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Thermodynamics from indistinguishability: Mitigating and amplifying the effects of the bath
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Rich quantum effects emerge when several quantum systems are indistinguishable from the point of view
of the bath they interact with. In particular, delocalized excitations corresponding to coherent superposition of
excited states (reminiscent of double slit experiments or beam splitters in interferometers) appear and change
drastically the dynamics and steady state of the systems. Such phenomena, which are central mechanisms of
superradiance, present interesting properties for thermodynamics and potentially other quantum technologies.
Indeed, a recent paper [C. L. Latune, I. Sinayskiy, and F. Petruccione, Phys. Rev. A 99, 052105 (2019)] studies
these properties in a pair of indistinguishable two-level systems and points out surprising effects of mitigation
and amplification of the bath’s action on the energy and entropy of the pair. Here, we generalize the study
to ensembles of arbitrary number of spins of arbitrary size (i.e., dimension). We confirm that the previously
uncovered mitigation and amplification effects remain, but also that they become more and more pronounced
with growing number of spins and growing spin size. Moreover, we find that the free energy variation and the
entropy production associated with the bath-driven dissipation are systematically reduced, formalising the idea of
mitigation of the bath’s action. Most remarkably, the combination of mitigation effects from two baths at different
temperatures can result in amplifying their action. This is illustrated with cyclic thermal machines, and leads to
large power enhancements. The reduction of irreversibility is also an interesting aspect since irreversibility is
known to limit the performance of thermodynamic tasks. The above findings might also lead to interesting
applications in collective work extraction, quantum battery charging, state protection, light harvesting devices,
quantum biology, but also for the study of entropy production. Moreover, some experimental realisations and
observations suggest that such effects are within reach.

DOI: 10.1103/PhysRevResearch.1.033192

I. INTRODUCTION

Collective interactions of quantum systems with their sur-
rounding environment (bath) generates diverse phenomena
like superradiance [1,2] and entanglement generation [3–5].
It relies on the indistinguishability of the systems from the
point of view of the bath [2,6], and as byproduct creates co-
herent superposition of exited states (delocalized excitations).
These bath-induced coherences are promising for enhancing
thermodynamic tasks (mainly, but not restricted to work ex-
traction and refrigeration) [7–16], light harvesting devices
[17–28], quantum transport [29–32], heat flow reversal [33],
and might also be used by living organisms for photosynthesis
[20,31,34–38] and other vital functions [35,36].

However, the lack of consensus on the actual effects of
coherences (and entanglement) [13,14,39–46] and the strong
model-dependence of some results [15,39,42] emphasize that
the underlying mechanisms are still far from fully understood.
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Moreover, very little is known about the consequences of
bath-induced coherences for central quantities like the energy
and entropy of the indistinguishable systems. Exploring these
crucial questions and having in mind the identification of
innovative strategies for quantum thermodynamic enhance-
ments, we carry out a broad analysis of the thermodynamics
effects of bath-induced coherences.

Our results points at diverse and interesting phenomena.
First, bath-induced coherences—generated through collective
coupling—effectively shield the spin ensemble: the impact of
the bath’s action on the spin ensemble energy and entropy is
mitigated. Still, when negative temperatures are considered,
an opposite tendency can emerge for the ensemble’s energy,
amplifying the heat exchanged between the ensemble and the
bath. These results extend to ensembles of arbitrary number
n of spins of arbitrary size (dimension) the results obtained
in Ref. [6] for a pair of two-level systems. This is important
because not only we show that mitigation and amplification
effects remain for larger ensemble and systems, but also that
these same effects become more and more pronounced with
increasing ensembles—scaling up with n.

Secondly, we analyze the free energy variation generated
by the bath’s action and show that it is systematically reduced
(in absolute value) in presence of collective bath interac-
tions. This sets a formal ground for the discussion around
mitigation and amplification effects. Additionally, we study
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the entropy production, which has been subject of intense
research in a quantum context with pioneering contributions in
Refs. [48–50], but also more recently in Refs. [47,51], inves-
tigating its relation with work extraction [47], irreversibility
[52–56], and its crucial role in nonequilibrium dynamics and
in performances of thermal machines [57–63]. We find a
dramatic reduction of entropy production (by a factor up
to 1/n) due to collective bath coupling, opening interesting
perspectives in particular with regards to performances of
thermodynamic tasks. More generally, all these phenomena
have potential applications (detailed in Section “Applications
and perspectives”) in thermal machines, refrigeration oper-
ations, quantum battery charging, state protection, and also
contribute to the aforementioned ongoing debate [13,41–43]
on genuine quantum effects in thermodynamics.

Third, we present a remarkable phenomenon in a context
of cyclic thermal machines: the combination of mitigation
effects from two baths at different temperatures can produce
an amplification of their action. We show analytically that
this can result in very large power enhancements of thermal
machines.

Finally, some experimental realisations of collective bath
coupling suggest that the above phenomena might be within
reach. The underlying mechanism sustaining these effects can
be understood in terms of coherences between degenerate
energy levels (of the local basis, see also further explanations
based on the framework introduced in Ref. [64] are detailed
in H).

From an alternative point of view, interesting parallels can
be drawn with the framework established in Ref. [47] around
catalysis in quantum thermodynamics [65,66].

II. COLLECTIVE BATH-INDUCED DISSIPATION

We consider an ensemble A of n noninteracting spins s
of same Bohr frequency ω and free Hamiltonian HA = h̄ωJz,
where Jz := ∑n

k=1 jz,k is the collective z component of the
angular momentum operator (generator of rotation around the
z axis), with jz,k the z component of the angular momentum
operator associated to the kth spin. In particular, for spin 1/2,
jz,k is one half of the Pauli matrix σz. Note that beyond
actual spin 1/2, any two-level system (like two-level atoms)
is isomorphic to a spin 1/2 so that all the following consider-
ations are also valid for ensembles of two-level systems. We
define in the same way the collective angular momentum Ji :=∑n

k=1 ji,k along the direction i = x, y and the local angular
momentum ji,k associated to the kth spin with i = x, y.

