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Elastic immersive wave experimentation: Theory and physical implementation
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We present a proof of concept of elastic immersive wave experimentation. A physical experiment of finite
volume is connected with a numerical domain via the novel theory of immersive boundary conditions. We
show that by applying the incident traction measured at the free surface of a solid target, we can completely
cancel unwanted boundary reflections in the physical domain. The propagating waves can then seamlessly
interact with a virtual, numerical domain while we fully account for long-range interactions between the two
domains. Utilizing a laser Doppler vibrometer, we can accurately record the three-component particle motion
of the wave field at the surface of a thin aluminum beam. The recordings are used to iteratively construct
the immersive boundary conditions which are applied to the lateral ends of the beam by three-component
piezoelectric actuators. Our one-dimensional experimental results show that we can actively cancel the waves
reflected at the free-surface end of the aluminum beam for individually excited, broadband longitudinal and
flexural wave modes, as well as for the simultaneous excitation of the two. Finally, we introduce interactions
between the physical and a desired numerical domain, thereby virtually extending the physical aluminum
beam.
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I. INTRODUCTION

Recently, a new paradigm for wave propagation exper-
imentation, referred to as immersive wave experimentation
(IWE), was proposed by Vasmel et al. [1]. This novel idea
is based on the principle of immersive boundary conditions
(IBCs) [2], which links a physical propagation domain of
limited size to a virtual, numerical environment using an array
of sensors and actuators situated on the boundaries of the
physical experiment [3]. The outgoing waves are measured
inside the physical domain and extrapolated to the boundaries.
Here, the reflected waves are canceled and the interaction of
the outgoing waves with the numerical environment computed
and injected back into the physical domain. The physical
boundaries of the solid target are thus made transparent to the
propagating wave.

This new approach provides several potentially impor-
tant novelties over conventional, purely physical laboratories.
For instance, the possibility to completely remove unwanted
boundary reflections enables investigation of a wide range of
methods which require the data to be free of waves stemming
from more than one interaction with the free surface. Such
methods include experimental time reversal [4], Marchenko
focusing [5], and full wave-form inversion [6]. Furthermore,
IWE alleviates the necessity of downscaling the samples
under study, in turn reducing assumptions about frequency
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dependent wave phenomena, such as attenuation or dispersion
[7–9]. Finally, the possibility to implement virtually any kind
of boundary conditions, or virtual domains with arbitrary
mechanical or acoustic properties (e.g., media with gain
or negative constitutive parameters over a broad frequency
range), offers new possibilities in the emerging fields of
metamaterials [10,11], parity-time symmetry [12], as well as
holography and cloaking [13,14]. Especially in these fields,
the possibility to circumvent the difficulty of building materi-
als with the desired properties will make practical realizations
of theoretical proposals possible.

In the first, one-dimensional, acoustic implementation of
IWE, presented by Becker et al. [3], the propagating wave
fields are recorded inside a sound tube. These recordings
are then forward extrapolated to the ends of the tube in
real time, where they are reinjected to cancel any reflec-
tions. Compared to its acoustic implementation, elastic IWE
involves additional challenges. For instance, elastic media
support several types of propagating modes, including longi-
tudinal and transverse wave motion. Additionally, in elastic
IWE the wave field is characterized at the free surface, as
nondestructive access to the interior of the solid object is
not straightforward. In this work, we provide a theoretical
and numerical study showing that elastic IWE requires only
knowledge of the traction incident on the faces of the target
to make the physical boundaries transparent. We then present
the proof of concept of elastic IWE in a one-dimensional (1D)
beam. Section II begins by introducing the theory of elastic
IWE. In Sec. III, we implement elastic IBCs in a numerical
experiment to both verify the theory and aid in the under-
standing of its physical implementation in the laboratory. In
Sec. IV, we propose a workflow which allows the first physi-
cal implementation of elastic IWE in 1D on a thin aluminum
beam.
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II. THEORY OF IMMERSIVE ELASTIC
EXPERIMENTATION

Immersing a physical experiment within a numerical ex-
periment has two fundamental requirements. First, unwanted
reflections (including mode conversions) from the boundaries
of the physical experiment must be removed. Second, the
wave field propagating in the physical domain must be al-
lowed to interact with an arbitrary designed virtual domain.

In line with the first requirement, the work of Ting and
Miksis [15] showed that nonreflecting boundary conditions
can be found for a domain by recording the wave field on a
closed surface and extrapolating it to the edges of the domain.
Based on this idea, van Manen et al. [2] introduced a novel
set of radiation boundary conditions which can be used to
dynamically link a truncated modeling domain to a chosen,
possibly much larger, nontruncated domain. All interactions
of arbitrary scattering between the two domains are accounted
for accurately. Such immersive boundary conditions (IBCs)
are the core component to meeting both of the requirements
for immersive experimentation [1].

