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We consider a general problem of a Josephson contact between two multiband superconductors with coexisting
superconducting and magnetic phases. As a particular example, we use the quasiclassical theory of super-
conductivity to study the properties of a Josephson contact between two disordered s±-wave superconductors
allowing for the coexistence between superconductivity and spin-density-wave orders. The intra- and interband
disorder-induced scattering is treated within the self-consistent Born approximation. We calculate the spatial
profile of the corresponding order parameters on both sides of the interface with a finite reflection coefficient
and use our results to evaluate the local density of states at the interface as well as critical supercurrent through
the junction as a function of phase or applied voltage. Our methods are particularly well suited for describing
spatially inhomogeneous states of iron-based superconductors where controlled structural disorder can be created
by an electron irradiation. We reveal the connection between our theory and the circuit theory of Andreev
reflection and extend it to superconducting junctions of arbitrary nature. Lastly, we outline directions for further
developments in the context of proximity circuits of correlated electron systems.
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I. INTRODUCTION

In many practical cases, superconductivity occurs in the
form of a spatially inhomogeneous state [1,2]. This can be
triggered intrinsically due to thermodynamic reasons or cre-
ated extrinsically by forming contacts of superconductors with
other materials. The fundamental example of the first kind of
inhomogeneity is given by the Abrikosov vortex state, which
brings about the spatial modulation of the order parameter
[1,3]. Josephson junction is the example of the other kind,
where inhomogeneity is created near the contact area when
two superconductors are brought into proximity via a tunnel
barrier or other type of the weak link [4,5]. In both of these
cases, and many other physical situations, the spatial inho-
mogeneity extends over the length scale of superconducting
coherence length that is large as compared to electron Fermi
wavelength. Under this condition, the semiclassical theory
of superconductivity based on Eilenberger [6] and Usadel
[7] equations become applicable. These two methods were
developed to treat relatively clean and strongly disordered
superconductors respectively. The solutions of the Eilenberger
and Usadel equations relate the observable properties of a
superconducting structure, for example, critical current, to mi-
croscopic characteristics of the materials forming the junction
and its geometry.
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An alternative method to describe mesoscopic supercon-
ducting structures is based on the random matrix and scat-
tering matrix theories [8]. In this approach, all microscopic
details are condensed into symmetry properties of the scat-
tering matrix representing a disordered region of the junction
which is typically parametrized by a set of transmission
eigenvalues. An observable of interest is then expressed in
terms of these transmissions, similar to the Landauer-Buttiker
transport theory. This phenomenology is more straightforward
and intuitive than semiclassical kinetic theory, but it is more
restrictive in terms of conditions when it applies. Yet there
is a parameter range when both methods work; however, the
connection between them is not immediately obvious.

This link has been provided by the circuit theory of An-
dreev reflection developed originally by Nazarov [9], later
reviewed and extended by several authors [8,10,11]. Circuit
theory can be formulated as the finite set of rules for connec-
tors and nodes of a given superconducting devices, analogous
in spirit to Kirchhoff’s rules. It also gives a prescription to deal
with boundary conditions and in particular average over the
transmission eigenvalues [12,13], which are in general ran-
dom for a disordered or chaotic junction between supercon-
ductors. In recent years, we witnessed the emergence of novel
classes of multiband unconventional superconductors, primar-
ily the large family of iron pnictides (see reviews [14,15] and
references therein). Semiclassical methods of superconduc-
tivity were successfully applied to describe their properties
including the proximity and Josephson effects [16–30], but
circuit theory has not been derived for these systems. The
motivation for this work is to put forward a detailed theory
of superconducting contacts, where the material constituents
forming the junction harbor complex superconducting phases
and competing order parameters.
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This paper is organized as follows. In Sec. II, we formulate
the simplest two-band model that allows for the coexistence of
superconducting (SC) and spin-density-wave (SDW) orders
and derive the Eilenberger equations, which form the tech-
nical basis for our work. In Sec. III, we employ the method
developed by Yip [31] to solve the quasiclassical equations
and, at the same time, satisfy full nonlinear boundary condi-
tions derived by Zaitsev [32]. In addition, we have arbitrary
transparencies and shapes of potential barriers forming the
constriction. We demonstrate that the special auxiliary decom-
position of nonlinear constraints naturally leads to the circuit-
theory boundary conditions as elaborated by Nazarov [10].
In Sec. IV, we present the results for the numerical solution
for the spatially dependence of the superconducting order pa-
rameter, local density of states at the interface, and Josephson
current. In Sec. V, we briefly review several universal exam-
ples of the Josephson effect in mesoscopic superconductor-
normal-superconductor (SNS) structures and related devices
with insulating barriers and microconstrictions. We discuss
how circuit theory captures in a unified fashion multiple
results for the Josephson current-phase relationships that were
previously known from the separate semiclassical calculations
and extend that to the case of proximity junctions of correlated
electrons. Section VI is devoted to the discussion of the results
and outlook for further developments. Lastly, in Appendixes
A, B, and C, we provide the details on the derivations of
the expressions that we used to obtain the solution of the
Eilenberger equations.

II. FORMULATION OF THE PROBLEM

In what follows, we introduce the model Hamiltonian and
write down the quasiclassical equations for the correlation
functions which are used to determine the spatial profile of
the superconducting and magnetic order parameters across
the interface. We will consider short junctions at an arbitrary
transparency between two multiband superconductors. Gen-
erally, disorder in these systems induces both intraband and
interband scattering. In addition, the symmetry of the order
parameter can be unconventional. As a guiding example, we
will study a superconductor with the s± symmetry of the order
parameter relevant for some classes of iron pnictides. We will
also consider a more complicated case, when the supercon-
ducting state coexists with another order such as spin-density
wave. Under such circumstances, it will be impossible to
write the Josephson current of such junctions just in terms of
transmission eigenvalues. However, it is still possible to derive
a closely related circuit-theory expression written in the form
of semiclassical Green’s functions.

A. Model Hamiltonian

Following the discussion in Refs. [33,34], we consider
a model with two cylindrical Fermi surfaces. One Fermi
surface has electron-type (c) excitations and the other one has
hole-type (f) excitations. We introduce the following eight-
component spinor in momentum representation:

�̂†
p = (

ψ̂†
pc,−iσ̂yψ̂

T
−pc, ψ̂

†
ph,−iσ̂yψ̂

T
−ph

)
. (1)

Here σ̂y is a Pauli matrix, ψ̂†
pa = (a†

p↑, a†
p↓), (a = c, f ), and

ψ̂T denotes the transpose of the operator. The form of (1)
ensures the correction definition of the spin density operator
at point r:

�S(r) = ψ̂†
c (r)�σψ̂h(r) + ψ̂

†
h (r)�σψ̂c(r). (2)

In this paper, however, we will limit our discussion to the z
component of the spin operator (2), and as it turns out it will
be more convenient to work with the following spinor:

�̂†
p = (

ψ̂†
pc, ψ̂

T
−pc, ψ̂

†
ph, ψ̂

T
−ph

)
. (3)

The Hamiltonian for our problem can be written down using
the mean-field approximation,

Ĥ = Ĥ0 + Ĥmf + Ĥdis. (4)

The noninteracting part Ĥ0 has the standard form pertinent to
our choice of the basis spinor (3):

Ĥ0 = −ξpτ̂3ρ̂3σ̂0, ξp = p2

2m
− μ, (5)

where μ is a chemical potential and the mass anisotropy
between hole- and electron-like bands was ignored. The re-
maining mean-field part contains two terms which account
for the superconducting pairing in the s± symmetry channel
with the amplitude 	 and spin-density wave order parameter,
�M = M�ez:

Ĥmf = −	τ̂3ρ̂2σ̂2 + M τ̂1ρ̂3σ̂3. (6)

In these expressions, we use the Pauli matrices τi, ρi, and σi

(i = 1, 2, 3) defined in the subspace of band, Nambu, and spin
degrees of freedom correspondingly.

Lastly, the third term in (4) describes the effects of disorder
induced by chemical substitution at lattice sites Ri:

Ĥdis =
∑

i

[u0τ̂0ρ̂3σ̂0 + uπ τ̂1ρ̂3σ̂0]δ(r − Ri ). (7)

The first term in the brackets accounts for the intraband scat-
tering, while the second term describes the scattering between
the bands. Having defined the Hamiltonian, next we outline
the steps which lead to the equations for the quasiclassical
Green’s functions.

