddedness, an edge mechanical susceptibility measuring the force felt on each edge
given a force applied on the whole system. We further show that this formulation can be directly related to the
infinitesimal rigidity of the network, which additionally permits three- and four-center forces to be included in
the network description. We exemplify the approach in protein systems, at both the residue and atomistic levels
of description.
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I. INTRODUCTION

Elastic network models (ENMs) are ubiquitous in physics
and have been applied to describe properties of a wide variety
of structures including glasses [1,2], biological tissue [3],
supercooled liquids [4], and, recently, the design of allosteric
materials [5]. A particularly useful application of ENMs,
sparked by the seminal work of Tirion [6], has been in the
study of protein structures, as the use of molecular dynamics
(MD) simulations on biologically relevant timescales remains
challenging. The principal assumption of ENMs is that we
may approximate the bottom of the potential energy well of
a structure by a quadratic function, by taking the Taylor series
of the potential energy with respect to node displacements
about the minimum r0. In elastic models, the forces f are thus
linear in the displacements r, i.e., f = H(r0) (r − r0), where
H(r0) is the Hessian matrix obtained by differentiating twice
the potential function. Typically, the analysis of (infinitesimal)
motions involves diagonalization of H to determine the nor-
mal modes of the protein. While real potential energy surfaces
of proteins are complex, highly nonlinear, and containing
many minima [7], elastic models have been surprisingly effec-
tive for the analysis of slow equilibrium motions of proteins
[8,9]. Another common use of ENMs is for the calculation
of node fluctuations, which have shown good agreement with
crystallographic B factors [10,11].

The focus of ENMs has thus typically been on the node
variables. Here, we present an edge-based formulation of
ENMs, which instead puts the emphasis on the interactions
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between the nodes, which in a mechanical framework corre-
sponds to extensions (or compressions) of the “springs” as-
sociated with the edges. More formally, the edge changes are
the dual of the node motions [12]. An edge-centric approach
has proved highly effective in previous studies of different
networks [13–15], and indeed the formulation presented need
not be restricted to proteins and is general for networks
embedded in d-dimensional space. There has been extended
discussion in the literature over the use of networks with
scalar node variables to model two- and three-dimensional
mechanical structures [16]. By instead working in edge space,
we avoid this issue altogether since the scalar edge variables,
which represent changes in edge length, appear naturally in
the theory regardless of the dimensionality of the geometric
structure. Historically, the Born-Huang model [17] has often
formed the basis for the study of lattice structures but its
weakness in handling disordered materials like glasses has
been highlighted in the context of rigidity percolation [18]
and more recently by Zaccone and Scossa-Romano [19], who
extended the Born model to include nonaffine responses to
external stresses. In many systems such as proteins, function
is often driven by changes in structure, but crucially it is
the relative change in node positions that is of interest. We
thus show how to obtain edge fluctuations in elastic network
models and compute the edge mechanical embeddedness as
a useful property of the system. Finally, we show how this
formulation naturally connects with the rigidity properties of
the network, viewed as a set of edge constraints. We showcase
the approach with specific protein examples.

II. THEORY

A. Edge-based formulation of geometric elastic network models

Consider a network of N nodes, associated with points
in d-dimensional space ri,0 ∈ Rd , and with E interactions
between nodes (due to, e.g., physicochemical potentials). Let
us denote the (small) node displacements as the d-dimensional
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FIG. 1. The extension of the spring can be written in terms of the
displacements of the nodes [12].

vectors

ui = ri − ri,0, i = 1, . . . , N. (1)

Each edge has an associated scalar variable eα ∈ R, α =
1, . . . , E , which measures its extension, i.e., its change in
length. The node and edge variables are related directly
through the Nd × E geometric incidence matrix B:

e = BT u, (2)

where uT = (uT
1 , . . . , uT

N ) is the Nd-dimensional vector com-
piling the node displacements, and e is the E -dimensional
vector of edge extensions.