We aim to link the virtual domain to the truncated physical
domain by deriving an expression for the extended domain,
i.e., the full domain incorporating both the virtual and physical
domains, with a transparent boundary between the two. This
is achieved by first finding an expression for the displacement
in the extended domain Vfull in terms of an auxiliary state
truncated by a free-surface boundary. Subsequently, we derive
an expression for the laboratory state, defined as the domain
Vphy. Together these two steps provide an expression for 3D
elastic IBCs. Following the derivation of Broggini et al. [16]
and Vasmel [17], we begin by defining two states of wave
propagation, denoted A and B, which are related via Betti’s
theorem with causality [18]:∫∫∫

V
[uA(x, t ) ∗ fB(x, t )−uB(x, t ) ∗ fA(x, t )]dV

=
∮

S
[uB(x, t ) ∗ T(uA(x, t ), n)

−uA(x, t ) ∗ T(uB(x, t ), n)] dS, (1)

where ∗ denotes temporal convolution. The body forces
fA together with the boundary conditions on the surface S
and initial conditions at time t = 0 cause the displacement
field uA(x, t ). This displacement field is then related to the
displacement field uB(x, t ), caused by body forces fB and
generally different boundary conditions on S, as well as
initial conditions at t = 0. The terms T(uA, n) and T(uB, n)
differentiate between the traction on surfaces normal to n due
to the displacements uA and uB respectively.

The first step is to find an expression for the extended do-
main. Therefore, state A is defined as the desired, unbounded
state and can be seen as the domain Vfull in Fig. 1. In this state
Srec/emt is transparent. State B is defined as an auxiliary state
truncated by a free-surface boundary. We let the source term
fB(x, t ) in state B take the form of a body force fB(x, t )n =
δ(x − ξ )δ(t − τ )δin, where δ(x − ξ ) is the Dirac delta func-
tion determining the spatial location, δ(t − τ ) determines the
time, and δin the direction of the impulse [18]. This source
term can be understood as the the unit impulse applied at

FIG. 1. Schematic of the two different domains referred to in
IWE, defined by their respective elastic medium parameters: mass
density ρ, Young’s modulus E , and Poisson’s ratio ν. The physical
domain Vphy is bounded by a free surface (dashed black line). A
source fired inside the physical domain causes waves to propagate
towards and interact with the free-surface boundary, where they are
recorded. Utilizing IBC theory, the physical free-surface boundary
is made transparent and all free-surface reflections are removed
(indicated by the light-gray arrow). The incident wave field is then
propagated into the virtual domain where it interacts with any scat-
terers and is then introduced back into the physical medium. Both the
recording Srec and emitting Semt surface are in line with the physical
free surface of the target.

x = ξ at time t = τ in the n direction and causes the elas-
todynamic Green’s function displacement field uB(x, t ) =
Gin(x, t |ξ, τ ). We proceed by substituting these expressions
into Eq. (1) and integrating with the delta function. By im-
posing a free-surface boundary condition on S in state B, the
traction term T(uB, n) = ci jkl n jGkn,l (x, t |ξ, τ ) is zero. This
leaves us with a way to express the displacement field uA =
ufull,n(x, t ) inside the extended volume Vfull in terms of the
Green’s function of an auxiliary truncated state uB(x, t ) =
Gfree

ni (x, t |ξ, 0), the source term fA(x, t ) = fA,i(ξ, t ) in the
extended domain, and the boundary traction T(uA, n) =
T(ufull, n) in the extended domain:

ufull,n(x, t ) =
∫∫∫

V
ffull,i(ξ, t ) ∗ Gfree

ni (x, t |ξ, 0)dVξ

+
∮

S
Gfree

ni (x, t |ξ, 0) ∗ Ti(ufull(ξ, t ), n) dSξ .

(2)

To find an expression for the laboratory state Vphy in
Fig. 1, we truncate domain A by a free-surface boundary along
Srec/emt. This boundary is in line with the edges of our experi-
mental target in the laboratory. The characteristics of auxiliary
state B stay the same as before. However, also truncating the
domain in state A by a free surface causes the traction term
Ti(uA(ξ, τ ), n), with n normal to the boundary Srec/emt, to also
be zero. Consequently, the second representation is

uphy,n(x, t ) =
∫∫∫

V
fphy,i(ξ, t ) ∗ Gfree

ni (x, t |ξ, 0) dVξ . (3)

Comparing Eqs. (2) and (3), we find that the surface
integral term has vanished in Eq. (3). Furthermore, if the same
source is excited in both domains Vfull and Vphy, we find that
the right-hand side of (3) is equal to the first integral on the
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right-hand side of Eq. (2), which leads to

ufull,n(x, t ) = uphy,n(x, t )

+
∮

S
Gfree

ni (x, t |ξ, 0) ∗ Ti(ufull(ξ, t ), n) dSξ .