B. Eilenberger equation

For simplicity, let us first assume that disorder is the only
source of spatial inhomogeneities. To derive the equations
for the quasiclassical correlation function, one starts with the
Dyson equation for the single-particle Green’s function in the
imaginary time representation

Ĝ(r, r′; τ ) = −〈〈T̂τ {�̂(r, τ )�̂†(r′, 0)}〉〉dis (8)

averaged over various disorder realizations:

[iωn − Ĥp − 
̂(iωn)]Ĝ(p, iωn) = 1̂ (9)

with ωn = πT (2n + 1) being the fermionic Matsubara fre-
quency. Within the self-consistent Born approximation, the
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corresponding expression for the self-energy reads


̂(iωn) = �0

πνF

∫
d2p

(2π h̄)2
τ̂0ρ̂3σ̂0Ĝ(p, iωn)τ̂0ρ̂3σ̂0

+ �π

πνF

∫
d2p

(2π h̄)2
τ̂1ρ̂3σ̂0Ĝ(p, iωn)τ̂1ρ̂3σ̂0, (10)

where �0,π ∝ νF |u0,π |2 are the corresponding disorder scat-
tering rates and νF is the density of states at the Fermi level.

The quasiclassical Eilenberger function is defined accord-
ing to

Ĝ(iωn) = i

πνF

∫
d2p

(2π )2
τ̂3ρ̂3σ̂0Ĝ(p, iωn). (11)

The equation for the function can be obtained from the
Dyson equation above (9) by eliminating the single-particle
spectrum, ξp.

In the spatially inhomogeneous case, which naturally arises
in nonzero external magnetic field or in the presence of a
contact between two superconductors, functions Ĝ(p, iωn),
Ĝ(iωn) as well as self-energy 
(iωn) and the order parameters
	, M will also depend on the “center-of-mass” coordinate
R = (r + r′)/2. Thus, function Ĝ(R, iωn, v) satisfies the fol-
lowing equation:

[iωnτ̂3ρ̂3σ̂0; Ĝ] − ivF · ∂RĜ − [Ĥmfτ̂3ρ̂3σ̂0; Ĝ]

− [
̂τ̂3ρ̂3σ̂0; Ĝ] = 0, (12)

where [X̂ ; Ŷ ] stands for the commutator of matrices and
vF = vF n. In equations above, we have omitted writing the
dependence on R and ωn in relevant functions for brevity.
Importantly, since the quasiclassical equations are linear in Ĝ
one needs to specify the constraint condition for this function
to avoid an ambiguity. Simple calculation shows that the qua-
siclassical function must satisfy the nonlinear normalization
condition

Ĝ2 = 1̂. (13)

In addition, given the problem at hand, the Eilenberger equa-
tion above needs to be supplemented with the boundary
conditions.

C. Boundary conditions

To determine the spacial variation of the order parameters
	(x) and M(x) through the interface, we need to solve (12)
on each side of the interface and then match the quasiclassical
functions at the interface (x = 0) with the use of the boundary
conditions [32]:

Ĝa(0)
[
RĜ2

s+(0) + Ĝ2
s−(0)

] = DĜs−(0)Ĝs+(0). (14)

Here the dependence of the quasiclassical functions on Mat-
subara frequency has been suppressed, Ĝs(a)(0) = [Ĝ(vx, 0) ±
Ĝ(−vx, 0)]/2 and Ĝs±(0) = [Ĝs(+0) ± Ĝs(−0)]/2. New pa-
rameter D is the transparency coefficient for the interface,
while R = 1 − D. Note that the boundary conditions are
nonlinear. This happens because the interference between the
quasiparticle paths on both sides of an interfaces has been
completely ignored. The effects of the interference between

the trajectories go beyond the scope of this work and will be
reported elsewhere [35].

III. ANALYSIS OF THE QUASICLASSICAL EQUATIONS

In this section, we first discuss the approach to solving
the Eilenberger equations and then show the results of our
numerical solution for the spatial variation of 	(x) and M(x)
across the junction.

A. Ansatz for the quasiclassical functions

The task of solving matrix Eilenberger equation (12)
presents a major challenge. In addition to being supple-
mented by the nonlinear boundary conditions (14) for a given
	(x) and M(x), these functions must be determined self-
consistently via relations [36]

	(x)

νF λsc
= 2πT

��∑
ωn

Tr[〈Ĝ〉(1̂ + τ̂3)ρ̂+σ̂+],

M(x)

νF λsdw
= 2πT

��∑
ωn

Tr[〈Ĝ〉τ̂+(1̂ + ρ̂3)σ̂3], (15)

where 〈Ĝ〉 = 〈Ĝ(x, ωn, vx )〉 and averaging is performed over
the directions of the quasiparticle trajectories. Here, ��

is the energy scale of an ultraviolet cutoff, while λsc,sdw are
the corresponding coupling constants and we employed the
standard notation a+ = ax + iay.

Clearly, to make further progress we need to specify the
matrix structure of the function Ĝ that will respect the non-
linear normalization constraint. We now present the ansatz for
the function Ĝ that follows the constraint

Ĝ(ζ ) = gz(ζ )τ̂3ρ̂3σ̂0 + Ĝsc(ζ ) + Ĝsdw(ζ ) + Ĝmix(ζ ), (16)

where ζ = (x, ωn, vF nx ). The first term in (16) is the qua-
siclassical function for the normal component, so that in
the absence of an interface and when 	 = M = 0 it obtains
gz(iωn) = sign(ωn). The second term accounts for the super-
conducting correlations:

Ĝsc(ζ ) = fz(ζ )τ̂0ρ̂1σ̂2 + i fx(ζ )τ̂3ρ̂2σ̂2. (17)

Here the anomalous fz component must be constant in the
bulk, while fx is only nonzero in a close proximity to an
interface and is an odd function of unit vector nx. Similarly,

Ĝsdw(ζ ) = sz(ζ )τ̂2ρ̂0σ̂3 + isx(ζ )τ̂1ρ̂3σ̂3. (18)

Finally, the last term in (16), as will be shown below, appears
only when both 	 	= 0 and M 	= 0,

Ĝmix(ζ ) = −igx(ζ )τ̂2ρ̂1σ̂1, (19)

and it vanishes in the bulk on the both sides of an interface.
After substituting these expressions into (12) and equating

the terms proportional to the same combination of the direct
matrix products τ̂iρ̂ j σ̂k , we find the following equations:

�zsx − �z fx + �xsz + �x fz − vx

2

∂gz

∂x
= 0,
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z fz − �zgz + �xgx − �xsx − vx

2

∂ fx

∂x
= 0,


z fx − �xgz + �zgx + �xsz − vx

2

∂ fz

∂x
= 0,


zsz − �zgz − �x fx − �xgx + vx

2

∂sx

∂x
= 0,


zsx + �zgx + �xgz + �x fz + vx

2

∂sz

∂x
= 0,

�z fz − �zsz − �x fx − �xsx − vx

2

∂gx

∂x
= 0. (20)

To keep concise notations, we have introduced additional self-
energy functions

�x = �t 〈 fx〉, �x = �m〈sx〉, �z = M(x) − �t 〈sz〉,
�x = �t 〈gx〉, 
z = ωn + �t 〈gz〉, �z = 	(x) + �m〈 fz〉,
with �m = �0 − �π and �t = �0 + �π and with implicit
averaging that is performed over all possible values of unit
vector nx.

B. Quasiclassical function components in the bulk

Eilenberger equation acquires the simplest form in the bulk
when the gradient term can be discarded. For definiteness, we
consider the bulk of a superconductor at x > 0. According to
our discussion above, only three functions gz, fz, and sz are
nonzero. Simple calculation yields(

ωn + 2�πgb
z

)
f b
z = 	gb

z,
(
ωn + 2�t g

b
z

)
sb

z = Mgb
z,(

M − 2�0sb
z

)
f b
z = 	sb

z , (21)

where superscript b in all the functions implies value of that
function taken in the bulk of a sample, namely gb

z = gz(x →
∞), etc. Furthermore, it is easy to show that the third equation
is redundant. However, as we will see below, in the vicinity
to the interface an analog of this equation will determine the
spatial variation of the function gx, Eq. (19).

Numerical solution of the first two equations together
with the self-consistency equations (15) produces the well-
known phase diagram of SC-SDW coexistence shown in
Fig. 1 for a certain choice of parameters (compare that to
Refs. [33,34,36]). This model reveals the domelike structure
of superconductivity overlapping with SDW state. Bending of
the superconducting dome in the nonmagnetic phase occurs
due to finite �π that serves as an effective pair-breaking
factor for s± superconductivity. Suppression of magnetic or-
der already occurs at the level of intraband scattering that
is governed by �0. The width of the coexistence region
max[TN (	) − Tc(M )] can be controlled by the ratio between
the scattering rates �π/�0 and can change substantially; how-
ever, within this model it always remains rather narrow.