We assume that the spin ensemble A interacts collectively
with a bath B of inverse temperature βB. The collective inter-
action implicitly requires that the bath does not distinguish
the n spins [6]. This can be realized in several platforms
[67–69] (see also Ref. [13] for ensemble of two-level atoms)
and was experimentally done for instance in Refs. [70,71] (see
also Sec. V C) and more recently in Ref. [72]. The collective
coupling to the bath is then of the form V := h̄gJxOB, where
OB is a bath observable, and g characterizes the strength of the
coupling

Assuming that the Born and Markov approximations are
valid (namely, the bath correlation time is much smaller than
the relaxation time of A [73,74]), the master equation for the

reduced density operator ρ of the spin ensemble is (in the
interaction picture)

dρ

dt
= �(ω)(J−ρJ+ − J+J−ρ)

+�(−ω)(J+ρJ− − J−J+ρ) + H.c., (1)

where J± := Jx ± iJy are the collective ladder operators of the
spin ensemble, �(ω) = h̄2g2

∫ ∞
0 eiωuTrρBOB(u)OBdu is the

“half Fourier transform” of the bath correlation function, ρB is
the density operator of the bath in the interaction picture (with
respect to its free Hamiltonian HB), and OB(u) denotes the
interaction picture of OB. Note that the above master equation
(1) has been derived using the secular approximation (valid
when ω−1 is much smaller than the relaxation time of the
spin ensemble). Moreover, the master equation (1) is valid for
thermal baths but more generally for stationary baths [75,76]
whose apparent temperature can be defined as [64,75,76]
(kB = 1)

TB := h̄ω

(
ln

�(ω) + �∗(ω)

�(−ω) + �∗(−ω)

)−1

. (2)

Importantly, in several usual situations in thermodynamics,
like in the context of spin baths [77,78], thermal machines
or more generally when several thermal baths at different
temperatures interact with the same system [79,80], the dis-
sipative dynamics can be described by the interaction with
an effective thermal bath at negative temperature. Therefore,
to include such situations relevant for thermodynamics, we
consider in the following that the bath interacting with the
spin ensemble has a temperature (or apparent temperature) TB

which can be either positive or negative. For convenience, we
will prefer to use the inverse temperature βB = T −1

B .

III. SPIN ENSEMBLES

For the kth spin, we denote by {|s, mk〉k}−s�mk�s the local
eigenbasis of jz,k , so that jz,k|s, mk〉k = h̄mk|s, mk〉k . Then, the
states of the spin ensemble can be naturally described in the
basis

|m1, m2, . . . , mn〉 := ⊗n
k=1|s, mk〉k (3)

obtained from the tensor products of the local eigenbasis. In
the following we will refer to this basis as the local basis.
Alternatively, it is well-known from the theory of addition of
angular momenta [81] that the states of the spin ensemble can
be described through another basis made of the eigenvectors
of the commuting global observables Jz and J 2 := J2

x + J2
y +

J2
z . Such eigenvectors are denoted by |J, m〉 in reference to

their associated eigenvalues,

J 2|J, m〉 = h̄J (J + 1)|J, m〉,
Jz|J, m〉 = h̄m|J, m〉 (4)

with −J � m � J and J ∈ [J0; ns], where J0 = 0 if s � 1 and
J0 = 1/2 if s = 1/2 and n odd.

A quick calculation shows that the natural basis contains
(2s + 1)n elements whereas there are only (ns + 1)2 (or
(ns + 1/2)(ns + 3/2) when s = 1/2 and n is odd) different
pairs of eigenvalues (J, m) for −J � m � J and J ∈ [J0; ns].
Therefore, for n � 3, some eigenspaces must be degenerate.
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We denote by |J, m〉i the degenerate eigenstates (of eigenvalue
h̄J (J + 1) and h̄m) with the degeneracy index i running from 1
to lJ , integer which represents the multiplicity (or degeneracy)
of the associated eigenspace. In the remainder of the paper
we call “eigenspace of total spin J ,” or simply “eigenspace
J ,” if no confusion is possible, the eigenspace associated to
the eigenvalue J (of the total spin operator J 2). A complete
basis is formed by the collection of all eigenvectors |J, m〉i

(including all the degenerate ones). In other words, any pure
state |ψ〉 of the spin ensemble can be rewritten as

|ψ〉 =
ns∑

J=J0

J∑
m=−J

lJ∑
i=1

aJ,m,i|J, m〉i, (5)

where aJ,m,i are complex coefficients with square module
summing up to 1. We will refer to this basis {|J, m〉i},
J0 � J � ns, −J � m � J , 1 � i � lJ , as the collective basis.
Note that one can easily show that the multiplicity lJ is always
equal to 1 (no degeneracy) for J = ns and always equal to
n − 1 for J = ns − 1. However, it is a difficult task to find
out the expression of lJ for J � ns − 2 for arbitrary n and s.
Nevertheless, the theory of addition of angular momenta [81]
guarantees that the above decomposition (5) exists.

It is important to note that the global ladder operators J±
generate the usual transition between the global eigenstates
of Jz, namely, J± = h̄

√
(J ∓ m)(J ± m + 1)|J, m ± 1〉i. In the

group theory notation the change from local to global basis is
often written as

H⊗n

s = ⊕ns
J=J0

H⊕lJ

J (6)

where Hs and HJ are Hilbert spaces of spin s and J , respec-
tively, and ⊗ denotes a tensor product whereas ⊕ denotes a
direct sum.

This change of basis provides precious information on the
spin ensemble evolution under dynamics which preserves the
spin-exchange symmetry. In particular, the collective dissi-
pation described by the master equation (1) involves only
collective absorptions and collective emissions, represented
by the ladder operators J+ and J−, respectively (preserving
therefore the spin-exchange symmetry), so that if the spin
ensemble is initialized in the eigenspace of total spin J , it
remains in it at all times. More generally, if the spin en-
semble is initialized in a state ρ0 with a total weight pJ,i :=∑J

m=−J i〈J, m|ρ0|J, m〉i in each eigenspace of total spin J

(such that
∑ns

J=J0

∑lJ
i=1 pJ,i = 1), each component evolves

without coupling to the other total spin eigenspaces so that
the initial weight pJ,i is preserved throughout time. As a
consequence, each component J, i thermalizes to the thermal
state (see Appendix A)

ρ th
J,i(βB) := ZJ (βB)−1

J∑
m=−J

e−mh̄ωβB |J, m〉i〈J, m|, (7)

with

ZJ (βB) :=
J∑

m=−J

e−mh̄ωβB

= eJh̄ωβB
1 − e−(2J+1)h̄ωβB

1 − e−h̄ωβB
, (8)

so that the steady state of the ensemble is

ρ∞(βB) :=
ns∑

J=J0

lJ∑
i=1

pJ,iρ
th
J,i(βB). (9)

Note that we excluded initial coherences between eigenspaces
of different total spin (i〈J, m|ρ0|J ′, m′〉i′ = 0 if and only if
J �= J ′ or i �= i′). We provide in Appendix B some arguments
to support the claim that for a large class of initial state, in par-
ticular for state containing coherences between eigenspaces
of different total spin, the steady state is still of the form
(9). Nevertheless, we focus in the following on spin ensem-
bles which are initially in arbitrary thermal states—arguably
the most common and experimentally accessible class of
states—having no coherence between different eigenspaces
J, i (shown in the following). Therefore, the generalisation
of the validity of (9) to a larger class of initial states is not
necessary here (however we mention it as it might be of
interest for other applications).