(4)

Hence, the difference between the displacement in the ex-
tended domain ufull,n(x, t ) and the truncated, physical domain
uphy,n(x, t ) is equal to the integral over the bounding sur-
face Srec/emt of the temporal convolution between the Green’s
function of the truncated domain and the normal component
of the traction measured on the surface Srec/emt. It follows
that the displacement in the desired (unbounded) state can be
made equal to the displacement in the truncated domain, i.e.,
the physical target in the laboratory, by adding the surface
integral term from Eq. (4):

uIBC
n (x, t ) =

∮
S

Gfree
ni (x, t |ξ, 0) ∗ Ti(ufull(ξ, t ), n) dSξ . (5)

Equation (5) can be interpreted as an expression for the
wave field in the n direction at an arbitrary point in the
interior, generated by point force sources on S, weighted by
the traction term Ti(ufull, n). Thus the wave field is the result of
applying directed force sources along the boundary Semt with
signatures equal the normal traction of the wave field arriving
at S from both the physical and virtual domains. Hence,
the traction Ti(ufull, n) linking the two domains comprises
both T inc

i (uinc, n), the traction corresponding to the wave
field incident on the free surface in the physical domain, and
T virt

i (uinc, n), the traction corresponding to interactions of the
wave field with the virtual domain.

Applying T inc
i (uinc, n) as a boundary condition on the

free surface of the target cancels any reflections and mode-
converted energy at the boundary. To determine the traction
corresponding to the wave field incident on the free surface
in the physical domain T inc

i (uinc, n), the full three-component
wave field associated with a source inside the elastic object
is recorded as a function of time at the free surface along
Srec (see Fig. 1). The recording utot(x, t ) is a superposition
of the incident uinc(x, t ) and reflected usc(x, t ) wave fields
at the free surface: utot(x, t ) = uinc(x, t ) + usc(x, t ). The total
wave field must be separated into its respective incident and
reflected components. One promising method of wave field
separation is proposed by Thomsen et al. [19]. Using the
wave field incident on the free surface uinc(x, t ), the associated
traction is calculated via the elastic constitutive relations:
T inc

i (uinc, n) = ci jkl∂kuinc
l n j . Hence, the medium properties

ci jkl at the recording boundary must be known. Note that it
is not necessary to separate the wave field into its longitudinal
and transverse modes.

The second constituent T virt
i (uinc, n) is computed by dis-

cretized convolutions of the incident wave field uinc(x, t ) with
Green’s functions characterizing the numerical medium [1,2].
Together, the time series of both traction terms are applied as
signatures of force point sources at the boundary Semt, thereby
removing any reflections or scattering at the boundary and
incorporating propagation between the two domains. Thus,
linking physical and numerical experiments is possible by
continuously recording and emitting signals at the free surface

of the target. Unlike the acoustic implementation of IWE [3],
the recording Srec and emitting Semt surfaces overlap in the
elastic case. For this reason, the wave field that needs to be
applied on the boundary of the target cannot be predicted
in real time. Hence, the IBCs must be designed recursively
through a sequence of experiments until the desired exper-
imental state is reached. Finally, note that Eq. (5) requires
knowledge of only the wave field incident on the boundary
Srec and its interactions with the virtual domain. Thus, the
physics of wave propagation in the physical experiment can
be different from that in the numerical simulation, and can
even be unknown.

III. NUMERICAL IMPLEMENTATION

First, we numerically verify the implementation of elastic
immersive experimentation. Using the finite element based
structural mechanics module in COMSOL MULTIPHYSICS® [20],
we simulate mechanical wave propagation in a thin aluminum
beam model. The model provides good experimental control,
by ensuring propagation of uncoupled longitudinal and flex-
ural modes within the beam and well-separated arrivals. The
beam is set to a length of x = 200 cm, height y = 3 cm, and
width z = 3 cm. Furthermore, the model has a density ρ =
2700 kg/m3, Young’s modulus E = 70 GPa, and Poisson’s
ratio ν = 0.33. The side of the beam where the wave field is
excited (x = 0 cm) is referred to as the SRC side. The opposite
side (x = 200 cm), where we aim to remove reflections, is re-
ferred to as the IBC side. We define a small, 1-cm-thin region
at the SRC side of the beam where we apply a body load [see
Fig. 2(a)]. The force per unit volume (N/m3) uses a Ricker
source-time function of central frequency fc = 10 kHz and a
maximum amplitude of 0.1 N/m3. It acts only on the x axis
of the beam. This ensures that a purely compressional wave
propagates along the x direction of the beam. The simulation
is run using a time dependent solver. Numerical stability is
ensured by a time step of dt = 1/(20 fc) = 5 × 10−6 s and
maximum element size of the tetrahedral mesh of λ/6, with
λ = √

E/ρ/ fc.
The dark red line in Fig. 2(b) shows the resulting dis-

placement ux, evaluated exactly in the middle of the beam
at 1 m distance from the emitting boundary, as indicated
by a black triangle in Fig. 2(a). One can clearly distinguish
the first arrival, which is the incident wave, and the second
arrival, which in turn is the wave reflected at the opposite
end of the beam. We also evaluate the normal traction Tx