C. Normalization condition

Simple algebraic manipulations with Eqs. (20) show that
components of Ĝ satisfy

g2
z + f 2

z + s2
z − f 2

x − s2
x − g2

x = const. (22)

for any value of x. By sending x → ±∞, it immediately
follows that the constant must be equal to one. On the other
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FIG. 1. Phase diagram obtained by numerical solution of the
mean-field equations (15) and (21) for a given set of disorder scat-
tering rates. The main panel shows doping dependence of the critical
temperatures for magnetic (TN ) and superconducting (Tc) transitions.
The inset panel shows respective dependence of the order parameters
M and 	.

hand, we can use Eq. (13) directly with (16) to find

Ĝ2 = 1̂ − 2i(gzgx − fzsx − fxsz )τ̂1ρ̂2σ̂1, (23)

where we already took into account (22). Again, as it can
be checked by the direct calculation, the second term here is
actually a constant:

gzgx − fzsx − fxsz = const. (24)

The constant appearing in this equation must be zero due to
the vanishing of functions gx, sx, and fx in the bulk. Thus, we
have derived the matrix form of the quasiclassical function
and have demonstrated that normalization condition for the
function Ĝ holds.

IV. APPLICATIONS AND RESULTS

In this section, we present the results of our analy-
sis of the quasiclassical equations and use these results to
compute the observables: local density of states and critical
current.

A. Order parameters and local density of states

The numerical solution of the quasiclassical equations (20)
for the geometry of a junction illustrated in Fig. 2 is plotted
in Fig. 3. These plots are one of the main results of this
paper concerning the nature of the proximity effect in a
complex superconducting phase. One important observation
that we can make in regards to the spacial changes of the
superconducting order parameter is that it varies substantially
only in the immediate vicinity of the boundary between
the two superconductors. In contrast, the spin-density-wave
order parameter changes on a somewhat larger length scale.
Therefore, our results formally justify the often used ap-
proximation of constant order parameter on both sides of an
interface.
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FIG. 2. Schematic representation of the Josephson contact be-
tween two superconductors separated by a metallic barrier. It is as-
sumed that in both superconductors the magnetic (i.e., spin-density-
wave) order parameter can be nonzero.

It is important to point out here that precisely this aspect of
the problem leads to practically universal predictions for the
current-phase relations of SSDW-N-SSDW Josephson junctions.
It should be noted, however, that disorder model considered
here is not the only one that gives coexistence scenario.
In the band models [37,38], the coexistence region can be
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FIG. 3. Results for the spatial dependence of the order parame-
ters obtained from the numerical solution of the Eilenberger equa-
tions for various values of the transmission coefficient D = 1 − R.
The distance away from the contact is normalized to the coherence
length.
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FIG. 4. (a) Local density of states in the bulk plotted for different
choice in values of disorder scattering rates. (b) Local density of
states plotted for various values of the distance (units of the average
coherence length of two superconductors) from an interface for two
superconductors with the following values of the order parameters in
the bulk: 	1 = 1.01Tc0, M1 = 1.48Tc0, 	2 = 1.24Tc0, M2 = 10−4Tc0.
The reflection coefficient of an interface is R = 0.6. We have set the
temperature to T = 0.01Tc0.

significantly broader in parameter space so that proximity
problem in principle may also have qualitatively different
behavior, in particular displaying longer coherence lengths.

With the solution of the Eilenberger equations, we can
easily determine the local density of states at the interface
(x = +0), using the well-known expression [39,40]

ρLDOS(ω, x) = 〈Tr{Re[τ̂3ρ̂3σ̂0Ĝ(ω + i0, x, nx )]}〉,
and the averaging is performed over all directions of unit
vector �n. For a fixed position from an interface, order pa-
rameter 	(x = +0) and components of Ĝ(iωn, x = +0, nx )
are known from the numerical solution. Upon averaging over
nx, we obtain 〈Ĝ(iωn, x, nx )〉 and by performing an analytic
continuation to real frequencies, iωn → ω + i0, we then are
able to compute the local density of states by employing
the Páde approximation. In Fig. 4, we present the results of
these calculations for ρLDOS(ω) in the bulk superconductor
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FIG. 5. Local density of states in the bulk (top panel) and at the
interface (bottom panel) for various values of the disorder scattering
rates and interface deflection coefficient for the case of zero magneti-
zation at T = 0.1Tc0. Tc0 is the superconducting critical temperature
in a clean system. The energy is given in the units of 	1 = 1.05Tc0.

(top panel) and at the interface (bottom panel). Our results for
the ρLDOS(ω) show several features which appear as a result

of nonzero disorder and finite temperatures. In this regard,
the comparison of the LDOS at the interface with the one in
the bulk affords a fairly easy interpretation of our results. In
particular, the narrowing of the region near ω = 0 describing
fairly sharp increase of ρLDOS(ω) can be associated with a
suppression of the larger pairing amplitude by the presence of
the interface and disorder-induced scattering. Similar conclu-
sions can be also drawn from our results for the LDOS for the
case of the contact between two superconductors with M = 0
(Fig. 5).

B. Josephson effects

In analogy with the local density of states, Josephson
current through the junctions also admits representation in
terms of the Eilenberger function:

J = eνF vF T
∑
ωn

∫ π/2

0

dφ

2π
sin φ

× Tr{Im[τ̂3ρ̂3σ̂0Ĝa(iωn, 0, vF sin φ)]}. (25)

In order to compute Ĝa(0), one generally speaking needs to
consider Eqs. (12) with the complex 	(x) on each side of
the interface. However, in the case when there is no magnetic
field, the problem can be significantly simplified by using the
unitary transformation, which eliminates the phase from the
order parameter. For example, assume that the order parameter
on the left side of the interface is 	1(x) = |	1(x)|eiχ (x). Then,
we introduce a unitary transformation

Ŝ (χ ) = cos(χ/2)τ̂3ρ̂0σ̂0 − i sin(χ/2)τ̂3ρ̂3σ̂0. (26)

It is easy to verify that Ŝ	1Ŝ† = |	1|. If one now implements
this unitary transformation for the quasiclassical functions,
it follows that the Eilenberger equation acquires essentially
the same form as the one with purely real order parameter,
except for the extra term proportional to ∂χ/∂x. This term,
however, can be ignored for one does expect the phase to vary
substantially across the junction. Furthermore, by performing
the inverse unitary transformation, one can determine function
Ĝa(iωn, 0, vF sin φ).

After somewhat lengthy calculation, we found

Tr[τ̂3ρ̂3σ̂0Ĝa(0)] = 2iD
[
i
(

f r
1b f l

2b − f r
2b f l

1b

)
cos χ + (

f r
1b f l

1b − f r
2b f l

2b

)
sin χ

]
2 − D

[
1 − gr

bgl
b + (

f r
1b f l

1b − f r
2b f l

2b

)
cos χ − i

(
f r
1b f l

2b − f r
2b f l

1b

)
sin χ

] . (27)

Here χ is the global phase difference between the order
parameters on the both sides of the interface and the super-
scripts l and r mean that the functions should be evaluated
either on the left (x = −δ) or the right (x = +δ) sides of the
interface. Our results for the Josephson current-phase relation
are shown in Fig. 6. Quite naturally, we find that for small
D, the Josephson current will be proportional to sin χ . We
note that the quasiclassical functions which account for the
magnetic order do not explicitly enter into the expression for
the Josephson current.

Motivated by ideas and practical implementation of
Josephson scanning tunneling spectroscopy (JSTS) as a

diagnostic of unconventional superconductivity [41–46], we
briefly consider this effect in our model. To determine the
dependence of the critic current on external voltage V , we use
the usual expression [41,47]

Ic(V ) = − 1

4π3eRN

∫∫ +∞

−∞
dω1dω2

×
[

F†
1 (ω1)F2(ω2)

ω1 + ω2 + eV − iδ
+ F∗

1 (ω1)F†∗
2 (ω2)

ω1 + ω2 − eV − iδ

]
.

(28)
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FIG. 6. Josephson current through the junction as a function of
the phase difference between the superconducting order parame-
ters on the both sides of the interface for different values of the
transparency coefficient D. The order parameter 	 was computed
self-consistently and RN is the resistance of the junction in the normal
state.

Here F1(2)(ω) are the quasiclassical anomalous Green’s func-
tions for the first (second) superconductor and RN is the
contact resistance. In the JSTS setup, one usually uses SC tip
with known properties as a reference point and another SC as
a study system. For this reason, we choose F1(ω) in the form
which describes a clean BCS superconductor with the pairing
amplitude 	BCS:

F1(ω) = F†
1 (ω) =

⎧⎨
⎩

π	BCS√
	2

BCS−ω2
, |ω| < 	BCS,

iπ	BCS√
ω2−	2

BCS

, |ω| > 	BCS.
(29)

As for the function F2(ω2), it can be directly obtained from
f b
z (iωn) by performing an analytic continuation. For simplic-

ity, we consider f b
z (iωn) calculated away from the contact that

creates spatial inhomogeneity, but obviously the calculation
can be done for any spatial location of the tunneling tip with
respect to the junction.