IV. STEADY STATES

As mentioned above we consider a spin ensemble initially
in a thermal state at inverse temperature β0,

ρ th(β0) := Z (β0)−1e−h̄ωβ0Jz (10)

where Z (β0) := Tre−h̄ωβ0Jz is the global partition function.
Such thermal state can be rewritten as

ρ th(β0) = ⊗n
k=1

1

Zs(β0)
e−h̄ωβ0 jk

z

= 1

Zs(β0)n
⊗n

k=1

{
s∑

m=−s

e−mh̄ωβ0 |s, m〉k〈s, m|
}

, (11)

where Zs(β0) := ∑s
m=−s e−mh̄ωβ0 is the local partition function

so that

Z (β0) = Zs(β0)n (12)

and the states |s, m〉k are the eigenstates of jz,k introduced
above. The global thermal state can be rewritten as

ρ th(β0) = 1

Z (β0)

ns∑
m=−ns

e−mh̄ωβ0

×
∑

m1+···+mn=m

|m1, . . . , mn〉〈m1, . . . , mn|. (13)

All states |m1, . . . , mn〉 such that
∑n

k=1 mk = m are eigen-
states of Jz with the same eigenvalue h̄m. For each m we
denote by Im the number of such eigenstates. They span the
subspace associated to the eigenvalue h̄m, that we will refer to
in the following as the eigenspace m.

We have two orthonormal basis for the eigenspace m,
a collective one {|J, m〉i}|m|�J�ns,i∈[1;lJ ] and a local one
{|m1, . . . , mn〉}m1+···+mn=m. This implies in particular the fol-
lowing relation Im = ∑ns

J=|m| lJ . As we saw above, the restric-
tion to the eigenspace m of the thermal state ρ th(β0) is

ρ th(β0)|m = e−mωβ0

Z (β0)

∑
m1+···+mn=m

|m1, . . . , mn〉〈m1, . . . , mn|

= e−mωβ0

Z (β0)
Im, (14)
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where Im denotes the identity of the eigenspace m
which can be expressed also in the collective basis as
Im = ∑ns

J=|m|
∑lJ

i=1 |J, m〉i〈J, m|. Therefore the thermal state
can be rewritten in the collective basis as

ρ th(β0) =
ns∑

m=−ns

e−mωβ0

Z (β0)

ns∑
J=|m|

lJ∑
i=1

|J, m〉i〈J, m|

= 1

Z (β0)

ns∑
J=J0

lJ∑
i=1

J∑
m=−J

e−mωβ0 |J, m〉i〈J, m|

=
ns∑

J=J0

pJ (β0)
lJ∑

i=1

ρ th
J,i(β0) (15)

with pJ (β0) := ZJ (β0 )
Z (β0 ) . One should note that from the nor-

malisation condition we have automatically the identity∑ns
J=J0

lJ pJ (β0) = 1 which will be used in the following.
Combining (9) and (15) we are now in measure to an-
nounce the main result of this paragraph: a state initially in
a thermal state at inverse temperature β0 tends to the steady
state

ρ∞
β0

(βB) :=
ns∑

J=J0

pJ (β0)
lJ∑

i=1

ρ th
J,i(βB). (16)

Crucially, ρ∞
β0

(βB) is generally not a thermal state. From (15)
we can make a stronger statement: ρ∞

β0
(βB) is a thermal

state if and only if β0 = ±βB (recovering the fact that the
thermal state at inverse temperature βB is a steady state of the
dynamics).

In the following, we compare thermodynamic characteris-
tics of ρ∞

β0
(βB) with the properties of the thermal equilibrium

state ρ th(βB), which is the steady state reached when each spin
is distinguishable from the bath’s point of view, or equiva-
lently when each spin interacts individually with the bath. We
will refer to this distinguishable or individual dissipation as in-
dependent dissipation, by contrast to the collective dissipation
described by (1). Such comparison reveals the energetic and
entropic impact of the collective dissipation (or equivalently,
indistinguishability) on the spin ensemble.

V. STEADY-STATE ENERGY

In this section, we look at the energy of the spin ensemble
when it reaches its steady state ρ∞

β0
(βB). The corresponding

energy is defined by

E∞
β0

(βB) := h̄ωTrJzρ
∞
β0

(βB) + h̄ωns. (17)

The extra term h̄ωns is not of fundamental importance, it
just means that we are taking the ground state |J,−J〉 as
energy reference. In other words, the energy is defined to be
proportional to the number of excitations in the spin ensemble.
A quick calculation shows that

E∞
β0

(βB) =
ns∑

J=J0

pJ (β0)lJeJ (βB) + h̄ωns, (18)

1 2 3−1−2−3
B

50

100
E/

FIG. 1. Plots of E∞
β0

(βB ) as a function of h̄ωβB for n = 100 spins
s = 1/2. From the lightest to the darkest blue curves, the initial
temperature is, respectively, h̄ω|β0| = 0.1, h̄ω|β0| = 1, h̄ω|β0| = 2,
and h̄ω|β0| = 5. The dotted black curve corresponds to the thermal
equilibrium energy E th (βB). The dotted dark blue curve represents
the limit h̄ωβ0 = +∞.

with

eJ (βB) := h̄ωTrJzρ
th
J,i(βB)

= h̄ω

J∑
m=−J

m
e−mh̄ωβB

ZJ (βB)

= − ∂

∂βB
ln ZJ (βB)

= h̄ω

2

cosh(h̄ωβB/2)

sinh(h̄ωβB/2)

− (2J + 1)
h̄ω

2

cosh[(2J + 1)h̄ωβB/2]

sinh[(2J + 1)h̄ωβB/2]