To obtain the form of the geometric incidence matrix, note
that each column of B is associated with an edge. Assuming
small node displacements, it can be easily shown (Fig. 1 and
Appendix A) that the extension of the edge α = (i j) between
nodes i and j induced by the node displacements u [to order
O(|u|2)] is given by

eα = |ri j | − |ri j,0| � r̂T
i j (u j − ui ), (3)

where r̂i j = ri j,0/|ri j,0| =: r̂α is the d-dimensional unit vector
along the direction of edge α = (i j). Each row of BT is a
vector BT

α that follows from Eqs. (2) and (3):

BT
α = (0, . . . , 0, −̂rT

α , 0, . . . , 0, r̂T
α , 0, . . . , 0),

α = 1, . . . E (4)

to form the geometric incidence matrix: B = (B1 . . .BE ).
Note that the matrix B is akin to the standard N × E incidence
matrix B in graph theory [14] but it includes full directional
information through the d-dimensional edge unit vectors.

Invoking a mechanical description, we can use Hooke’s
law and Newton’s third law to obtain the usual linear relation-
ship between input forces on the nodes fnodes and the induced
node displacements u:

Ku = fnodes, (5)

where fnodes is the Nd × 1 vector compiling the external forces
on the nodes and K is the Nd × Nd stiffness matrix

K = BGBT , (6)

with G = diag(gα ) denoting the E × E diagonal matrix of
spring constants. The stiffness matrix is thus the Hessian of

the system, indeed this is the only form the Hessian can take
[16].

Using our formulation, we can study the input-output
properties of the system in terms of edge variables, i.e., the
edge extensions eout induced by external forces f in applied to
the edges. Let us consider external forces applied along the
edges, which we compile in an E × 1 vector f in. These edge
forces result in edge compressions and stretches that induce
forces on the nodes given by

fnodes = B f in.

We wish to disregard any components of the induced forces
linked to rigid motions of the elastic network since such
motions do not produce edge extensions (eout = 0). This can
be achieved naturally by considering the pseudoinverse of
the stiffness matrix. The induced nonrigid displacements are
given by

u+ = K+B f in,

where K+ is the Moore-Penrose pseudoinverse of K, and the
edge extensions induced by the applied edge forces are given
by

eout = BT K+B f in =: T f in. (7)

For the input force f in, the output vector eout records the
induced change in length of all the edges in the network. The
meaning of the E × E matrix T is clear: given a unit force
(input) applied along edge α, the induced (output) extension
at edge β is the corresponding entry of T:

eβ = (Bβ )T K+Bα = Tβα. (8)

As a consequence, the induced extension at the input edge
i is given by the diagonal element Tαα , which, depending
on the location of the spring within the network, might not
necessarily be the same as if the spring was isolated. This is
the mechanical analog of the effective resistance in electrical
networks [14,20], also known as the resistance distance [21],
yet, in our case, it is both the connectivity and the geometry
of the network in d-dimensional space that determines edge
responses. We exploit this concept in the following section
through the definition of the edge mechanical embeddedness.

B. Edge fluctuations and mechanical embeddedness

One application of the model is to identify residue-residue
interactions within a protein that exhibit the highest edge
fluctuations. To see this, consider the Langevin equation
of a three-dimensional elastic network (d = 3) representing
protein residues undergoing dynamical motion in a heat bath
modeling the aqueous environment:

M
d2r
dt2

+ �
dr
dt

+ K(r − r0) = η(t ), (9)

where M is a diagonal mass matrix, � is the diagonal damping
matrix, and η(t ) is a vector of independent and identically
distributed (i.i.d.) Gaussian noises. The damping terms arise
from interactions of the protein with water and itself, and
are typically large. Hence, we consider the overdamped limit,
where we may neglect inertial terms. Although larger damp-
ing is sometimes set for residues located deeper inside the
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structure [22], for simplicity we set all damping values to be
equal and we renormalize time to obtain

dr
dt

= −K(r − r0) + η(t ), (10)

which has the general solution

u(t ) = r(t ) − r0 =
∫ t

−∞
exp [K(t − s)]η(s)ds, (11)

where the residue position r(t ) is now a random variable. We
are again interested in the random fluctuations of the edge
extensions (2). Utilizing our geometric incidence matrix, one
can show that the covariance matrix of the edge fluctuations is
given by

E[e(t ) e(t )T ] = 1
2B

T K+B = 1
2 T. (12)

In a number of papers, authors construct networks from
residue-residue interactions and identify significant residues
using measures of centrality, such as edge or node between-
ness [23–25]. However, it is not clear what the physical
significance of such measures is. In contrast, the mean edge
fluctuations are related to a graph-theoretical measure called
edge embeddedness, first introduced in Ref. [14] in the context
of random walks on networks and resistor networks. We may
then define the equivalent mechanical embeddedness for edge
α in a geometric elastic network in d dimensions as

εα = 1 − (GBT K+B)αα = 1 − gαTαα. (13)

The mechanical embeddedness has a clearer physical mean-
ing: the second term is the fraction of the input force applied to
edge α that edge α actually feels. If an edge feels all the force
applied to it, it is not well “embedded” within the network and
has a low value of ε (i.e., it is not strongly coupled to the rest
of the network and does not dissipate its fluctuations into the
network). Conversely, edges that are more “embedded” within
the network structure feel a lower force, dissipate fluctuations
into the rest of the network, and have a larger ε score nearer
to 1.