The results of our numerical calculations based on Eq. (28)
are presented in Fig. 7. To contrast with the textbook example,
we also plotted the critical current for a contact between two
BCS superconductors. It is worth reminding the reader that
in the case of two identical BCS superconductors, the real
part of the critical current has a logarithmic divergence at the
threshold voltage eV = 2	BCS, while the imaginary part has
a square-root singularity at the same value of external voltage.
Now, if one of the BCS superconductors is replaced with
an unconventional disordered superconductor, the presence of
disorder and nonzero magnetization produces the smearing of
the above-mentioned singularities and leads to the substantial
broadening of the dependence Ic(V ).

V. OVERVIEW OF UNIVERSAL JOSEPHSON
CURRENT-PHASE RELATIONS

The physics of the dc-Josephson effect is ultimately related
to the subgap states that carry the supercurrent. These states
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(a)

FIG. 7. Plot of the real and imaginary parts of the Josephson
critical current through the junction as a function of external voltage.
(a) The real part of the critical current as a function of external
voltage in the units of the BCS gap. The solid line corresponds to
a junction between two BCS superconductors, while the remaining
two lines are for the junction when one of the superconductors is
in coexistence with the SDW order. (b) The imaginary part of the
critical current.

form as a result of Andreev reflections that electrons undergo
when impinging on superconducting interfaces. Location of
these states inside the superconducting gap depends on the
superconducting phase difference across the junction. Kulik
solved the first microscopic model of superconductor-normal-
superconductor (SNS) model and derived the spectrum of An-
dreev states in various limits (see, e.g., Refs. [5,47]). In a way,
this work marked the beginning of intensive studies of various
kinds of Josephson junctions that spanned multiple decades.
The interest in this problem has been continuously sustained
to the present day not only due to the fundamental physics
involved and applications of this effect but also emergence of
the new classes of unconventional superconductors.

The most elegant way to derive the spectrum of An-
dreev bound states is by using a scattering matrix approach.
Beenakker derived the general determinant formula [48]
which has very transparent and intuitive meaning. In the limit
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of the short junction, when length of the link separating
superconducting leads is small compared to the coherence
length (L � ξ ), this formula simplifies to a famous expression
for a pair of Andreev levels per channel of the junction

En(χ ) = ±	

√
1 − Dn sin2(χ/2). (30)

In this theory, the junction is modeled as a multimode con-
ductor where each conduction channel labeled by an index n
has certain transmission coefficient Dn. The Josephson current
J (χ ) carried by these states is given by

J (χ ) = e	2

2h̄
sin(χ )

∑
n

Dn

En
tanh

(
En

2T

)
. (31)

With this formula at hand, one can recover multiple special
cases. Indeed, at temperatures close to the critical, T � Tc, the
superconducting gap is small, 	 � T , so that one can expand
the thermal factor of hyperbolic tangent at small argument,
which gives as a result

J (χ ) = π	2

4eRN T
sin(χ ), (32)

where we introduced the total normal state resistance of
the junction by means of the Landauer formula R−1

N =
(2e2/h)

∑
n Dn. This sinusoidal current-phase relationship for

a superconductor-constriction-superconductor (ScS) junction
was originally derived by Aslamazov and Larkin from the
Ginzburg-Landau theory [49]. This result is universal in the
sense that it applies to any kind of constriction. It is also
a generic property that Josephson current is harmonic (sinu-
soidal) near Tc. Alternatively, one can consider a tunnel bar-
rier, Dn � 1, which corresponds to a class of superconductor-
insulator-superconductor (SIS) type junctions. This yields the
following expression for the current in the form

J (χ ) = π	

2eRN
sin(χ ) tanh(	/2T ) (33)

that was derived first by Ambegaokar and Baratoff from the
tunneling Hamiltonian [50]. In the opposite limit of fully
transparent channels, Dn = 1 for n = 1, . . . , N , one recovers
the model of quantum point contact, namely S-QPC-S junc-
tion. In this case, the spectrum of Andreev levels simplifies
to En = 	 cos(χ/2) for any channel and the corresponding
current is

J (χ ) = π	

eRN
sin(χ/2) tanh

[
	 cos(χ/2)

2T

]
. (34)

This formula was derived first by Kulik and Omelyanchuk
from the Eilenberger equations [51].

In realistic contacts of actual devices, transmissions are
neither fully ballistic nor of tunneling type; rather there is
a continuous distribution ρ(D) of transmission eigenvalues.
There are several generic contact types that have been dis-
cussed in the literature. Their distributions are described by
the function of the form

ρ(D) = Np
1

RN GQ

1

Dp
√

1 − D
, p = 1/2, 1, 3/2. (35)

The case with the power exponent p = 1/2 corresponds to
two ballistic connectors with equal conductances in series.

The case with p = 1 corresponds to the Dorokhov function
of a diffusive connector [12]. The case with p = 3/2 was
considered by Schep and Bauer [13] and corresponds to an
interface with a high density of randomly distributed scatter-
ers. The normalization factors Np are chosen in such a way
as to ensure the total resistance of the junction to be R−1

N =
GQ

∫ 1
0 Dρ(D)dD, where GQ is the quantum of conductance.

It is perhaps remarkable to see that averaging Josephson
current in Eq. (31), which was derived for a given set of
transmissions over their distributions with the help of Eq. (35),∑

n . . . → ∫ 1
0 (. . .)ρ(D)dD reproduces known results, which

were obtained by means of the semiclassical technique.
Consider p = 1 first: The normalization is N1 = 1/2, and

the ensemble-averaged Josephson current is (taken at zero
temperature for simplicity)

J (χ ) = π	

4eRN

∫ 1

0

sin(χ )dD√
1 − D

√
1 − D sin2(χ/2)

. (36)

The integral can be found in elementary functions with the
final result

J (χ ) = π	

eRN
cos(χ/2)arctanh[sin(χ/2)] (37)

that corresponds to Kulik-Omelyanchuk computation carried
out for the disordered SNS junction based on the Usadel
equations [52]. For the case with p = 3/2, an analogous
averaging yields

J (χ ) = 	

2eRN

∫ 1

0

sin(χ )dD
√

D(1 − D)
√

1 − D sin2(χ/2)
, (38)

which after the substitution D = sin2(x) reduces to the com-
plete elliptic integral of the second kind:

J (χ ) = 	

eRN
sin(χ )K[sin(χ/2)]. (39)

This current-phase relationship was obtained first by
Kupriyanov and Lukichev from Usadel equations in the con-
text of the SINIS junction (see Ref. [53] for review). Its
connection to Eq. (31) with subsequent averaging over ρ(D)
was pointed out by Brinkman and Golubov [54]. Lastly, the
case with p = 1/2 corresponds to a chaotic cavity/quantum
dot that supports current

J (χ ) = 	

eRN
sin(χ )

∫ 1

0

√
DdD√

1 − D
√

1 − D sin2(χ/2)
(40)

as was studied by Brouwer and Beenakker [55]. The cor-
responding current-phase relationship can be written as a
combination of elliptic functions of the first and second kinds:

J (χ ) = 4	

eRN
cot(χ/2)[K[sin(χ/2)] − E[sin(χ/2)]]. (41)

All these examples give different functional forms of the
Josephson current, yet all of the them support parametrically
the same critical current, Jc � 	/eRN , which is governed by
the total conductance of the junction in the normal state and
size of the gap in the leads. In that regard, these results are
universal. In the extended junctions, when the size of the weak
link is large as compared to the coherence length L � ξ , the
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situation is different as critical current will decay as a power
law or even exponentially with L depending on temperature.
The decay of the current is related to the large dwell time
needed for quasiparticles to travel across the junction. Ad-
ditional features may appear due to the complexities of the
proximity effect related to induced spectral gaps, including
secondary gaps near 	, that ultimately modify current ampli-
tude and its dependence on the phase [56].

Interestingly, the family of such (almost universal) results
for mesoscopic systems can be extended to include more
complex proximity junctions of correlated electrons, such as
SSDWNSSDW or SSDWINISSDW. Indeed, thanks to the exact
numerical results we have for the spatial profile of the order
parameters, one can take the step function model to the
leading approximation. Assuming the symmetric case, one
then finds for the trace in Eq. (27) a rather simple analytical
expression:

Tr[τ̂3ρ̂3σ̂0Ĝa(0)]

= 8iD	2 sin(χ )

(2 − D)
(
ω2

n + M2 + 	2
) + D

(
ω2

n + M2 + 	2 cos(χ )
) .