= h̄ω
1

eh̄ωβB − 1
− h̄ω

2J + 1

e(2J+1)h̄ωβB − 1
− Jh̄ω. (19)

We compare E∞
β0

(βB) to the thermal energy E th(βB) :=
h̄ωTrJzρ

th(βB) + h̄ωns of the thermal state ρ th(βB) (reached
under independent dissipation). One obtains straightforwardly

E th(βB) =
ns∑

J=J0

pJ (βB)lJeJ (βB) + h̄ωns. (20)

Therefore the only difference between E∞
β0

(βB) and E th(βB)
are the weight pJ (β0) which are substituted by pJ (βB) in
E th(βB). How does this affect E∞

β0
(βB)? As a brief preview

of the general picture, Fig. 1 contains the plots of E∞
β0

(βB) as
a function of h̄ωβB for n = 100 spins s = 1/2. We used the
expressions (18) with the degeneracy coefficients

lJ = (2J + 1)
n!(

n
2 + J + 1

)
!
(

n
2 − J

)
!
, (21)

obtained—in the particular case s = 1/2—from Im =
n!

(n/2+m)!(n/2−m)! and Im = ∑n/2
J=|m| lJ . The initial temperature

varies from h̄ω|β0| = 0.1 (lightest blue curve), to h̄ω|β0| = 5
(darkest blue curve), with two intermediate values h̄ω|β0| = 1
and h̄ω|β0| = 2 (intermediate blue curves). The dotted black
curve corresponds to the thermal equilibrium energy E th(βB).
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Finally, the dotted dark blue represents the limit h̄ωβ0 = +∞.
The dramatic difference between E∞

β0
(βB) and E th(βB) is

maybe one of the most immediate observation. Can we draw
general tendencies, valid for arbitrary n and s? Since the
direct comparison of the analytical expressions of E∞

β0
(βB)

and E th(βB) is of little help, we use an indirect method.
In Appendix C, we show that

∂

∂β0
E∞

β0
(βB) < 0 ⇔ β0βB > 0,

∂

∂β0
E∞

β0
(βB) > 0 ⇔ β0βB < 0, (22)

∂

∂β0
E∞

β0
(βB) = 0 ⇔ β0βB = 0.

Since E∞
β0=βB

(βB) = E th(βB) and E∞
−β0

(βB) = E∞
β0

(βB) we
conclude that, for βB > 0,

E∞
β0

(βB) > E th(βB), when |β0| < βB,

E∞
β0

(βB) < E th(βB), when |β0| > βB, (23)

and for βB < 0,

E∞
β0

(βB) < E th(βB), when |β0| < |βB|,
E∞

β0
(βB) > E th(βB), when |β0| > βB. (24)

The above results are summarized in a more visual way in
Fig. 2.

A. Mitigation and amplification of the bath’s action

A closer look at these results reveals that the displacement
of steady-state energy E∞

β0
(βB) with respect to the thermal

equilibrium energy E th(βB) is not always in the same di-
rection (as appearing also in Fig. 1). More precisely, in the
situation where βB > 0 and assuming the spin ensemble is
initially colder than the bath (β0 > βB), under independent
dissipation the energy of the spin ensemble increases until
reaching the thermal equilibrium energy E th(βB). However,
the above results show that the collective dissipation limits the
steady-state energy to a value strictly smaller than the thermal
energy E th(βB): the bath’s action is mitigated. Similarly, for a
spin ensemble initially in a state hotter than the bath such that
−βB < β0 < βB, the energy of the spin ensemble is expected
to be reduced to E th(βB) under independent dissipation, but
under collective dissipation the reduction is limited to a value
of E∞

β0
(βB) strictly larger than E th(βB). We have again mitiga-

tion of the bath’s action. These two situations correspond to
the regime designated by “mitigation” in Fig. 2(a).

By contrast, for a spin ensemble initially in a hot state
such that β0 < −βB, the energy of the spin ensemble is
brought to lower levels thanks to the collective dissipation
since E∞

β0
(βB) is strictly smaller than E th(βB) in such regime.

In this situation, corresponding to the region designated by
“amplification” in Fig. 2(a), the bath’s action is amplified.
This phenomenon resembles the counter-intuitive Mpemba
effect [82–84] (under certain conditions, a classical system
can be refrigerated faster when it is initially in a hotter state),
except that in the present situation an initially hotter system
can reach a lower energy.

Amplification Mitigation

E 0( B)

Eth( B)

− B B

0

E/

E 0( B)

Eth( B)

Mitigation Amplification

B − B

0

E/

(a)

(b)

FIG. 2. Illustration of the general behavior of the steady-state
energy E∞

β0
(βB ) as a function of h̄ωβ0 (obtained from the particular

situation of 10 spins 1/2). The graph (a) corresponds to βB > 0 while
the graph (b) to βB < 0. The value of the thermal energy E th (βB) is
indicated by the Black horizontal line.

Conversely, for an effective bath at negative temperature,
similar considerations show that for β0 < |βB|, the bath’s
action is mitigated whereas for β0 > |βB|, the bath’s action
is amplified, as indicated in Fig. 2(b).

The above effects on the spin ensemble energy can be
recapped in a simple formula: when β0/βB < −1, there is
amplification of the bath’s action, whereas when β0/βB > −1
it is substituted by the mitigation of the bath’s action. This
brings several potential applications which are detailed in
Sec. VIII. These intriguing phenomena can be understood in
terms of coherences between degenerate energy levels (of the
local basis) which maintain the ensemble in a steady state
of energy different from the thermal equilibrium energy. We
provide in Appendix H an intuitive explanation in the lights
of the framework introduced in Ref. [64]. In the remainder of
this section, we present quantitative results on the extent of
the amplification and mitigation effects.