(light blue line) acting on the cross section in the middle of
the beam. According to Eq. (5), we must apply the incident
traction acting on the IBC side as a body force to cancel the
reflected wave field. To circumvent the necessity of separating
the traction measured at the end of the beam into its incident
and reflected components, we extend the beam by 1 m and
extract just the traction incident at 2 m from the simulation.
This traction, scaled by the volume of the 1-cm-thin region
at the IBC end of the beam, is then injected as the IBC body
force in the original model of 2 m length. Figure 2(c) shows
the resulting displacement and traction at 1 m. We observe
that applying the incident traction at the IBC side causes a
longitudinal wave to propagate within the beam with flipped
polarity when compared to the reflected wave in Fig. 2(b).
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FIG. 2. (a) 1D schematic of the 200-cm-long 3D COMSOL model.
The body load force FxSRC excites a longitudinal wave within the
beam. The propagating wave field is evaluated exactly in the middle
of the beam, as indicated by the black triangle. The body load
force FxIBC applies the immersive boundary condition on the op-
posite side of the beam. We evaluate both the displacement in x
direction ux (dark red line) and the resulting normal traction Tx (light
blue line) at 100 cm when (b) only the SRC side is active, (c) only
the IBC side is active, and (d) both the SRC and IBC are active and
the reflected wave is canceled.

Finally, we apply both the SRC and IBC terms at the same
time. As a result, the reflected wave is canceled and only
the incident wave propagates within the aluminum beam [see
Fig. 2(d)]. Hence, we are able to verify general elastic IBC
theory via the example of a 1D beam. Specifically, confirming
that introducing a body force at the free-surface boundary of
an elastic target with the signature of the incident traction
measured at the boundary ensures removal of any free-surface
reflections.

IV. EXPERIMENTAL IMPLEMENTATION

For the experimental demonstration of elastic immersive
wave experimentation, we consider an aluminium beam with
same dimensions as in the numerical implementation. Again
this ensures uncoupled propagation of longitudinal and flexu-
ral components and allows us to investigate their excitation
and cancellation individually, as well as the combination
of the two. Both the SRC and IBC sources are multiaxis
PICA 153.05 shear actuators [21]. Using these piezoelectric
actuators, we can excite motion in either the x, y, or z direction
of the beam or a combination of the three. The actuators are
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FIG. 3. (a) Experimental setup: The 200-cm-long and 3-cm-thick
aluminum beam is supported by two thin ropes. A three-component
piezoelectric actuator is attached to either end of the beam. To
visualize the wave field propagating along the entire beam (see
Supplemental Material movies [25], Figs. 5 and 7) the LDV measures
the particle velocity along a dense grid of scan points 1 cm apart on
two faces of the beam as indicated by the green dots at the left end
of the schematic. The measurements made to determine the IBCs are
acquired at and around 100 cm with the cross section showing the
four scan points A–D located in the middle of the individual faces of
the aluminum beam. The particle velocity at points A–D is measured
at 100 cm and the average of the four points is displayed when
(b) exciting a longitudinal wave and (c) exciting a flexural wave.

driven by a field-programmable gate array (FPGA) analog
output (A/O) system and the injected signal is amplified using
a PiezoDrive PD32 amplifier [22]. We measure the wave field
along the beams surface using a Polytec PSV-500-3D scan-
ning vibrometer [23]. The laser Doppler vibrometer (LDV)
allows us to measure the x, y, and z components of particle
velocity of the propagating wave field. To improve the signal-
to-noise ratio of the measurements, we add reflective tape
along the beam and each point is scanned 100 times to average
the measurements. The beam is held up horizontally by two
thin ropes 30 cm from the edges which do not introduce
any noticeable reflections or mode conversions. Figure 3(a)
depicts a schematic of the described experimental setup, also
indicating the location of the scan points via the green points
labeled A–D at 100 cm. Figures 3(b) and 3(c) display the
0.1 to 50 kHz bandpass filtered time series of the overall
movement of the cross section, determined by averaging all
four measurements. Figure 3(b) shows how exciting the SRC
actuator along the x axis causes only longitudinal waves to
propagate along the x direction of the beam. Figure 3(c),
however, displays a time series with flexural motion only
along the z axis, caused by excitation of the z component of
the SRC.
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To achieve our objective of canceling reflections of both
longitudinal and flexural wave fields at one end of the
aluminum beam, we must undergo several steps. First, the
recorded wave field is separated into its left- and rightward
propagating components. We bypass the necessity to separate
the superposition of the incident and reflected waves measured
directly at the ends of the beam by utilizing the wave field
separation method proposed by Sønneland et al. [24]. The
method is based on using a vertical receiver configuration
in seismic exploration and assumes that at each scan point
along the beam the wave field can be expressed as the sum
of rightward and leftward propagating components. When
exciting the beam on the left side via the SRC, the incident
wave field travels to the right and the scattered to the left. We
measure the wave field propagating along the beam at two po-
sitions, x1 and x2, to apply the wave field separation algorithm
described in Appendix A. When exciting longitudinal and
flexural components simultaneously the propagating flexural
wave causes additional arrivals to be present in the x compo-
nent measured. We average four measurements obtained on
opposite sides of the beam, i.e., a measurement at x = 100 cm
at points A, B, C, and D [see Fig. 3(a)]. As a result, any
arrivals caused by the flexural movement of the beam are
canceled out of the x component, leaving only longitudinal
motion. Additionally, any longitudinal motion is canceled out
of the flexural movement, i.e., the z component. The resulting
time series can be seen as the superposition of individually
exciting either longitudinal or flexural waves [see Fig. 4(a)].
Different distances 	x = x2 − x1 are required to accurately
separate either the longitudinal or flexural waves due to their
distinct dominant wavelengths. The longitudinal wave field
is separated using measurements at x1 = 95 cm and x2 =
100 cm (	x = 5 cm). The flexural wave field on the other
hand, is separated using measurements at x1 = 99 cm and
x2 = 100 cm (	x = 1 cm). Figure 4(b) shows a time series of
the resulting rightward and Fig. 4(c) the leftward propagating
wave fields at 100 cm resulting from a simultaneous excitation
of longitudinal and flexural waves. The respective individual
incident and reflected arrivals measured in the middle of the
beam can then be back or forward propagated to either end
of the beam using the experimentally determined longitudinal
and flexural wave numbers (see Appendix B).