(42)

For a multimode junction without intermode scattering, one
can directly average this expression over ρ(D), which gives
for the Josephson current a compact formula

J (χ ) = 2πT

eRN

∑
ωn

	2 sin(χ )

ω2
n + M2 + 	2

∫
Dρ(D)dD

(2 − D) + DP(χ )
,

(43)

where we introduced dimensionless function

P(χ ) = ω2
n + M2 + 	2 cos(χ )

ω2
n + M2 + 	2

. (44)

At zero temperature, the Matsubara sum can be converted
into an integral over the real axis of continuous frequencies
2πT

∑
ωn

→ ∫
dω and the remaining calculations can be

carried out for any of the discussed models of transmission
distributions (35). For instance, for the SSDWINISSDW junction
(model with p = 3/2), one finds

J (χ ) = cp	
2

eRN

sin(χ )√
M2 + 	2 cos2(χ/2)

, (45)

where cp is the numerical factor of the order of one. We
notice that in the part of the phase diagram where SDW
competes with SC, M � 	, supercurrent is suppressed: Jc ∼
	2/(eRN M ). Other models of contacts can be analyzed in a
similar way.

VI. DISCUSSION AND OUTLOOK

By using the quasiclassical theory of superconductivity,
we have performed the fully self-consistent treatment of the
Josephson junctions between two two-band superconductors
in which nodeless order parameter with s± symmetry coexists
with an itinerant SDW order. By solving the corresponding
quasiclassical equations for the Eilenberger functions, we
have found the variation of the superconducting and magnetic

order parameters across the interface with arbitrary trans-
parency. Using the results of the numerical solution, we have
computed the local density of states ρLDOS, Josephson current-
phase relations J (χ ), as well as dependence of the nonequilib-
rium critical current on external voltage, Ic(V ). The features
pertaining to the presence of the magnetic order are clearly
pronounced in the local density of states, on distances of the
order of the coherence length from the interface provided
that pairing amplitude in at least one of the superconductors
exceeds the magnetic order parameter. For the critical current,
we find (i) suppression in the parts of the phase diagram where
SDW dominates superconductivity and (ii) that disorder leads
to smearing of the various sharp features in Ic(V ) found for
the contact between BCS superconductors.

Our work can be further extended in multiple directions. It
is of practical importance to consider the effects of disorder
for more realistic Fermi surfaces, including ellipticity, for
example. It is of special interest to consider three-band models
as the minimal setting for the appearance of nematic order that
has to be included in the Eilenberger semiclassical scheme.
There is also clear motivation to extend this semiclassical
theory to a real time axis to address dynamical responses of
superconductors with competing orders.
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APPENDIX A: METHOD OF AN AUXILIARY SOLUTION

In what follows, we will briefly review a theoretical ap-
proach, first proposed by Yip [31], that allows one to cir-
cumvent the issues associated with the nonlinearity of the
boundary conditions. This approach makes it possible to write
down the expressions for the quasiclassical functions, which
match each other on the interface with the finite reflection co-
efficient (see also Refs. [57–61]). The only assumption which
goes into making this procedure work is that superconductors
extended to distances on which the correlations functions and
the corresponding order parameters recover their bulk values.
The trick we will use consists of expressing the physical
solution in terms of the unphysical (i.e., divergent) ones and
implementing the resulting relations to simplify the boundary
conditions.

Let us make some general observations. First, it is clear
that the Eilenberger equation (4) can be formally written as

vx∂xĜ = [L̂; Ĝ]. (A1)

If Ĝsol is a solution of (A1), then Ĝ2
sol is also a solution. Fur-

thermore, because of the normalization condition, it follows
that once the boundary conditions are taken into account, our
quasiclassical function matrix G at both sides of the interface
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FIG. 8. Schematic plot illustrating the procedure of finding two
auxiliary solutions of the quasiclassical equations. Auxiliary qua-
siclassical functions Ĝ>,<(u) are considered to be the functions
of parameter u = x/vxτ	, where τ	 is the relaxation time of the
order parameter. Top panel: the trial order parameter is chosen to
correspond to the physical order parameter of a superconductor
to the left of the interface and the particle’s velocity is assumed
to be negative, vx < 0. Therefore, the diverging solution of the
quasiclassical equations at x → ∞ (u → −∞) is denoted by Ĝ>

1 (u),
while the diverging solution at x → −∞ (u → ∞) is denoted by
Ĝ<

1 (u). Bottom panel: Ĝ>(u) and Ĝ<(u) now diverge on opposite
sides of the interface and a trial form of the order parameter is chosen
to match the bulk value of the order parameter on the right-hand side
of the interface.

follows Ĝ2 = Ĝ2
0 , where G0 is a quasiparticle correlator in the

bulk, Ĝ2
0 = Î.

Instead of solving a problem on both sides of the interface
and then trying to match the corresponding solutions, one
ignores the interface and solves independently two problems
with the parameters matching those at each side of the in-
terface. The solution of each of these two problems requires
a profile of the pairing amplitude as an input, so for both
problems one can use the bulk value of the order parameters
at the each side. Within each of these two problems, we
need to solve separately for incoming (nx > 0) and outgoing
(nx < 0) trajectories, so generally speaking we are solving
four problems in total (Fig. 8).

The logic behind simplifying the boundary condition is
as follows. Let us consider two unphysical solutions of the
Eilenberger equation without an interface; see Fig. 8. Specifi-
cally, for vx > 0 we introduce the physical pairing field in the
region x > 0 and an auxiliary field 	̂aux in the region x < 0
and consider the solution denoted by Ĝ> ∼ e−xλ/vx (λ > 0),
which diverges (it must diverge since this is an unphysical

solution) at x → −∞ and vanishes as x → +∞, so that this
solution vanishes as u = x/vx → ∞. Similarly, Ĝ< ∼ exλ/vx

vanishes at x → −∞ but it diverges as x → +∞ with the
physical value of the pairing field for x < 0 and auxiliary
order parameter for x > 0. It is easy to show that the product
of these two solutions is also a solution of (A1). From the two
diverging solutions, we can construct the bounded solution:

Ĝb = a(Ĝ<Ĝ> − Ĝ>Ĝ<). (A2)

Here the normalization constant a is determined by the nor-
malization condition for the physical solution of the Eilen-
berger equation: a = (Ĝ<Ĝ> + Ĝ>Ĝ<)−1, where we took into
account the matrix structure of the quasiclassical functions;
i.e., the anticommutator of Ĝ< and Ĝ> must be proportional to
the unit matrix. Thus, the physical solution (i.e., the one which
remains finite in the bulk) in terms of the two unphysical ones
reads

Ĝb = Ĝ>Ĝ< − Ĝ<Ĝ>

Ĝ>Ĝ< + Ĝ<Ĝ>

. (A3)

An important property of these auxiliary matrices is that

Ĝ2
> = Ĝ2

< = 0. (A4)

After somewhat lengthy but otherwise straightforward calcu-
lation (see below), we obtain the following expressions for the
values of the quasiclassical functions at the interface:

Ĝa(0) =
D
4

[
Ĝr

b; Ĝ l
b

]
1 − D

4

(
Ĝr

b − Ĝ l
b

)2 ,

Ĝ l
s (0) =

(
1 − D

2

)
Ĝ l

b + D
2 Ĝr

b

1 − D
4

(
Ĝr

b − Ĝ l
b

)2 ,

Ĝr
s (0) =

(
1 − D

2

)
Ĝr

b + D
2 Ĝ l

b

1 − D
4

(
Ĝr

b − Ĝ l
b

)2 , (A5)

where coordinate dependence on the right-hand side is
suppressed. Remarkably, these relations have the form of
the circuit-theory boundary conditions of Andreev refection
[9,10]. Thus, we were able to express the values of the
quasiclassical functions, which determine the physical prop-
erties of the junctions, in terms of the correlations functions
found using the auxiliary solutions. In principle, one can
use these values to set up the boundary value problem and
solve the Eilenberger equations anew. Indeed, the general
solution of the quasiclassical equations with given 	(x) can
always be written as a linear combination of the bulk solution
and the solution of the auxiliary problem [see Eq. (D1) of
Appendix D].