C. Connection to infinitesimal rigidity

There is also a straightforward relationship between the
geometric incidence matrix B and the classic rigidity matrix
R of the structure, given in Eq. (D5) [26]. In Appendix D, we
show that

BT = D−1R, (14)

where D is the E × E diagonal matrix containing the interac-
tion distances. The rigidity matrix can be used to determine
the rigid parts of the elastic network structure (i.e., those that
allow no internal motion) and the flexible parts via the concept
of infinitesimal rigidity. (The distinction between rigidity and
infinitesimal rigidity is discussed in depth in Ref. [26], but
here we consider only generic structures and so the two terms
are equivalent.) The rigidity matrix of a three-dimensional
structure possesses six zero eigenvalues corresponding to
three translations and three rotations, but may have additional
zero eigenvalues associated with motions of the structure
that lead to no change in the potential energy of springs in
the network. In Appendix E, we summarize an infinitesimal
rigidity algorithm developed in Ref. [27] that uses the set of

eigenvectors associated with such additional zero eigenvalues
(if they exist) to cluster the structure into rigid clusters. At
the cost of longer running times, this infinitesimal rigidity
algorithm allows greater flexibility in the choice of constraints
than the popular rigid cluster decomposition based on FIRST

[28,29], which is computationally efficient, yet it imposes the
presence of angle constraints in the network structure.

In some systems, such as chemical bonds within
molecules, we do in fact have additional constraints on the
angles between edges. Indeed, inclusion of three-center inter-
actions in the simulation of polymer glasses has been shown to
be important for the interpretation of Raman scattering spectra
[30]. We therefore consider three-center interactions (and
indeed four-center interactions, corresponding to dihedral
angles). Given three nodes i, j, k with edges (i j) and ( jk), we
compute the change in length of edge (ik) with the constraints
that the other two edges are held constant: |ri j |2 = |ri j,0|2 and
|r jk|2 = |r jk,0|2. Expanding these equations and substituting
into the expression for the extension of edge (ik), which is
opposite to node j, we obtain (see Appendix B)

eik = 1

|rik,0|
(
rT

jk,0,
(
rT

i j,0 − rT
jk,0

)
, −rT

i j,0

)⎛⎝ui

u j

uk

⎞
⎠. (15)

Note that the three-center extension (15) relative to the “an-
gle” at node j is not the same as if a two-center Hooke spring
was placed between nodes i and k. From expressions of the
form (15), we can construct the three-center stiffness matrix
Kangle.

Using a similar procedure, we also find the expression for
the linear changes of a four-center interaction, by keeping the
three two-center and two three-center interactions constant.
Such changes lead to the four-center stiffness matrix Kdihedral.
See Appendix C.

The total stiffness matrix is then the sum of the stiffness
matrices: Ktotal = Kbond + Kangle + Kdihedral, where Kbond is
the two-center matrix given in Eq. (6). The extensions eout

induced by input forces f in follow the same form as in Eq. (7):

eout = BT K+
totalB f in =: Ttotal f in. (16)

Below, we study the effect of the different components of the
stiffness matrix in the input-output properties of the system.

III. APPLICATIONS

A. A mechanical model of protein-ligand binding
at the atomistic level

Allostery is a biological process whereby the binding of a
ligand to a protein leads to a functional change at a distant
site (often the active site) of the protein [31,32]. A common
explanation for allostery is that ligand binding leads to a
propagation of strain across the protein structure, potentially
along specific residue pathways, causing a structural change
at the active site.

Here, we study this process using an atomistic elastic
network model of a protein bound to an allosteric ligand.
First, we measure the elastic response elicited across the
protein by the application of unit forces to all weak interac-
tions between the ligand and the protein allosteric site with

033211-3



HODGES, YALIRAKI, AND BARAHONA PHYSICAL REVIEW RESEARCH 1, 033211 (2019)

TABLE I. Spring constants for each of the elastic network
interactions.