Both the theory derived in Sec. II and the numerical
modeling results in Sec. III show that we need to apply the
incident traction at the IBC end of the beam. However, this
assumes access to an idealized point force source. In the lab-
oratory, we are limited to the three-component piezoelectric
actuator, which applies a boundary displacement proportional
to the input voltage. Hence, we need to determine a transfer
function between the the piezoelectric actuator and a point
force source. However, in the numerical implementation in
Sec. III, we observe that applying the incident traction at the
IBC side causes a wave with polarity opposite to that of the
reflected wave to propagate within the beam [see Fig. 1(c)].
Thus, instead of designing a piezoelectric actuator acting as a
ideal point source to apply the incident traction, we construct
the displacement uIBC, which needs to be applied by the IBC
actuator to cancel the reflection at the boundary. Appendix C
explains how uIBC is constructed. It is not necessary to rely
on this method when constructing the IBCs in 2D or 3D, as
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FIG. 4. Longitudinal and flexural waves are excited simultane-
ously at the SRC side of the aluminum beam. The propagating wave
field is measured at 100 cm on sides A, B, C, and D of the beam (see
Fig. 3). (a) The average propagation of the cross section, leaving us
with purely longitudinal movement in the x component and flexural
movement in the z component. Panels (b) and (c) depict the right- and
leftgoing propagating arrivals after successful wave field separation.

knowledge of the incident traction provides the correct vector
of signatures to cancel the different incident wave types or
different types of mode-converted reflections simultaneously.

A. Canceling the reflection at one side of the aluminum beam

In the following, we cancel the reflections at the IBC
boundary when exciting either longitudinal or flexural waves
individually and then while simultaneously exciting both
wave propagation modes. In each case, we apply a Ricker
source wavelet of 10 kHz central frequency to the SRC. We
then determine the canceling wave field uIBC and use the LDV
system to scan two full sides of the beam, once with just the
source active (SRC ON, IBC OFF) and once with the both the
source and the IBC wave field active (SRC ON, IBC ON).

First, we excite a longitudinal wave mode. Figure 5 visual-
izes the recorded in-plane x component measured by the LDV
along the middle of side B [see Fig. 3(a)], with individual
scan points spaced 1 cm apart. In Fig. 5(a) one can observe
how the wave propagates between the SRC end on the left
side of the beam and the IBC end on the right. Once the IBC
wave field is introduced, the reflections at the right boundary
cease to exist, as can be seen in Fig. 5(b), and we observe
only one wave field propagating from the left to the right. The
time series of a single scan point at x = 100 cm shows how
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FIG. 5. A longitudinal wave mode is excited along the x component of propagation at the SRC side (also see Supplemental Material Movie
0 [25]). The reflected wave field is effectively canceled via injection of a canceling wave field at the IBC side. The wave field is measured from
0 to 200 cm along the middle of one side of the beam and displayed as a time-distance panel: (a) Truncated time-distance panel of x-component
time series. The wave propagates back and forth between the ends of the beam when the IBC is turned OFF; (b) the reflected wave field is
canceled when the IBC is turned ON; (c) difference between the IBC being OFF and ON. (d) A single time series of the x component of the
wave field at x = 100 cm when the IBC is OFF vs ON.

only the first arrival is present in the recorded data [Fig. 5(d)].
The same observations can be made when exciting a purely
flexural wave field along the z direction at the SRC side and
applying the respective canceling wave field at the IBC side of
the beam [Figs. 6(a)–6(d)]. Compared to the longitudinal case,
we observe more residual energy when canceling the reflected
flexural wave. We attribute this difference to the flexural wave
mode being more dispersive, as can be observed in Fig. 6.
Therefore, designing the source transfer function to remove
the impulse response of the IBC actuator (see Appendix C)
is more complex, resulting in an imperfect match of the wave
field injected by the IBC actuator to the desired uIBC wave
field. Finally, we excite both longitudinal and flexural wave
modes simultaneously. The immersive boundary conditions
are determined individually for each excitation direction but
applied simultaneously to the respective component of the
piezoelectric actuator on the IBC side. Figure 7 quantitatively
shows that reflections of both wave modes are effectively can-
celed by displaying a time series of the x, y, and z components
of the particle velocity at 100 cm. In all three cases the IBC
implementation proves to be effective in removing broadband
boundary reflections.