APPENDIX B: AUXILIARY SOLUTION
IN CLEAN JUNCTIONS

To illustrate the power of this method, let us obtain the
two auxiliary solutions Ĝ>(u) and Ĝ<(u) (here u = x/vx is
an auxiliary parameter) of the Eilenberger equations (20) in
the clean case assuming finite M and then results can be
generalized for finite disorder. In Eqs. (20), we set �0 = �π =
0 and assume that both 	 and M are spatially homogeneous.
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One obtains

Msx − 	 fx = vx

2

∂gz

∂x
, ωn fz − 	gz = vx

2

∂ fx

∂x
,

ωn fx + Mgx = vx

2

∂ fz

∂x
, Mgz − ωnsz = vx

2

∂sx

∂x
,

−ωnsx − 	gx = vx

2

∂sz

∂x
, M fz − 	sz = vx

2

∂gx

∂x
. (B1)

Let us now consider two cases of diverging and converging
solutions at x → ∞ separately.

a. Ĝ<(x, vx > 0). Let us assume vx > 0 and focus on the
solution of these equations which diverges at x → ∞. We
look for the solution in the following form:

f <
x = a<

x e2λx/vx , s<
x = b<

x e2λx/vx , g<
x = c<

x e2λx/vx ,

f <
z = a<

z e2λx/vx , s<
z = b<

z e2λx/vx , g<
z = c<

z e2λx/vx . (B2)

It follows that the solution can be written as

c<
x = c1, c<

z = c, (B3)

where c and c1 are two arbitrary constants. The remaining four
coefficients are

a<
x = −c

λn	

M2 + 	2
+ c1

Mωn

M2 + 	2
,

b<
x = c

λnM

M2 + 	2
bz + c1

	ωn

M2 + 	2
,

a<
z = −c

	ωn

M2 + 	2
+ c1

Mλn

M2 + 	2
,

b<
z = −c

ωnM

M2 + 	2
− c1

	λn

M2 + 	2
, (B4)

where λn = √
ω2

n + 	2 + M2. This nontrivial combination
for the coefficients must satisfy additional constraints that we
will discuss later in this Appendix.

Therefore, for M 	= 0 two out of six coefficients remain
undetermined since the normalization relation (A4) is satisfied
identically:

a2
z + b2

z + c2
z − a2

x − b2
x − c2

x = 0. (B5)

b. Ĝ>(x, vx > 0). Consider now the case of Ĝ>(u →
∞) → ∞. Let us again set vx > 0. In this case, in Eq. (B1),
we will have to replace λn → −λn to have a divergent solution
at x → −∞, whose coefficients are given by

a>
x = c

λn	

M2 + 	2
− c1

Mωn

M2 + 	2
,

b>
x = −c

λnM

M2 + 	2
bz − c1

	ωn

M2 + 	2
,

a>
z = −c

	ωn

M2 + 	2
+ c1

Mλn

M2 + 	2
,

b>
z = −c

ωnM

M2 + 	2
− c1

	λn

M2 + 	2
,

c>
x = −c1, cz = c. (B6)

These choices of the coefficients produce the correct value of
the quasiclassical propagator in the bulk.

APPENDIX C: BOUNDED SOLUTION FOR CLEAN
JUNCTIONS WITH SPATIALLY HOMOGENEOUS

ORDER PARAMETERS

The bounded solution is given by Eq. (A3). The matrix in
the denominator is proportional to the unit matrix

Ĝ>Ĝ< + Ĝ<Ĝ> = −2iP τ̂1ρ̂2σ̂1 + 2Z τ̂0ρ̂0σ̂0, (C1)

where P = g>
z g<

x + g<
z g>

x − f >
z s<

x − f <
z s>

x − s>
z f <

x − s<
z f >

x ,
which goes to zero because ax, bx, and cx change sign when
vx changes sign. For the bulk components from Eq. (A3), we
find

gb
z = f <

x f >
z − f >

x f <
z + s>

x s<
z − s<

x s>
z

Z ,

f b
z = f <

x g>
z − f >

x g<
z + g>

x s<
z − g<

x s>
z

Z ,

sb
z = g<

x f >
z − g>

x f <
z + s<

x g>
z − s>

x g<
z

Z ,

f b
x = g<

z f >
z − g>

z f <
z + s<

x g>
x − s>

x g<
x

Z ,

sb
x = g<

x f >
x − g>

x f <
x + s<

z g>
z − s>

z g<
z

Z ,

gb
x = s<

x f >
x − s>

x f <
x + s<

z f >
z − s>

z f <
z

Z , (C2)

where

Z = g>
z g<

z + f >
z f <

z + s>
z s<

z − f >
x f <

x − s>
x s<

x − g>
x g<

x . (C3)

Plugging the expressions for the functions (B2) and using (B4)
and (B6) in Eq. (C2), we get

gb
z(ωn) = ωn

λn
, f b

z (ωn) = 	

λn
, sb

z (ωn) = M

λn
,

sb
x (ωn) = 0, gb

x(ωn) = 0, f b
x (ωn) = 0. (C4)

Thus, we see that the method of auxiliary solution works.
Note that two coefficients appearing in (B4) and (C2) are still
arbitrary and shall be fixed by the boundary conditions.

APPENDIX D: GENERAL SOLUTION FOR CLEAN
JUNCTIONS WITH SPATIALLY HOMOGENEOUS

ORDER PARAMETERS

After we have determined the bulk solution from the auxil-
iary problems, we can now write down the general solution as
the sum of bulk values and the solution of auxiliary problems
multiplied by an interface-dependent coefficient. For the pa-
rameters corresponding to the right-hand side of the interface
and vx > 0, we have

Ĝr (vx, x) = Ĝr
b(vx, x) + cr (vx )Ĝr

>(vx, x), (D1)

where cr (vx ) is an unknown function of vx (in what follows
superscripts r/l refer to the functions on the right/left side of
the interface). Solution with vx < 0 for the right-hand side of
the interface is thought as its extension to the left-hand side:

Ĝr (−|vx|, x) = Ĝr
b(−|vx|, x) + cr (−|vx|)Ĝr

<(−|vx|, x). (D2)
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The constants cr (vx ) and cr (−|vx|) can be found from argu-
ments given in Ref. [31]:

cr (vx ) = 2D
{
Ĝ l

b(0); Ĝr
<(0)

}
(
2 − D + D

2

{
Ĝr

b(0); Ĝ l
b(0)

})
Zr

,

cr (−vx ) = 2D
{
Ĝ l

b(0); Ĝr
>(0)

}
(
2 − D + D

2

{
Ĝr

b(0); Ĝ l
b(0)

})
Zr

, (D3)

where {X̂ ; Ŷ } stands for the anticommutator of matrices. Sim-
ilarly, for the left side, we have

Ĝ l (vx, x) = Ĝ l
b + cl (vx, x)Ĝ l

<(vx, x), (u < 0),

Ĝ l (−|vx|, x) = Ĝ l
b + cl (−|vx|, x)Ĝ l

>(−|vx|, x), (u > 0),
(D4)

and the coefficient appearing in these equations are given by

cl (vx ) = 2D
{
Ĝr

b(0); Ĝ l
>(0)

}
(
2 − D + D

2

{
Ĝr

b(0); Ĝ l
b(0)

})
Zl

,

cl (−vx ) = 2D
{
Ĝr

b(0); Ĝ l
<(0)

}
(
2 − D + D

2

{
Ĝr

b(0); Ĝ l
b(0)

})
Zl

. (D5)

These expressions fully describe the solution for the Eilen-
berger functions in clean Josephson junctions with constant

order parameters and give us the quasiclassical functions,
which can give us profiles of order parameter and spin density
wave through the self-consistency equations.

The anticommutator in numerators of Eqs. (D3) and (D5)
is not diagonal and couples values of quasiclassical functions
from the left side and the right side. We set for the first
equation in (D3), our two constants appearing in ((B6), (B4))
as

cr
1 = cr (Mr	l − Ml	r )λr

n

ωl
n

(
	2

r + M2
r

) − ωr
n(	r	l + MrMl )

, (D6)

and for the second equation in (D3), we change the sign of
cr

1. Similarly, the anticommutator in the numerator of the first
equation in (D5) can be made diagonal by setting

cl
1 = cl (Mr	l − Ml	r )λl

n

ωr
n

(
	2

l + M2
l

) − ωl
n(	r	l + MrMl )

(D7)

and changing sign of cl in the second equation in (D5). This
completes the proof of the method based on finding auxiliary
solutions. The most interesting property of this method is that
in naturally gives circuit theory rules for connectors. This
allows for unified treatment of superconducting junctions of
arbitrary nature.

[1] A. A. Abrikosov, Fundamentals of the Theory of Metals (North-
Holland, Amsterdam, 1988).

[2] A. N. Svidzinsky, Spatially Inhomogeneous Problems in the
Theory of Superconductivity (Science, Moscow, 1982).

[3] G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin,
and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

[4] B. D. Josephson, Rev. Mod. Phys. 36, 216 (1964).
[5] A. A. Golubov, M. Y. Kupriyanov, and E. Il’ichev, Rev. Mod.

Phys. 76, 411 (2004).
[6] G. Eilenberger, Z. Phys. 214, 195 (1968).
[7] K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970).
[8] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
[9] Y. V. Nazarov, Phys. Rev. Lett. 73, 1420 (1994).

[10] Y. V. Nazarov, Superlattices Microstruct. 25, 1221 (1999).
[11] N. Argaman, Europhys. Lett. 38, 231 (1997).
[12] O. Dorokhov, Solid State Commun. 51, 381 (1984).
[13] K. M. Schep and G. E. W. Bauer, Phys. Rev. Lett. 78, 3015

(1997).
[14] T. Shibauchi, A. Carrington, and Y. Matsuda, Annu. Rev.