Interaction Spring constant

Covalent 100
Hydrogen 10
Hydrophobic 1
Angle 1
Dihedral 0.1

negative forces corresponding to compressions of the source
interactions and positive forces corresponding to extensions
(although the overall sign is arbitrary). Furthermore, we apply
infinitesimal rigidity analysis (Appendix E) to obtain the rigid
clusters within the protein to elucidate the propagation of the
strain. Since strain cannot propagate through floppy regions,
we expect both the allosteric site and active sites to be within
the same rigid cluster if strain is to pass from one site to the
other efficiently.

Atomistic graphs are constructed from PDB files contain-
ing full three-dimensional (3D) atomic data of protein struc-
tures, and the software FIRST [29] to determine the presence of
the various bond types (covalent, hydrogen, and hydrophobic
interactions). We assign values to the spring constants of
the edges with the correct order of magnitude, as per the
Amber15fb force field [33] (Table I). We do not use exact
values for each interaction since it is difficult to assign spring
constants to hydrogen bonds and hydrophobic interactions
from force fields used in molecular dynamics. In such fields,
hydrophobic interactions emerge from the presence of implicit
or explicit water that favors interactions to polar regions
of the protein, whereas hydrogen bonds are derived from
electrostatic contributions.

We obtain the output extension for all edges in the protein
in response to inputs at source edges given by the interac-
tions with the ligand, and exemplify the results through the
allosteric protein PDK1 (PDB code: 3ORZ). In Fig. 2 we show
the top 2% of bonds by absolute length change (i.e., we do not

FIG. 2. Elastic response of PDK1 (PDB code: 3ORZ [34]). The
top 2% of bonds by absolute extension are shown for three cases:
(left) only the two-center interactions (bonds) are included in the
network; (center) three-center (angle) interactions are added to the
network and the top output extensions of bonds are shown; (right)
dihedral angles are added and again only top output bond displace-
ments are shown.

FIG. 3. Infinitesimal rigidity of PDK1. Each cluster has a dif-
ferent color and “floppy” (nonrigid) atoms are shown in transparent
gray: (left) only bonds included as constraints, leading to a single
large cluster in blue with all other atoms floppy; (center) angle
constraints added; (right) dihedral constraints also added leading to
a large rigid cluster extending over the whole protein. The rigid
clusters and floppy atoms are computed using the algorithm in
Appendix E, which was introduced in Ref. [27].

discriminate between bond stretching or compression) in three
scenarios: (i) where only the two-center bond interactions
are used to construct the elastic network, as is traditionally
the case with elastic networks of proteins; (ii) where angle
constraints between pairs of covalent bonds are included; and
(ii) where dihedral angle constraints from double bonds are
also modeled. Given that the highest scoring interaction in the
bonds-only network (i) (the hydrophobic interaction between
Lys120 and Asn122) exhibits an extension of 0.766, we
choose to represent the top 2%, which exhibit changes above
0.01, as a reasonable cutoff. The most stretched edges are all
located in the area connecting the allosteric and active sites.
Furthermore, the infinitesimal rigidity analysis (Fig. 3) shows
that, even for the two-center stiffness matrix, the allosteric site
and the region around the active site (Val96, Lys111, Tyr161,
Ala162, Thr222, Asp223) all appear in a rigid cluster, with
Leu88 the only active site residue that has no atoms within
the rigid cluster. When three- and four-center constraints are
included, the protein becomes strong due to the qualitative
nature of the infinitesimal rigidity condition. It appears then
plausible that propagation of strain may be emitted from
binding at the allosteric site toward the active site, particularly
through the rigid cluster formed by the two-center interactions
that contains a smaller subset of the atoms in the protein.