B. Introducing a virtually scattered wave field

Finally, we demonstrate the ability of virtually extending
the dimensions of the physical aluminum beam by injecting
into the physical domain a wave field scattered in a virtual
environment. Figure 8(a) shows a schematic of the desired
result. We excite a longitudinal wave at the source side of
the aluminum beam. As previously described, we design an

IBC wave field to cancel the reflection at the right side of
the aluminum beam. Additionally, we window the wave field
incident at the middle of the beam and forward propagate it
to the IBC boundary. From here, we forward propagate the
wave field 75 cm into a virtual domain, convolve it with the
theoretical reflection coefficient of a free surface boundary
(R = 1) and forward propagate the reflection an additional
75 cm back to the position of the physical IBC boundary.
At this point the wave field is injected back into the physical
domain. The injected wave field then propagates towards and
reflects off the SRC boundary on the left side of the beam. The
interaction with the physical boundary causes a deformation
of the wave form. Hence, we must repeat the procedure to
once again cancel the reflection and propagate the wave field
into the virtual domain. Thus, we design a second set of wave
forms which both cancel the reflected wave and interact with
the virtual domain. Consequently, the immersive boundary
conditions are designed iteratively.

The naturally occurring arrivals are depicted in Fig. 8(b),
whereas Fig. 8(c) shows the waves propagating along the
beam when virtually extending the physical medium on the
right side. The previously reflected arrivals are gone and new,
delayed arrivals are introduced. For a quantitative comparison
between both configurations, Fig. 8(d) displays a time series
of wave fields (a) and (b) at 100 cm. We observe that the
naturally occurring arrivals are almost perfectly canceled.

C. Considerations for extension to 3D IWE

The realization of IWE in 3D will bring additional chal-
lenges. First, the IBCs will require a dense coverage of
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FIG. 6. A flexural wave mode is excited along the z-component of propagation at the SRC side (also see Supplemental Material Movie 1
[25]). The reflected wave field is effectively canceled via injection of a canceling wave field at the IBC side. The wave field is measured from 0
to 200 cm along the middle of one side of the beam and displayed as a time-distance panel: (a) Truncated time-distance panel of z-component
time series. The wave propagates back and forth between the ends of the beam when the IBC is turned OFF; (b) the reflected wave field is
canceled when the IBC is turned ON; (c) difference between the IBC being OFF and ON. (d) A single time series of the z component of the
wave field at x = 100 cm when the IBC is OFF vs ON.

three-component piezoelectric actuators on the target faces
distributed according to Nyquist’s sampling criterion [26].
Therefore, it will be necessary to fully understand the foot-
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FIG. 7. Longitudinal and flexural wave modes are excited simul-
taneously along the x and z components of propagation at the SRC
side (also see Supplemental Material Movie 2 [25]). The wave field
is measured at x = 100 cm with (a) the IBC turned OFF and (b) the
IBC turned ON leading to an effective cancellation of the reflected
wave field.

print of the actuators on the wave field propagating at the
surface of the object, i.e., their effect on the boundary con-
dition and scattering, which can be studied using an LDV
system for instance. Furthermore, it will be necessary to
characterize the radiation pattern of the actuators and possibly
compensate for any directivity present [27]. The placement of
the transducers will need to be staggered with respect to the
LDV recordings. Hence, the wave field must be reconstructed
at the point of injection by interpolating the LDV point
measurements [28,29]. In the 1D experimental demonstration
of IWE presented, we use the LDV to measure the wave
propagation along the beam. This enables us to circumvent the
necessity to separate the superimposed incident and reflected
wave fields at the ends of the beam by determining the right-
and leftward propagating events along the beam. However,
it requires that we determine the experimental wave number
to accurately redatum those wave field components to the
ends of the beam. When extending IWE to 3D the wave
field needs to be separated into its incident and reflected
components using only recordings of the velocity at the free-
surface faces of the target. We plan to utilize the wave field
injection based approach introduced by Thomsen et al. [19],
which only relies on velocity recordings made at the free
surface and can be applied to target geometries with sharp
corners, such as a rock cube. Once the full three-component
incident wave field is characterized, its horizontal and vertical
derivatives can be used to compute the time series of the
incident traction vector to be applied to the faces of the target
[30]. Subsequently, a transfer function should be established
such that the piezoelectric actuators behave as body force