Condens. Matter Phys. 5, 113 (2014).
[15] A. Chubukov, Annu. Rev. Condens. Matter Phys. 3, 57 (2012).
[16] A. Moor, A. F. Volkov, and K. B. Efetov, Phys. Rev. B 83,

134524 (2011).
[17] S. Apostolov and A. Levchenko, Phys. Rev. B 86, 224501

(2012).
[18] V. Vakaryuk, V. Stanev, W.-C. Lee, and A. Levchenko, Phys.

Rev. Lett. 109, 227003 (2012).
[19] S.-Z. Lin, Phys. Rev. B 86, 014510 (2012).
[20] V. G. Stanev and A. E. Koshelev, Phys. Rev. B 86, 174515

(2012).
[21] A. E. Koshelev and V. Stanev, Europhys. Lett. 96, 27014

(2011).

[22] A. A. Golubov and I. I. Mazin, Appl. Phys. Lett. 102, 032601
(2013).

[23] E. Berg, N. H. Lindner, and T. Pereg-Barnea, Phys. Rev. Lett.
106, 147003 (2011).

[24] Y. S. Yerin and A. N. Omelyanchouk, Low Temp. Phys. 36, 969
(2010).

[25] Y. Ota, M. Machida, T. Koyama, and H. Matsumoto, Phys. Rev.
Lett. 102, 237003 (2009).

[26] Y. Ota, N. Nakai, H. Nakamura, M. Machida, D. Inotani, Y.
Ohashi, T. Koyama, and H. Matsumoto, Phys. Rev. B 81,
214511 (2010).

[27] W.-Q. Chen, F. Ma, Z.-Y. Lu, and F.-C. Zhang, Phys. Rev. Lett.
103, 207001 (2009).

[28] W.-F. Tsai, D.-X. Yao, B. A. Bernevig, and J. P. Hu, Phys. Rev.
B 80, 012511 (2009).

[29] J. Linder, I. B. Sperstad, and A. Sudbø, Phys. Rev. B 80,
020503(R) (2009).

[30] T. K. Ng and N. Nagaosa, Europhys. Lett. 87, 17003 (2009).
[31] S.-K. Yip, J. Low Temp. Phys. 109, 547 (1997).
[32] A. V. Zaitsev, Sov. Phys. JETP 59, 1015 (1984).
[33] M. G. Vavilov and A. V. Chubukov, Phys. Rev. B 84, 214521

(2011).
[34] M. Dzero, M. Khodas, A. D. Klironomos, M. G. Vavilov, and

A. Levchenko, Phys. Rev. B 92, 144501 (2015).
[35] A. A. Kirmani, A. Levchenko, and M. Dzero (unpublished).
[36] M. Dzero and A. Levchenko, Phys. Rev. B 98, 054501 (2018).
[37] A. B. Vorontsov, M. G. Vavilov, and A. V. Chubukov, Phys.

Rev. B 81, 174538 (2010).
[38] R. M. Fernandes and J. Schmalian, Phys. Rev. B 82, 014521

(2010).
[39] G. Kieselmann, Phys. Rev. B 35, 6762 (1987).
[40] C. Bruder, Phys. Rev. B 41, 4017 (1990).

033208-12

https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/RevModPhys.36.216
https://doi.org/10.1103/RevModPhys.36.216
https://doi.org/10.1103/RevModPhys.36.216
https://doi.org/10.1103/RevModPhys.36.216
https://doi.org/10.1103/RevModPhys.76.411
https://doi.org/10.1103/RevModPhys.76.411
https://doi.org/10.1103/RevModPhys.76.411
https://doi.org/10.1103/RevModPhys.76.411
https://doi.org/10.1007/BF01379803
https://doi.org/10.1007/BF01379803
https://doi.org/10.1007/BF01379803
https://doi.org/10.1007/BF01379803
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/PhysRevLett.73.1420
https://doi.org/10.1103/PhysRevLett.73.1420
https://doi.org/10.1103/PhysRevLett.73.1420
https://doi.org/10.1103/PhysRevLett.73.1420
https://doi.org/10.1006/spmi.1999.0738
https://doi.org/10.1006/spmi.1999.0738
https://doi.org/10.1006/spmi.1999.0738
https://doi.org/10.1006/spmi.1999.0738
https://doi.org/10.1209/epl/i1997-00230-6
https://doi.org/10.1209/epl/i1997-00230-6
https://doi.org/10.1209/epl/i1997-00230-6
https://doi.org/10.1209/epl/i1997-00230-6
https://doi.org/10.1016/0038-1098(84)90117-0
https://doi.org/10.1016/0038-1098(84)90117-0
https://doi.org/10.1016/0038-1098(84)90117-0
https://doi.org/10.1016/0038-1098(84)90117-0
https://doi.org/10.1103/PhysRevLett.78.3015
https://doi.org/10.1103/PhysRevLett.78.3015
https://doi.org/10.1103/PhysRevLett.78.3015
https://doi.org/10.1103/PhysRevLett.78.3015
https://doi.org/10.1146/annurev-conmatphys-031113-133921
https://doi.org/10.1146/annurev-conmatphys-031113-133921
https://doi.org/10.1146/annurev-conmatphys-031113-133921
https://doi.org/10.1146/annurev-conmatphys-031113-133921
https://doi.org/10.1146/annurev-conmatphys-020911-125055
https://doi.org/10.1146/annurev-conmatphys-020911-125055
https://doi.org/10.1146/annurev-conmatphys-020911-125055
https://doi.org/10.1146/annurev-conmatphys-020911-125055
https://doi.org/10.1103/PhysRevB.83.134524
https://doi.org/10.1103/PhysRevB.83.134524
https://doi.org/10.1103/PhysRevB.83.134524
https://doi.org/10.1103/PhysRevB.83.134524
https://doi.org/10.1103/PhysRevB.86.224501
https://doi.org/10.1103/PhysRevB.86.224501
https://doi.org/10.1103/PhysRevB.86.224501
https://doi.org/10.1103/PhysRevB.86.224501
https://doi.org/10.1103/PhysRevLett.109.227003
https://doi.org/10.1103/PhysRevLett.109.227003
https://doi.org/10.1103/PhysRevLett.109.227003
https://doi.org/10.1103/PhysRevLett.109.227003
https://doi.org/10.1103/PhysRevB.86.014510
https://doi.org/10.1103/PhysRevB.86.014510
https://doi.org/10.1103/PhysRevB.86.014510
https://doi.org/10.1103/PhysRevB.86.014510
https://doi.org/10.1103/PhysRevB.86.174515
https://doi.org/10.1103/PhysRevB.86.174515
https://doi.org/10.1103/PhysRevB.86.174515
https://doi.org/10.1103/PhysRevB.86.174515
https://doi.org/10.1209/0295-5075/96/27014
https://doi.org/10.1209/0295-5075/96/27014
https://doi.org/10.1209/0295-5075/96/27014
https://doi.org/10.1209/0295-5075/96/27014
https://doi.org/10.1063/1.4788720
https://doi.org/10.1063/1.4788720
https://doi.org/10.1063/1.4788720
https://doi.org/10.1063/1.4788720
https://doi.org/10.1103/PhysRevLett.106.147003
https://doi.org/10.1103/PhysRevLett.106.147003
https://doi.org/10.1103/PhysRevLett.106.147003
https://doi.org/10.1103/PhysRevLett.106.147003
https://doi.org/10.1063/1.3518605
https://doi.org/10.1063/1.3518605
https://doi.org/10.1063/1.3518605
https://doi.org/10.1063/1.3518605
https://doi.org/10.1103/PhysRevLett.102.237003
https://doi.org/10.1103/PhysRevLett.102.237003
https://doi.org/10.1103/PhysRevLett.102.237003
https://doi.org/10.1103/PhysRevLett.102.237003
https://doi.org/10.1103/PhysRevB.81.214511
https://doi.org/10.1103/PhysRevB.81.214511
https://doi.org/10.1103/PhysRevB.81.214511
https://doi.org/10.1103/PhysRevB.81.214511
https://doi.org/10.1103/PhysRevLett.103.207001
https://doi.org/10.1103/PhysRevLett.103.207001
https://doi.org/10.1103/PhysRevLett.103.207001
https://doi.org/10.1103/PhysRevLett.103.207001
https://doi.org/10.1103/PhysRevB.80.012511
https://doi.org/10.1103/PhysRevB.80.012511
https://doi.org/10.1103/PhysRevB.80.012511
https://doi.org/10.1103/PhysRevB.80.012511
https://doi.org/10.1103/PhysRevB.80.020503
https://doi.org/10.1103/PhysRevB.80.020503
https://doi.org/10.1103/PhysRevB.80.020503
https://doi.org/10.1103/PhysRevB.80.020503
https://doi.org/10.1209/0295-5075/87/17003
https://doi.org/10.1209/0295-5075/87/17003
https://doi.org/10.1209/0295-5075/87/17003
https://doi.org/10.1209/0295-5075/87/17003
https://doi.org/10.1007/s10909-005-0101-5
https://doi.org/10.1007/s10909-005-0101-5
https://doi.org/10.1007/s10909-005-0101-5
https://doi.org/10.1007/s10909-005-0101-5
https://doi.org/10.1103/PhysRevB.84.214521
https://doi.org/10.1103/PhysRevB.84.214521
https://doi.org/10.1103/PhysRevB.84.214521
https://doi.org/10.1103/PhysRevB.84.214521
https://doi.org/10.1103/PhysRevB.92.144501
https://doi.org/10.1103/PhysRevB.92.144501
https://doi.org/10.1103/PhysRevB.92.144501
https://doi.org/10.1103/PhysRevB.92.144501
https://doi.org/10.1103/PhysRevB.98.054501
https://doi.org/10.1103/PhysRevB.98.054501
https://doi.org/10.1103/PhysRevB.98.054501
https://doi.org/10.1103/PhysRevB.98.054501
https://doi.org/10.1103/PhysRevB.81.174538
https://doi.org/10.1103/PhysRevB.81.174538
https://doi.org/10.1103/PhysRevB.81.174538
https://doi.org/10.1103/PhysRevB.81.174538
https://doi.org/10.1103/PhysRevB.82.014521
https://doi.org/10.1103/PhysRevB.82.014521
https://doi.org/10.1103/PhysRevB.82.014521
https://doi.org/10.1103/PhysRevB.82.014521
https://doi.org/10.1103/PhysRevB.35.6762
https://doi.org/10.1103/PhysRevB.35.6762
https://doi.org/10.1103/PhysRevB.35.6762
https://doi.org/10.1103/PhysRevB.35.6762
https://doi.org/10.1103/PhysRevB.41.4017
https://doi.org/10.1103/PhysRevB.41.4017
https://doi.org/10.1103/PhysRevB.41.4017
https://doi.org/10.1103/PhysRevB.41.4017