B. Extent of the mitigation and amplification effects

From (22) and Fig. 2, one can conclude that the amplifica-
tion and mitigation effects are more pronounced for extreme
initial inverse temperature h̄ω|β0| � 1. In this limit, one can
see from the expressions (8) and (12) for ZJ (β0) and Z (β0)
that pJ (β0) tends to 0 for all J < ns and to 1 for J = ns
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(which corresponds to the Dicke subspace [1,2]). Then, for
h̄ω|β0| � 1, the steady-state energy reached by spin ensemble
tends to be equal to

E+(βB) := E∞
β0=±∞(βB)

= lnsens(βB) + h̄nsω

= ens(βB) + h̄nsω

= h̄ω
1

eh̄ωβB − 1
− h̄ω

2ns + 1

e(2ns+1)h̄ωβB − 1
, (25)

obtained using lns = 1 and the expression of ens(βB) given by
(19) with the value J = ns. Note that E∞

β0
(βB) � E+(βB) even

for moderate value of h̄ω|β0|, as one can been seen in Fig. 1
from the curve h̄ω|β0| = 5. The thermal equilibrium energy
can be obtained simply as n times the thermal energy of a spin
s (still with the ground state as energy reference),

E th(βB) = n[es(βB) + h̄ωs]

= nh̄ω
1

eh̄ωβB − 1
− nh̄ω

2s + 1

e(2s+1)h̄ωβB − 1
, (26)

where we use (19) with J = s. In order to compare E+(βB) and
E th(βB), we plot several graphs for different value of n and
s. Figure 3 presents the plots of E+(βB)/ns and E th(βB)/ns
as functions of βB for ensembles of n = 4 spins of size s =
1/2, 3/2, and 9/2 [Fig. 3(a)], and for ensembles containing
n = 2, 6, 9, and 100 spins s = 1/2 [Fig. 3(b)]. One can see that
the difference between E+(βB) and E th(βB) becomes larger
when n and s increase, even though it is more pronounced
with n. This can also be seen analytically by expanding the
expressions (25) and (26) when h̄ω|βB| � 1. One obtains

E+(βB)

h̄ωns
= 1 − h̄ωβB

3
(ns + 1) + O

(
h̄2ω2β2

B

)
(27)

and

E th(βB)

h̄ωns
= 1 − h̄ωβB

3
(s + 1) + O

(
h̄2ω2β2

B

)
, (28)

which shows that the slope around βB = 0 is almost n times
larger for E+(βB), explaining the striking difference between
E+(βB) and E th(βB).

Figure 4 shows the graphs of the ratio E+(βB)/E th(βB)
as a function of h̄ωβB for ensembles of n = 4 spins of size
s = 1/2, 3/2, and 9/2 [Fig. 4(a)] and for ensembles contain-
ing n = 2, 6, 9, and 100 spins s = 1/2 [Fig. 4(b)]. One can
see that E+(βB)/E th(βB) tends to 1/n for h̄ωβB � 1, which
can also be shown analytically from (25) and (26),

E+(βB) �
h̄ωβB�1

h̄ω
1

eh̄ωβB − 1
�

h̄ωβB�1
E th(βB)/n. (29)

In terms of mitigation of the bath’s effects it means for
instance that if the spin ensemble is initially in a cold state
(h̄ωβ0 � 1) the collective interaction reduces the heating up
due to the interaction with a hotter bath by a factor up to n.
For the sake of completeness, we mention an other mitigation
effect when the effective bath is in a negative temperature and
the spin ensemble is initially close to an inverted population
state (−h̄ωβ0 � 1). Then, in such situation the collective
interactions keep the spin ensemble in a state of energy up
to twice (in the limit of large ns) the thermal energy it would
reach under independent dissipation.

1 2 3�1�2�3
B

1

2
E� ns

1 2 3�1�2�3
B

1

2
E� ns

(a)

(b)

FIG. 3. (a) Plots of E+(βB)/ns (continuous lines) and E th (βB)/ns
(dashed lines) as functions of h̄ωβB for ensembles of n = 4 spins
of size s = 1/2 (orange curves), 3/2 (red curves), and 9/2 (purple
curves). (b) Plots of E+(βB )/ns (continuous lines) and E th (βB)/ns
(dashed lines) as functions of h̄ωβB for ensembles containing n =
2 (orange curves), 6 (red curves), 9 (purple curves), and 100 (blue
curves) spins of size s = 1/2. Note that all the four curves E th (βB)/ns
are indeed the same.

In terms of the amplification of the bath’s effects, a
spin ensemble initially close to an inverted population state
(−h̄ωβ0 � 1) interacting with a cold bath can be super re-
frigerated by a factor close to n (reaching an energy n times
smaller) thanks to collective interactions. Additionally, the
amplification of the bath’s effects means an extra energy
charging when the effective bath is in a negative temperature
and the spin ensemble is initially close to the ground state
(h̄ωβ0 � 1). Such extra energy charging can go up to twice
(in the limit of large ns) the energy charged via independent
dissipation.

C. Saturation effect and relation
with experimental observations

In addition to the above effects, the collective dissipation
can result in a saturation effect. Comparing the expressions
(25) of the steady-state energy and Eq. (26) of the thermal
energy one can see that while E th(βB) increases linearly
with the number of spins n, as expected, the steady-state
energy E+(βB) achieved under collective dissipation saturates
for growing n. This curious saturation phenomenon can be
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FIG. 4. (a) Plots of the ratio E+(βB)/E th (βB) as functions of
h̄ωβB for an ensemble of 4 spins of size s = 1/2 (orange curve),
3/2 (red curve), and 9/2 (purple curve). (b) Plots of the ratio
E+(βB )/E th (βB ) as functions of h̄ωβB for ensembles containing n =
2 (orange curve), 6 (red curve), 9 (purple curve), and 100 (blue curve)
spins s = 1/2. The gray, orange, red, and purple dot-dashed lines
represent the values 1, 1/2, 1/6, and 1/9, respectively.

related to the experimental observation made on atomic clouds
interacting collectively with a thermalized cavity field [70].
The authors observed that when the number of atoms in the
cloud is increased, the number of excited atoms after equi-
libration with the thermal cavity field was saturating instead
of increasing linearly with the size of the atomic cloud as one
could expect. This experimental observation is the nothing but
the above saturation effect translated in terms of mean number
of excited atoms, confirming the tendency expected from our
predictions, and showing that the effects described throughout
this paper should be achievable experimentally.

D. Local state

It is also interesting to look at the local state of each
spins. From symmetry reason, each spin carries an energy
E∞

β0
(βB)/n and each spin has the same local state ρLoc. It

is interesting to note that for spin 1/2 (or equivalently for
two-level systems), the local state (which is a thermal state)
has an inverse temperature βLoc different from the bath inverse
temperature βB. Indeed, the local inverse temperature βLoc is a
simple function of the steady-state energy E∞

β0
(βB) so that βLoc

reflects the amplification and mitigation of the bath effects
described above. In particular, the largest effects happen for
h̄ωβ0 � 1. For the sake of completeness, we give in the
following the asymptotic behavior of βLoc,

h̄ωβLoc =
h̄ω|βB|�1

h̄ωβB
n + 2

3
(30)

and

h̄ωβLoc =
h̄ω|βB|�1

ln n + h̄ωβB. (31)

The above equations (30) and (31) show that the amplification
of the bath effects (when β0/βB < −1) and mitigation of the
bath effects (when β0/βB > −1) grow with n.