The results of the elastic response show that the eout

decrease exponentially with distance (correlation coefficient
= −0.603), even when angles and dihedrals are included (see
Fig. 8). Such a response is similar to random networks [5]
and is not suggestive of a structure exclusively optimized
for directed perturbations. Indeed, the two largest extensions
are found in the Lys120-Asn122 (0.766) and Val124-Pro125
(0.437) hydrophobic interactions, which are within 5 Å of the
allosteric source site, whereas the active site is around 17 Å
away. The highest scoring interactions involving active site
residues are two Lys111-Phe157 hydrophobic interactions,
which have extensions of 0.0122, and rank 130th and 131st.
Of the top 2% interactions (149 out of a total of 7391 edges)
by output extensions, all but 4 are hydrophobic interactions.
This is unsurprising given they have the weakest spring
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constants, but appears to lead to those weak interactions near
the allosteric site effectively acting like a sponge, absorbing
the shock of input forces and preventing long-range transfer
of displacement. If we change the force constant of the
hydrophobic interactions to 10 (the same as the hydrogen
bonds), the range of the propagation increases. However, it
is difficult to rationally assign such spring constant values to
the hydrophobic interactions, and there does not appear to be
strong evidence that the allosteric effect exhibited by PDK1
is mediated by traversal of strain energy. We have performed
the elastic response analysis on a further two proteins (h-Ras,
ATCase) with similar results. Hence, our examples indicate
that topological notions alone (such as rigidity) do not fully
determine if a mechanical explanation for allostery is plausi-
ble, as the particular values of the edge spring constants are
also crucial.

B. Fluctuations of residue-residue interactions

We applied our edge-based geometric formulation to a
residue-residue interaction network (RRIN), i.e., an elastic
network model of a protein at the residue level. We con-
structed several RRINs for ADK (4AKE [35]) using different
distance cutoffs (7, 10, 12, and 15 Å) and obtained the aver-
age displacement for each of the edge interactions (12). To
decide on the appropriate cutoff, we computed Spearman’s
correlation coefficient (ρ) of the resulting extensions across
the RRINs created with different cutoffs and found greater
robustness for larger cutoff values: ρ = 0.216 between the 7
and 10 Å RRINs; increasing to ρ = 0.679, between the 10 and
12 Å RRINs; and increasing further to ρ = 0.801 between the
RRINs created with 12 and 15 Å cutoffs. (Below 7 Å, zero-
energy modes appear in the network as revealed by singular
value decomposition of the rigidity matrix R.) We thus use a
cutoff of 12 Å here and a single force constant (arbitrarily set
to 1), in line with other reports in the literature [36].

Figure 4 shows the results of our analysis of the this RRIN
of open ADK (4AKE). A relatively right-skewed distribution
of edge displacement values is observed (Pearson median
skewness = 0.580), with average value of 0.236 and a number
of interactions scoring significantly highly. The top 2% of
interactions by rank are those scoring above 0.409 and the
top 1% score above 0.452. The most highly scoring interac-
tions are clustered primarily in the lid and AMPbind domains,
corresponding closely to those regions of the protein that
are structurally altered during the open-to-closed transition.
Qualitatively similar observations were obtained by Mitchell
et al. [37] from dynamic data, i.e., by comparing residue dis-
placements across an NMR ensemble of structures to calculate
local strain. Note that here, however, just a single structure is
used and strain is predicted a priori, emphasizing the fact that
the intrinsic topology of the protein determines where strain is
distributed to assist function. The highest scoring interaction
with 0.701 is Gly56-Lys57; Lys57 is one of the residues that
shifts more than 10 Å during the open-to-closed transition
[38] while Gly56 has been shown to display particularly
high fluctuations in coarse-grained MD simulations at the
residue level [39]. Since we follow standard convention and
use the same force constant for all residue-residue interactions
(arbitrarily set to 1), by Eq. (13) (with G equal to the identity

FIG. 4. (a) Structure of ADK from Escherichia coli (open con-
formation, PDB: 4AKE), with the lid and AMPbind domains high-
lighted. (b) Closed (1AKE) and open (4AKE) forms of ADK show-
ing that the main differences are in the lid and AMPbind domains.
(c) The distribution of average edge displacements computed for
open ADK (4AKE). (d) The top 2% residue-residue interactions
with highest displacements are concentrated in the lid and AMPbind

domains. Note that the viewpoint of the structures in (b) has
been changed slightly relative to (a) and (d), so as to facilitate
the visualization of the differences between the open and closed
conformations.

matrix) we can see that the interactions with the greatest
average extension are also those with the lowest mechanical
embeddedness, demonstrating a conceptual link to the net-
work theory interpretation of protein structure.