033203-7



HENRIK R. THOMSEN et al. PHYSICAL REVIEW RESEARCH 1, 033203 (2019)

SRC ON / IBC OFF

0.5 1 1.5
Distance [m]

200

200.5

201

201.5

202

(b)

SRC ON / IBC ON

0.5 1 1.5
Distance [m]

200

200.5

201

201.5

202

(c)

-5

0

5

V
el

oc
it

y 
[m

/s
]

10-4

200 200.5 201 201.5 202 202.5 203 203.5 204 204.5 205
Time [ms]

-5

0

5

V
el

oc
it

y 
[m

/s
]

10-4 Trace at x = 1.0 m

(d)

SRC ON / IBC OFF
SRC ON / IBC ON

(a)

200 cm 75 cm

physical virtual

S
R

C
 s

id
e

IB
C

 s
id

e

FIG. 8. (a) Schematic of the steps taken to virtually extend the physical medium by 75 cm through canceling the first two reflections at the
IBC boundary and introducing new reflected arrivals from the virtual domain. A longitudinal wave mode is excited along the x-component of
propagation at the SRC side (also see Supplemental Material Movie 3 [25]). The wave field is measured from 0 to 200 cm along the middle
of one side of the beam: (b) Time-distance panel of x-component time-series. The wave reflects between the ends of the beam when the IBC
is turned OFF. (c) The first two reflected events are canceled and virtual reflections are introduced when the IBC is turned ON. (d) Single
time-series of the x-component of the wave field at x = 1.0 m when the IBC is OFF vs. ON.

sources. The immersive boundary conditions must then be set
up iteratively, while always accounting for new interactions
of waves within and between the physical and numerical
domains, thereby leading to a complete elastic immersive
experiment.

V. CONCLUSION

We have presented an immersive wave propagation experi-
ment in an elastic medium. Through a theoretical derivation
of elastic immersive boundary conditions and a numerical
verification, we showed that by characterizing the incident
wave field at the free surface of the solid target, reflections
at the boundary can be canceled and interactions of the
wave field between the physical and a virtual domain can
be fully accounted for. In a proof of concept, we actively
cancel waves reflected at the free surface end of a thin
aluminum beam for individually excited broadband longitu-
dinal and flexural wave modes, as well as the simultaneous
excitation of the two. Furthermore, we virtually extend the
physical aluminum beam, by making the physical free-surface
boundary transparent to the propagating wave and introducing
interactions between the physical domain and a chosen virtual
domain.

The ability to make the physical boundaries transparent
to propagating waves via immersive wave experimentation
removes the wavelength limit in elastic laboratory experi-
mentation, thus allowing the study of complex wave fields
with wavelengths which can even be larger than the target.

Additionally, immersive wave experimentation provides full
experimental control so that, for instance, waves with more
than one interaction with the free surface can be switched on
or off in the laboratory. This is of particular interest in the
development of new focusing and imaging techniques, with
applications in seismology and potentially also in areas such
as medical imaging and material testing.
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APPENDIX A: SEPARATING THE INCIDENT AND
SCATTERED WAVE FIELDS MEASURED

ALONG THE BEAM

Following Sønneland et al. [24], at each scan point along
the beam the wave field s(x, t ) can be expressed as the sum of
leftward l (x, t ) and rightward r(x, t ) propagating components.
Fourier transforming gives

S(xi, ω) = L(xi, ω) + R(xi, ω). (A1)

For convenience, the angular frequency term, ω, is hence-
forth omitted. To propagate the L(x1) and R(x1) components
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from x1 to x2 the following one-way wave extrapolators are
used:

L(x1) = WL(x1, x2)L(x2), (A2a)

R(x1) = WR(x1, x2)R(x2), (A2b)

with

WL(x1, x2) = exp(−ikL,F	x), (A3)

WR(x1, x2) = exp(ikL,F	x). (A4)

Inserting Eqs. (A2a) and (A2b) into Eq. (A1) leads to the
following two equations, which can be used to find the left-
and rightgoing components of the wave field at x2:

L(x2) = WR(x1, x2)S(x2) − S(x1)

WR(x1, x2) − WL(x1, x2)
, (A5a)

R(x2) = S(x1) − WL(x1, x2)S(x2)

WR(x1, x2) − WL(x1, x2)
. (A5b)

Using these one-way wave extrapolators the measured
wave field at x2 is both forward and backward propagated
to position x1. Subtracting the redatumed wave field from the
one measured at x1 provides us with either the rightgoing or
leftgoing components of the wave field. This method of wave
field separation assumes no mode conversions of the wave
field between the two measuring positions [24].