By contrast, for ensemble of spins s � 1, we show in
Appendix D that the local state is not a thermal state. This is
also interesting since nonthermality was shown to be a useful
resource [51] which can be harnessed, for instance, to boost
the performances of autonomous thermal machines [80].

Note that the interpretation of the mitigation effects in
terms of dark states made in [6] for a pair of spins s = 1/2
would be still valid here in the sense that the variation of
E∞

β0
(βB) as a function of β0 can be seen as an interplay

between the weight of dark and bright states. However, a more
quantitative description based on dark states is out of reach
in general (the structure of dark and bright states becomes
too complex for increasing n and s). As a conclusion we
mention that the properties described throughout this Section
are all fruit of collective dissipation which is itself rooted in
the indistinguishability of each spins. These properties have
promising applications detailed in Section “Applications.” In
the next section, we look at an other central property, the
entropy.

VI. STEADY-STATE ENTROPY

Entropy is an other fundamental property of quantum
systems, and we shall see in this Section that it is also dra-
matically affected by the collective character of the interaction
with the bath. The von Neumann entropy of the steady state
ρ∞

β0
(βB) is given by S[ρ∞

β0
(βB)] = −Trρ∞

β0
(βB) ln ρ∞

β0
(βB).

Since the states ρ th
J,i(βB) have support on orthogonal sub-

spaces, the following identity holds [85]:

S
[
ρ∞

β0
(βB)

] =
ns∑

J=J0

lJ∑
i=1

pJ,iS
[
ρ th

J,i(βB)
] + H (p), (32)

where H (p) = −∑ns
J=J0

∑lJ
i=1 pJ,i ln pJ,i is the Shannon en-

tropy of the distribution probability pJ,i. For an ensem-
ble initially in a thermal state at inverse temperature β0,
pJ,i = pJ (β0) (independent of i) so that

H (p) = −
ns∑

J=J0

lJ pJ (β0) ln pJ (β0). (33)

One can also verifies that the von Neumann entropy of
ρ th

J,i(βB) takes the usual expression of any thermal state,

S
[
ρ th

J,i(βB)
] = ln ZJ (βB) + h̄ωβBTrJzρ

th
J,i(βB)

= ln ZJ (βB) + βBeJ (βB). (34)
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Combining (32), (33), and (34), we obtain

S
[
ρ∞

β0
(βB)

] = βB
[
E∞

β0
(βB) − h̄ωns

]
+

ns∑
J=J0

lJ pJ (β0) ln
ZJ (βB)

pJ (β0)
. (35)

By contrast, the thermal equilibrium entropy S[ρ th(βB)]
reached under independent dissipation is equal to

Sth(βB) := S[ρ th(βB)]

= nS
[
ρ th

J=s(βB)
]

= n[ln Zs(βB) + βBes(βB)]

= n ln Zs(βB) + βB[E th(βB) − h̄ωns]

= βBE th(βB) + n ln
1 − e−(2s+1)ωβB

1 − e−ωβB
, (36)

obtained from (34) or from (35) with β0 = βB. The expression
of ln Zs(βB) presented in the last line was obtained using (8).

As for the steady-state energy, it is challenging to compare
directly S[ρ∞

β0
(βB)] with the thermal entropy Sth(βB). Thus,

we follow the same strategy as in the previous Section which
consists in studying the behavior of S[ρ∞

β0
(βB)] as a function

of β0. It is shown in Appendix E that S[ρ∞
β0

(βB)] is a mono-
tonic strictly increasing function of β0 for β0 < 0 and strictly
decreasing for β0 > 0. Consequently, since S[ρ∞

β0=±βB
(βB)] =

Sth(βB), we have

S
[
ρ∞

β0
(βB)

]
< Sth(βB) (37)

for all |β0| > |βB|, and

S
[
ρ∞

β0
(βB)

]
> Sth(βB) (38)

for all |β0| < |βB|. In particular, this implies, for all β0 and βB,∣∣S[
ρ∞

β0
(βB)

] − S[ρ th(β0)]
∣∣ < |S[ρ th(βB)] − S[ρ th(β0)]|.

(39)

It means that the variation (in absolute value) of entropy
between the initial and final states is always reduced when
the dissipation is collective. In other words, the collective
interaction always mitigates the bath’s action from the point
of view of the entropy. We show in the following that the spin
ensemble entropy can be reduced by a factor up to n. This is an
interesting additional properties since for various applications
in the regime |β0| > |βB| (like collective work extraction, state
protection and cooling operations, see Sec. VIII), it is highly
desirable that the spin ensemble remains in a low entropy
state.

We now analyze, as for the energy, the extent of the
mitigation effect for the entropy. The mitigation is more
pronounced for h̄ω|β0| � 1, which also corresponds to the
largest amplification and mitigation effects for the energy. In
this regime h̄ω|β0| � 1, the steady-state entropy S[ρ∞

β0
(βB)]

tends to be equal to

S+(βB) := S
[
ρ∞

β0=±∞(βB)
]

= βB[E+(βB) − h̄nsω] + ln Zns(βB)

= βBE+(βB) + ln
1 − e−(2ns+1)ωβB

1 − e−ωβB
, (40)
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FIG. 5. (a) Plots of S+(βB ) (continuous lines) and Sth (βB) and
(dashed lines) as functions of h̄ωβB for ensembles of 4 spins of size
s = 1/2 (ornage curves), 3/2 (red curves), and 9/2 (purple curves).
(b) Plots of S+(βB) (continuous lines) and Sth (βB) (dashed lines) as
functions of h̄ωβB for ensembles containing n = 2 (orange curves),
6 (red curves), and 9 (purple curves) spins of size s = 1/2.

where the last line was obtained using (8). This is to be
compared with the thermal entropy given in (36).