QUASICLASSICAL CIRCUIT THEORY OF CONTIGUOUS … PHYSICAL REVIEW RESEARCH 1, 033208 (2019)

[41] J. Šmakov, I. Martin, and A. V. Balatsky, Phys. Rev. B 64,
212506 (2001).

[42] O. Naaman, W. Teizer, and R. C. Dynes, Phys. Rev. Lett. 87,
097004 (2001).

[43] H. Suderlow, I. Guillamon, J. G. Rodrigo, and
S. Vieira, Supercond. Sci. Technol. 27, 063001
(2014).

[44] M. H. Hamidian, S. D. Edkins, S. H. Joo, A. Kostin, H. Eisaki,
S. Uchida, M. J. Lawler, E. A. Kim, A. P. Mackenzie, K. Fujita
et al., Nature (London) 532, 343 (2016).

[45] M. T. Randeria, B. E. Feldman, I. K. Drozdov, and A. Yazdani,
Phys. Rev. B 93, 161115(R) (2016).

[46] M. Graham and D. K. Morr, Phys. Rev. Lett. 123, 017001
(2019).

[47] I. O. Kulik and I. K. Yanson, The Josephson Effect in Super-
conducting Tunneling Structures, translated by P. Gluck (John
Wiley & Sons Inc., 1972).

[48] C. W. J. Beenakker, in Transport Phenomena in Mesoscopic
Systems, edited by H. Fukuyama and T. Ando (Springer, Berlin,
1992).

[49] L. G. Aslamazov and A. I. Larkin, Sov. Phys. JETP 43, 698
(1976).

[50] V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486
(1963).

[51] I. O. Kulik and A. N. Omel’yanchuk, Sov. J. Low Temp. Phys.
4, 142 (1978).

[52] I. O. Kulik and A. N. Omel’yanchuk, JETP Lett. 21, 96 (1975).
[53] A. A. Golubov, M. Y. Kupriyanov, and V. F. Lukichev, Fiz.

Nizk. Temp. 10, 799 (1984).
[54] A. Brinkman and A. A. Golubov, Phys. Rev. B 61, 11297

(2000).
[55] P. W. Brouwer and C. W. J. Beenakker, Phys. Rev. B 51, 7739

(1995).
[56] C. M. Whisler, M. G. Vavilov, and A. Levchenko, Phys. Rev. B

97, 224515 (2018).
[57] M. Eschrig, Phys. Rev. B 61, 9061 (2000).
[58] Y. Tanaka, Y. Tanuma, and A. A. Golubov, Phys. Rev. B 76,

054522 (2007).
[59] Y. Tanaka, Y. Asano, and A. A. Golubov, Phys. Rev. B 77,

220504(R) (2008).
[60] B. Lu, P. Burset, Y. Tanuma, A. A. Golubov, Y. Asano, and Y.

Tanaka, Phys. Rev. B 94, 014504 (2016).
[61] P. Burset, B. Lu, S. Tamura, and Y. Tanaka, Phys. Rev. B 95,

224502 (2017).

033208-13

https://doi.org/10.1103/PhysRevB.64.212506
https://doi.org/10.1103/PhysRevB.64.212506
https://doi.org/10.1103/PhysRevB.64.212506
https://doi.org/10.1103/PhysRevB.64.212506
https://doi.org/10.1103/PhysRevLett.87.097004
https://doi.org/10.1103/PhysRevLett.87.097004
https://doi.org/10.1103/PhysRevLett.87.097004
https://doi.org/10.1103/PhysRevLett.87.097004
https://doi.org/10.1088/0953-2048/27/6/063001
https://doi.org/10.1088/0953-2048/27/6/063001
https://doi.org/10.1088/0953-2048/27/6/063001
https://doi.org/10.1088/0953-2048/27/6/063001
https://doi.org/10.1038/nature17411
https://doi.org/10.1038/nature17411
https://doi.org/10.1038/nature17411
https://doi.org/10.1038/nature17411
https://doi.org/10.1103/PhysRevB.93.161115
https://doi.org/10.1103/PhysRevB.93.161115
https://doi.org/10.1103/PhysRevB.93.161115
https://doi.org/10.1103/PhysRevB.93.161115
https://doi.org/10.1103/PhysRevLett.123.017001
https://doi.org/10.1103/PhysRevLett.123.017001
https://doi.org/10.1103/PhysRevLett.123.017001
https://doi.org/10.1103/PhysRevLett.123.017001
https://doi.org/10.1103/PhysRevLett.10.486
https://doi.org/10.1103/PhysRevLett.10.486
https://doi.org/10.1103/PhysRevLett.10.486
https://doi.org/10.1103/PhysRevLett.10.486
https://doi.org/10.1103/PhysRevB.61.11297
https://doi.org/10.1103/PhysRevB.61.11297
https://doi.org/10.1103/PhysRevB.61.11297
https://doi.org/10.1103/PhysRevB.61.11297
https://doi.org/10.1103/PhysRevB.51.7739
https://doi.org/10.1103/PhysRevB.51.7739
https://doi.org/10.1103/PhysRevB.51.7739
https://doi.org/10.1103/PhysRevB.51.7739
https://doi.org/10.1103/PhysRevB.97.224515
https://doi.org/10.1103/PhysRevB.97.224515
https://doi.org/10.1103/PhysRevB.97.224515
https://doi.org/10.1103/PhysRevB.97.224515
https://doi.org/10.1103/PhysRevB.61.9061
https://doi.org/10.1103/PhysRevB.61.9061
https://doi.org/10.1103/PhysRevB.61.9061
https://doi.org/10.1103/PhysRevB.61.9061
https://doi.org/10.1103/PhysRevB.76.054522
https://doi.org/10.1103/PhysRevB.76.054522
https://doi.org/10.1103/PhysRevB.76.054522
https://doi.org/10.1103/PhysRevB.76.054522
https://doi.org/10.1103/PhysRevB.77.220504
https://doi.org/10.1103/PhysRevB.77.220504
https://doi.org/10.1103/PhysRevB.77.220504
https://doi.org/10.1103/PhysRevB.77.220504
https://doi.org/10.1103/PhysRevB.94.014504
https://doi.org/10.1103/PhysRevB.94.014504
https://doi.org/10.1103/PhysRevB.94.014504
https://doi.org/10.1103/PhysRevB.94.014504
https://doi.org/10.1103/PhysRevB.95.224502
https://doi.org/10.1103/PhysRevB.95.224502
https://doi.org/10.1103/PhysRevB.95.224502
https://doi.org/10.1103/PhysRevB.95.224502