APPENDIX B: DETERMINING THE EXPERIMENTAL
WAVE NUMBER

Our proposed workflow requires us to accurately redatum,
i.e., forward and back propagate, any arrivals measured along
the beam to either end of the beam. This is achieved by
considering plane wave expressions for the longitudinal and
flexural components:

U (x, ω) = U0 exp(ikL,Fx), (B1)

in which kL and kF describe the longitudinal and flexural wave
numbers. To experimentally determine kL and kF, we excite
either a longitudinal or flexural wave with the signature of a
Ricker wavelet of central frequency 10 kHz at the SRC side of
the aluminum beam and measure the propagating wave field at
50 and 100 cm. For both measurements, we window the first
arriving wave form and compute its Fourier transform, giving
us U50 and U100.

We consider nondispersive propagation of longitudinal
waves. Therefore, the longitudinal wave number is kL =
ω/cLt, were ω = 2π f is the angular frequency and cLt the the-
oretical longitudinal wave speed. To determine cLt = √

Et/ρ,
we begin with an initial guess of the Young’s modulus,
Et = 70 GPa. The density is calculated from the volume and
weight of the beam as ρ = 2722 kg/m3. We then compute
the transfer function between U50 and U100, T = U50/U100.
Using Eq. (B1), we find the real part of the experimental wave
number, defined as kLe = Re{ln(T )/i	x}, with 	x = 50 cm.
In Fig. 9(a) the light blue line displays the real part of kLe.
We carry out a sweep over the experimental Young’s modulus
Ee within a set frequency range of 5 to 25 kHz, i.e., the
spectrum of the Ricker source function, to find the Ee best
minimizing the difference between the theoretical kLt and the
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FIG. 9. Comparing the (a) longitudinal experimental kLe and
corrected theoretical kLtc wave numbers and (b) flexural experimental
kFe and corrected theoretical kFtc wave numbers in the range from 5
to 25 kHz.

observed experimental wave number kLe. This provides us
with a corrected theoretical wave number kLtc, as depicted
by the dashed dark red line in Fig. 9 and the experimental
Young’s modulus Ee = 72.4 GPa. The corrected theoretical
wave number kLtc is then used for redatuming any longitudinal
waves within the aluminum beam.

When determining the experimental flexural wave number,
we follow the same procedure. Using the Timoshenko beam
theory [31], the dispersion relation of flexural waves is

kFt =
{

1

2

[(
1

Cs

)2

+
(

Cr

Cb

)2]
ω2

+
√

ω2

C2
b

+ 1

4

[(
1

Cs

)2

−
(

Cr

Cb

)2]2

ω4

}1/2

. (B2)

Equation (B2) includes the bending stiffness Cb, shear
stiffness Cs, and rotational effects Cr :

Cb =
√

EI

ρA
, Cs =

√
GAκ

ρA
, Cr =

√
ρI

ρA
. (B3)

The cross section of the beam is A = 0.032 cm2 and the
Timoshenko shear coefficient is κ = 5/6. The theoretical,
flexural wave number kFt is found using an initial guess of
the shear modulus, Gt = 25 GPa. As for the longitudinal
wave number, we choose the frequency range of 5–25 kHz
to perform a linear regression, minimizing the difference
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between the theoretical kFt and experimental kFe flexural
wave numbers by finding the optimal, experimental value
of the shear modulus Ge = 27.6 GPa [see Fig. 9(b)]. The
determined corrected, theoretical flexural wave number kFtc is
then used to redatum any flexural waves within the aluminum
beam.

APPENDIX C: EXPERIMENTALLY APPLYING THE IBC

The workflow to design the wave field to be applied at
the IBC source is the same for either pure longitudinal or
flexural excitation, as well as for simultaneous excitation of
the two. First, we excite the desired wave type at the SRC
side. We measure the wave field u(x, t ) at two positions along
the beam, u(x1, t ) and u(x2, t ), and apply the wave field sep-
aration algorithm (see Appendix A). Once the leftgoing wave
forms l (x2, t ) have been identified, the first reflected arrival
l (x2, t )refl is windowed and backward propagated to its point
of reflection, l (xIBC, t )refl, the IBC end of the beam, using

either the longitudinal or flexural experimental wave number
(see Appendix B). To effectively cancel this reflection, the
IBC source must inject the windowed and redatumed wave
field with opposite polarity −l (xIBC, t )refl. Hence, we must
determine the voltage signal to apply to the IBC piezoelectric
actuator such that the desired displacement −l (xIBC, t )refl is
induced at the IBC end of the beam. To this end, we excite the
IBC source with a Ricker wavelet of central frequency 10 kHz
and measure the wave field at the middle of the aluminum
beam. The first arriving wave form is isolated and back propa-
gated to the IBC end. By comparing this signal to the original
source signal, the inverse impulse response h−1(t ) of the
piezoelectric actuator is found. This process must be repeated
for all three excitation directions of the piezoelectric actuator.
Finally, the wave field −l (xIBC, t )refl is convolved with the
source transfer function h−1(t ) to determine the wave form ap-
plied to the IBC piezoelectric actuator, uIBC = −l (xIBC, t )refl ∗
h−1(t ). If both the SRC and IBC are actuated simultaneously,
the reflection at the IBC boundary is effectively canceled.
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