Figure 5 presents the graphs of S+(βB) and Sth(βB) as a
function of h̄ωβB for ensembles of n = 4 spins of size s =
1/2, 3/2, and 9/2 [Fig. 5(a)], and for ensembles containing
n = 2, 6, and 9 spins of size s = 1/2 [Fig. 5(b)]. Figure 6
corresponds to the plots of the ratio Sth(βB)/S+(βB) again as
a function of h̄ωβB for ensembles of n = 4 spins of size s =
1/2, 3/2, and 9/2 [Fig. 6(a)], and for ensembles containing
n = 2, 6, and 9 spins of size s = 1/2 [Fig. 6(b)]. One can see a
very large reduction of entropy over the whole range of values
of βB. In particular, the entropy tends to be reduced by a factor
n for h̄ω|βB| � 1, which can also be seen analytically from
(36) and (40),

S+(βB) �
h̄ω|βB|�1

βBh̄ω

eh̄ωβB − 1
− ln(1 − e−ωβB )

�
h̄ω|βB|�1

Sth(βB)/n. (41)

One can also note that the difference between the steady state
and the thermal equilibrium entropies increases for increasing
spins size s. The effect can be seen also analytically when
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FIG. 6. (a) Plots of the ratio Sth (βB)/S+(βB) as a function of
h̄ωβB for ensembles of 4 spins of size s = 1/2 (orange curves),
3/2 (red curves), and 9/2 (purple curves). (b) Plots of the ratio
Sth (βB)/S+(βB ) again as functions of h̄ωβB for ensembles containing
n = 2 (orange curves), 6 (red curves), and 9 (purple curves) spins of
size s = 1/2.

taking the limit h̄ω|βB| � 1,

S+(βB) = ln(2ns + 1) − (h̄ωβB)2

6
ns(ns + 1)

+O[(h̄ωβB)3], (42)

and

Sth(βB) = n ln(2s + 1) − (h̄ωβB)2

6
ns(s + 1)

+O[(h̄ωβB)3]. (43)

VII. FREE ENERGY AND ENTROPY PRODUCTION

We conclude this overview of the thermodynamic impli-
cations of collective dissipation by one other fundamental
thermodynamic quantity, the free energy, defined for a state
ρ of the spin ensemble by

F (ρ) := h̄ωTrJzρ + h̄ωns − S(ρ)/βB. (44)

Note that the term h̄ωns is due to our energy reference.
The meaningful quantity is the variation of free energy 	F ,

1 2 3
B

�2

�4

�6

�8

F�

1 2 3
B

�1

�2

F� n

(a)

(b)

FIG. 7. (a) Plots of the variation of free energy 	F∞
β0

(βB) (con-
tinuous curves) for h̄ωβ0 � 1 and 	F th (βB ) (dashed curves) as
functions of h̄ωβB for ensembles containing n = 2 (orange curves),
6 (red curves), 9 (purple curves), and 100 (blue curves) spins of size
s = 3/2. Note that the curves 	F∞

β0
(βB ) are almost the same and

therefore cannot be properly distinguished. (b) Same plots as in the
panel (a) but for the variation of free energy per spin, 	F∞

β0
(βB)/n

and 	F th (βB)/n. Note that the curves 	F th (βB )/n are exactly the
same, reason why only one dotted curve appears.

which gives precious information on the irreversibility of the
evolution [86], but also on the quantity of extractable work
[47]—one can think of the free energy as the “accessible”
energy of the system. As such, when noise is added to the
system, its free energy should decrease, which is verified
for instance for dissipative evolution (at least for Markovian
processes [87]) with βB > 0.

One can show (Appendix F) for βB > 0 that under col-
lective dissipation the free energy variation 	F∞

β0
(βB) :=

F [ρ∞
β0

(βB)] − F [ρ th(β0)] is always larger (i.e. smaller in ab-
solute value) than the free energy variation 	F th(βB) :=
F [ρ th(βB)] − F [ρ th(β0)] under independent dissipation. This
holds for any β0. In this sense, the bath’s action is always miti-
gated by collective coupling (even though we saw in Sec. V A
that, from an energetic point of view, the bath’s action is
amplified when β0/βB < −1). This general statement can be
extended to βB < 0 (see Appendix F).

As illustrations, Fig. 7 shows the plots of 	F∞
β0

(βB) and
	F th(βB) as functions of h̄ωβB for h̄ωβ0 � 1 (where the
collective effects are more pronounced) and for ensembles
containing n = 2, 6, 9, and 100 spins s = 3/2. Curiously, one
can see in Fig. 7(a) (full curves) that the free energy variation
corresponding to collective dissipation remains almost the
same for any n. This implies that the variation of free energy
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FIG. 8. Plots of the entropy production per spin 
∞
β0

(βB )/n
(continous lines) (for h̄ωβ0 � 1) and 
th (βB )/n (dashed lines) as
functions of h̄ωβB for ensembles containing n = 2 (orange curves),
6 (red curves), 9 (purple curves), and 100 (blue curves) spins os size
s = 3/2. Note that all curves 
th (βB )/n (dashed lines) are the same.

per spins is highly increased (decreased in absolute value) as
it can be observed in Fig. 7(b). The asymptotic behavior of
the variation of free energy can be obtained straightforwardly
from (29) and (41), leading to

	F∞
β0

(βB) �
h̄ωβ0�1
h̄ωβB�1

	F th(βB)

n
. (45)

The extension of the plots of Fig. 7 to negative effective
bath temperatures (which can be obtained, for h̄ωβ0 � 1, by
	F (−βB) = 2h̄ωns − 	F (βB)) leads to positive variation of
free energy. There is in fact nothing special with that, it is
merely an effect of βB assuming negative values.

Finally, we mention the entropy production—the core
concept of the second law of thermodynamics—which has
been object of intense research also due to its relation with
irreversibility [52–56], believed to play a central role in
nonequilibrium dynamics but also in the performances of ther-
mal machines and the so-called thermodynamics uncertainty
relations [57–63].

The entropy production is simply given here by 
 =
−βB	F [53,56,86]. As a direct consequence of the general
result on the free energy variation, the entropy production
is always reduced for collective dissipation, implying a re-
duction of irreversibility of the dissipation. Figure 8 presents
the plot of the entropy production 
∞

β0
(βB)/n associated to

the process of collective dissipation, and the entropy pro-
duction 
th(βB)/n associated to the process of independent
dissipation for ensembles containing n = 2, n = 6, n = 9, and
n = 100 spins s = 3/2. One can see the dramatic impact of
collective dissipation, turning the process almost a reversible
process for βB > 0. From (45), one obtains


∞
β0

(βB) �
h̄ωβ0�1
h̄ωβB�1


th(βB)

n
. (46)

One can question the claim of reduction of entropy pro-
duction because we are comparing two processes, collective

and independent dissipations, which do not yield the same
final state. However, what we can do at least is to compare
processes yielding states of same final energy. Doing that,
one still obtain a dramatic reduction of entropy production.
Considering for instance h̄ωβ0 � 1, and choosing a final
energy per spin (let us say 0.5h̄ωs per spin), one can find on
Fig. 3(b) the bath temperature yielding such final energy for
both collective and independent dissipation. One can see on
Fig. 8 that the corresponding entropy production is still much
smaller for collective coupling, especially for large n and final
energy per spin close to h̄ωs.