IV. CONCLUSIONS

In conclusion, we have presented here a framework for the
study of geometric elastic network models in d-dimensional
space through an alternative formulation in the edge space.
The edge space is often more natural than the dual node
space, as it allows the direct description of interactions and
constraints, with their associated energies (or costs). By
conveniently working with the internal coordinates of the
network, there is no need to consider rigid motions or to
arbitrarily “pin” nodes. In many systems, such as proteins, it
is changes in the interactions that are of interest rather than the
nodes themselves, and optimization problems involving edge
variables are more naturally dealt with using an edge-based
framework.
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APPENDIX A: DERIVATION OF THE GEOMETRIC
INCIDENCE MATRIX FOR THE TWO-CENTER

INTERACTIONS

For a spring connecting two nodes i and j with initial
positions ri,0 and r j,0 and final positions ri and r j , let ui and
u j be the displacement of each node. We denote the final node
positions by

ri = ri,0 + ui,

r j = r j,0 + u j (A1)

with the vectors describing the springs before and after the
extension (or compression) being

ri j,0 = r j,0 − ri,0,

ri j = r j − ri. (A2)

Consider the extension of an edge written in terms of the
displacements of its associated nodes:

ei j = |ri j | − |ri j,0|. (A3)

We first expand |ri j,0|,
|ri j,0|2 = ri j,0 · ri j,0 = (r j,0 − r j,0) · (r j,0 − r j,0), (A4)

then expand |ri j |
|ri j |2 = ri j · ri j = |r j,0 + u j − ri,0 − ui|2

= |(r j,0 − ri,0) + (u j − ui )|2.
Using Eq. (A4), we substitute terms

|ri j |2 = |ri j,0|2 + 2 ri j,0(u j − ui )

= |ri j,0|2 + 2|ri j,0| ri j,0

|ri j,0| (u j − ui ). (A5)

We can complete the square

|ri j |2 =
(

|ri j,0| + ri j,0

|ri j,0| (u j − ui )

)2

+ �(u2) (A6)

and make a linear approximation by dropping nonlinear terms
and square rooting both sides:

|ri j | = |ri j,0| + ri j,0

|ri j,0| (u j − ui ). (A7)

By referring to Eq. (A3), we now have an expression for the
change in spring length in terms of the node displacements

ei j = 1

|ri j,0|ri j,0 · (ui − u j ), (A8)

which can be expressed in vector form as

ei j = 1

|ri j,0|
[
(1, −1) ⊗ rT

i j,0

](ui

u j

)
. (A9)

Here, we have shown the expression for an isolated spring,
For a spring in a network, the elements of the vectors relating

| rik |  

FIG. 5. Schematic for the derivation of the three-center (angle)
interaction, where the two-center bond lengths (i j), ( jk) are kept
constant and we compute the extension i − k under those constraints.

to nodes not involved with the spring would be zero so that
our geometric incidence matrix B has rows of the form (4).

APPENDIX B: DERIVATION OF THE
THREE-CENTER TERMS

We wish to find an expression for the change in length of
the distance i − k,

eik = |rik| − |rik,0|, (B1)

in terms of the node displacements ui, u j, and uk under the
assumption that the edge distances are fixed (Fig. 5). The
initial distance, using the cosine rule, is

|rik,0|2 = |ri j,0|2 + |r jk,0|2 − 2|rik,0||r jk,0| cos θ0 (B2)

and likewise the distance after the perturbation of the three
nodes is

|rik|2 = |ri j |2 + |r jk|2 − 2|rik||r jk| cos θ. (B3)

We apply the constraints |ri j | = |ri j,0| and |r jk,0| = |r jk,0|
as we are interested only in the change in angle, not in any
two-center changes. We can then substitute terms from (B2)
into (B3):

|rik|2 = |rik,0|2 + 2|rik,0||r jk,0| cos θ0 − 2|rik,0||r jk,0| cos θ

= |rik,0|2 − 2|rik,0||r jk,0|(cos θ − cos θ0). (B4)

We can rewrite this expression as

|rik|2 = |rik,0|2 − 2|rik,0|
( |ri j,0||r jk,0|

|rik,0| (cos θ − cos θ0)

)
so that we can complete the square:

|rik|2 =
(

|rik| − |ri j,0||r jk,0|
|rik,0| (cos θ − cos θ0)

)2

+ �(|r|)2.

By ignoring nonlinear terms and square rooting both sides can
then write our extension from Eq. (B1) in terms of the initial
and final angles:

eik =
( |ri j,0||r jk,0|

|rik,0| (cos θ − cos θ0)

)
.

However, we wish to derive the extension in terms of node
displacements (in Cartesian coordinates) and so substitute
using the definition of the dot product:

eik = 1

|rik| [(ri j · r jk ) − (ri j,0 · r jk,0)], (B5)

where we have again used the fact that the two bonds have not
changed length. We now define the displacements of the nodes
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in terms of the bond vectors before and after perturbation:

ui = ri − ri,0,

u j = r j − r j,0, (B6)

uk = rk − rk,0.

We now expand out Eq. (B5):

eik = 1

|rik| (ri · r j − ri · rk − r j · r j + r j · rk

− ri,0 · r j,0 + ri,0 · rk,0 + r j,0 · r j,0 − r j,0 · rk,0). (B7)

Substituting terms from (B6), we drop the nonlinear terms in
the second line of (B7) to get

eik = (ri,0 + ui ) · (r j,0 + u j ) − (ri,0 + ui ) · (rk,0 + uk )

− (r j,0 + u j ) · (r j,0 + u j ) + (r j,0 + u j ) · (rk,0 + uk ).

Now, we again drop nonlinear terms that result from the
expansion of each of the dot products to give

eik = 1

|rik| (ri,0 · u j + r j,0 · ui − ri,0 · uk − rk,0 · ui

− r j,0 · u j − r j,0 · u j + r j,0 · uk + rk,0 · u j )

which can be written more compactly as

eik = (r j,0 − rk,0)ui − ((r j,0 − ri,0) + (r j,0 − rk,0))u j

+ (r j,0 − ri,0)uk (B8)

or, in vector form, as

eik = 1

|rik,0|
(
rT

jk,0,
(
rT

i j,0 − rT
jk,0

)
, −rT

i j,0

)⎛⎝ui

u j

uk

⎞
⎠. (B9)

As for the two-center case, each row of Bangle, the geometric
incidence matrix for the three-center interactions, has the
form (B9) but with zeros in the entries relating to nodes not
involved in the corresponding interaction.

The stiffness matrix for the three-center interactions can
then be constructed similarly:

Kangle = BangleGangleBT
angle,

with Gangle the diagonal matrix containing the spring constants
for the three-center (“angle”) interactions.

APPENDIX C: EXPRESSION FOR THE
FOUR-CENTER TERMS

The derivation for the four-center (or dihedral) terms is
similar to the three-center case, where we compute the ex-
tension in the length between i − l while keeping constant
the two angular terms (i jk) and ( jkl ), as well as each of the
three bond lengths (i j), ( jk), (kl ) (Fig. 6). This leads to the
expression

eil = 1

|ril,0| [(r jl,0 + rik,0) · ui + (ri j,0 + r jk,0 + r jl,0) · u j

− (r jk,0 + rkl,0 + rik,0) · uk − (r jl,0 + rik,0) · ul ], (C1)

| ril |  

FIG. 6. Schematic for the derivation of the dihedral interaction:
the three two-center bond lengths (i j), ( jk), (kl ) remain constant, as
well as the two three-center angle interactions (i jk) and ( jkl ) marked
with the dashed lines. We compute the extension i − l under those
constraints.

which, by using r jl,0 = r jk,0 + rkl,0 and rik,0 = ri j,0 + r jk,0,
is transformed into

eil = 1

|ril,0|
[
(1, 1, −1, −1)

⊗(
rT

i j,0 + 2rT
jk,0 + rT

kl,0

)]⎛⎜⎝
ui

u j

uk

ul

⎞
⎟⎠. (C2)

APPENDIX D: DEFINITION OF THE RIGIDITY MATRIX

Here, we summarize standard calculations covered in
Refs. [26,27,40]. In this Appendix and in the subsequent
Appendix E, we adopt the usual notation in rigidity theory,
where the positions of the points are represented as pi, and
the system is defined by a set M of M distance constraints.
Note that in the rest of the paper, pi are denoted as ri, and
the M constraints correspond to the E edges of the graph
encapsulating the interactions.

The rigidity problem for N points pi ∈ Rd , i = 1, . . . , N ,
with a set M of distance constraints cα, α = 1, . . . , M, is
given explicitly by the following set of M equations:

|pi − p j |2 = ci j =: cα, α = (i j) ∈ M, (D1)

where pi is the 3 × 1 position vector of node i. Solving this
set of M nonlinear equations directly is usually infeasible for
anything but very small systems. An alternative approach is
infinitesimal rigidity, which considers infinitesimal violations
of the equilibrium conditions of (D1).

Taking the derivative of both sides of (D1) with respect to
time t for all constrained pairs, we get

(pi − p j ) · (ui − u j ) = 0, (i j) ∈ M (D2)

with ui = dpi/dt . We then expand out the brackets:

(pi − p j )ui − (pi − p j )u j = 0, (D3)

and rewrite in vector form

Ru = 0. (D4)

The M × Nd matrix R is called the rigidity matrix and each
row represents a single constraint. For example, a three-node
system with each pair of nodes joined by an edge would have
the rigidity matrix [27]

R =
⎛
⎝p1 − p2, p2 − p1, 0

0, p2 − p3, p3 − p2

p1 − p3, 0, p3 − p1

⎞
⎠. (D5)
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FIG. 7. Rigid cluster decomposition algorithm using infinitesi-
mal rigidity [27]. For each trivial infinitesimal motion, such as the
one in (a), the atoms are moved by a small distance along each
3N × 1 vector to a new position (b). A rigid tetrahedron of atoms
is selected in the new position then in (c) this is moved back to its
original position. Any atoms that also return to their original position
at the same time (for all infinitesimal motions) are part of the same
cluster. (d) The process is repeated until all atoms are clustered into
rigid regions or are assigned as floppy.

The infinitesimal rigidity properties follow from examining
the null space of R. Hence, these properties are an intrinsic
property of the structure, and are independent of the environ-
ment or the friction terms. From (D5), it follows immediately
that the geometric incidence matrix is a scaled version of R.

APPENDIX E: ALGORITHM FOR RIGID CLUSTER
DECOMPOSITION USING INFINITESIMAL RIGIDITY

The following algorithm was introduced in Ref. [27] and
is summarized here for completeness. We use it to obtain the
rigid clusters shown in Fig. 3.

The steps of the algorithm are as follows (see Fig. 7):
(1) Identify a set of four atoms T that form a fully con-

nected tetrahedron.
(2) Translate the coordinate frame to the center of the set

T :

pk := pk − 1

4

∑
k∈T

pk .

(3) Transform the three coordinate axes so that they corre-
spond to the principal axes of the set T :

pk := S pk .

S is the rotation matrix whose rows are the eigenvectors of the
matrix I:

Iαβ =
∑
k∈T

(|pk|δαβ − pkαpkβ ), where (α, β ) = (x, y, z).

(4) Generate the trivial motions in this new coordi-
nate frame: three rotations (rx

k, ry
k, rz

k ) and three translations

FIG. 8. The log absolute extension of interactions decreases
linearly as a function of distance from the allosteric source site
with slope −0.142 (correlation coefficient = −0.603, standard error
= 0.0022), i.e., the effect of the perturbation decays exponentially
away from the allosteric site.

(tx
k , ty

k, tz
k ) for all of the atoms of the structure:

rα
k = pk × êα; tα

k = êα.

(5) Transform the trivial motions back into the starting
coordinate frame

rα
k := ST rα

k ; tα
k := ST tα

k .

(6) Compile the trivial motions for each atom into column
vectors so we have three 3N-dimensional translations tα and
three rotations rα . Normalize each of these trivial motions:

rα := rα∣∣rα
T

∣∣ ; tα := tα∣∣tα
T

∣∣
using the magnitude of the 12-dimensional vectors associated
with the set T . Now, the set of six 12-dimensional trivial
motions of the set T are orthonormal.

(7) The set of displacements of each of the atoms relative
to the set T can then be calculated by returning the set T to
its initial position

	pγ = qγ −
∑

α

(
qγ

T · r(t )α
)
rα −

∑
α

(
qγ

T · tα
T

)
tα,

where we now use γ additionally index over the set of trivial
motions.

(8) For each atom, calculate its absolute displacement in
space away from its initial position due to the infinitesimal
motions. If the maximum displacement of the atom over the
entire set of infinitesimal motions is below a chosen small
threshold value, then we say that atom is part of the same rigid
cluster as the set T :

max
γ

∣∣	pγ

k

∣∣ < δ,

where δ is a cutoff to account for floating point rounding error.
Here, we use δ = 10−4.

APPENDIX F: EDGE DISPLACEMENT DECAYS
EXPONENTIALLY WITH DISTANCE

In all of the protein structures studied, it was found that
the absolute extension of the springs decreased exponentially
with increasing distance of the spring from the perturbation
site, as shown in Fig. 8.
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