For βB < 0, the steep increase in the entropy produc-
tion can be explained by the following relation 
∞

β0
(−βB) =

2h̄ωβBns + 
∞
β0

(βB) (for h̄ωβ0 � 1).

VIII. APPLICATIONS AND PERSPECTIVES

The above effects described in Secs. V–VII have several
important applications and consequences. The first ones are
related to thermal machines. One long standing question
in quantum thermodynamics is whether and how quantum
effects can enhance the performance of thermodynamic tasks
like refrigeration and work or energy extraction from thermal
baths. In the following, we show how the mitigation effects
described in Sec. V can be harnessed to increase the output
power of cyclic thermal machines. More applications are
briefly mentioned in Sec. VIII B.

A. Effective amplification

We consider a thermal machine undergoing a quantum
Otto cycle [88,89] with a working medium composed of an
ensemble of n spins s (or two-level systems). Some designs of
thermal machines using many-body working medium have al-
ready been studied in Refs. [90,91] where it was reported that
collective effects can be beneficial when using nonadiabatic
strokes instead of the usual adiabatic ones. Enhancements
using phase-transitions in many-body systems have also been
investigated in Refs. [92–94]. Power increase was pointed
out for ensembles of spins 1/2 in Ref. [95] where the equi-
libration speed-up stemming from collective effects allows
one to reduce the duration of the cycle, and hence increase
the delivered power. Other studies investigate the effect of
internal coupling and entanglement between the subsystems
constituting the many-body working medium (pair of two-
level systems [7,96], pair of degenerate two-level systems
[11], a two-level system coupled to a harmonic oscillator
[97,98], and ensemble of spins 1/2 [99]). Additionally, many-
body effects have also been investigated in continuous thermal
machines [13,16].

In this section, we suggest an alternative mechanism to
increase the output power of many-body thermal machines.
The successive mitigation effects of the hot and cold baths
can result in an effective amplification of the baths’ action,
leading to an increase of the extracted work. The cycle
is described by the four usual strokes composing the Otto
cycle [88,89]. The first isochoric stroke is realized through
the interaction with a hot bath at inverse temperature βh.
Crucially, we assume that the hot bath does not distinguish the
spins composing the working medium so that the ensemble is
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dissipated collectively. Considering that the working medium
was initially in a thermal state ρ th(β0) before the machine
starts to operate, the steady state reached at the end of this
isochoric stroke is ρ1 := ρ∞

β0
(βh) (defined with respect to the

initial free Hamiltonian denoted by H). The second stroke
is adiabatic, preserving the state of the working medium but
changing the Hamiltonian, from H to H ′. Then, follows a
second isochoric stroke realized by a cold bath at inverse
temperature βc, taking the working media from ρ1 to ρ2.
Assuming also that the cold bath does not distinguish the
spins of the working medium, the steady state reached at the
end of the second isochoric stroke is ρ2 := ρ ′∞

β0
(βc) (defined

with respect to H ′). Note that although the working medium
was not in the state ρ th(β0) at the beginning of this second
isochoric stroke, it still reaches the steady state ρ ′∞

β0
(βc).

This is because the steady state is determined by the weights
pJ,i [see Sec. III and Eq. (9)], which are unaffected by the
dissipation processes. Therefore the initial weights pJ (β0) are
preserved throughout the cycles, determining the properties
and performances of the engine as we show in the following.
Finally, the last stroke is a second adiabatic evolution, preserv-
ing the state of the ensemble but taking the Hamiltonian back
to its original value, H .

The work W extracted per cycle by the engine is the sum
of the work realized during the two adiabatic strokes,

W = Trρ1(H ′ − H ) + Trρ2(H − H ′), (47)

which should be negative (for work extraction). The heat
invested is Qh = Tr(ρ1 − ρ2)H , and the heat dumped into
the cold bath is Qc = Tr(ρ2 − ρ1)H ′, verifying the first law,
Qh + Qc = −W .

Assuming homogeneous adiabatic strokes [88–90], mean-
ing that the two Hamiltonian are proportional, H ′ = λH , with
the “compression” λ chosen in the interval βh

βc
� λ � 1 (in

order to extract energy), one can verify that with this design
the efficiency of work extraction, defined by

η := −W

Qh
, (48)

is equal to the usual value [88–90], namely, η = 1 − λ � 1 −
Tc
Th

. For indistinguishable spins, the work extracted per cycle,
determining the power of the engine, is

−W coh := (1 − λ)Tr(ρ1 − ρ2)H

= (1 − λ)
[
E∞

β0
(βh) − E∞

β0
(λβc)

]
, (49)

where the factor λ in the argument of the second energy
is to take into account that ρ2 := ρ ′∞

β0
(βc) is defined with

respect to H ′. By comparison, the same thermal engine using
distinguishable spins extracts per cycle a work equal to

−W inc := (1 − λ)Tr[ρ th(βh) − ρ ′th(βc)]H

= (1 − λ)[E th(βh) − E th(λβc)], (50)

where, as previously with the collective coupling, ρ ′th(βc)
is defined with respect to H ′, leading to the factor λ in the
argument of the second energy.

The central question is therefore: can we have |W coh| >

|W inc|? We show analytically in Appendix G that indeed one
can have |W coh| > |W inc| for h̄ω|β0| � 1, when βh and λβc

are chosen in the interval [0; βl ] (and such that λβc > βh). The

limit inverse temperature βl is strictly positive and depends
on n and s. Alternatively, the analytical proof in Appendix G
can simply be seen graphically in Fig. 3. Choosing adequately
λβc and βh, one can see on both curves [Figs. 3(a) and
3(b)] that E∞

β0
(βh) − E∞

β0
(λβc) > E th(βh) − E th(λβc), imply-

ing |W coh| > |W inc|. It also appears clearly that the range
of temperatures leading to an indistinguishability-enhanced
work extraction depends on n and s. Conversely, a bad choice
of βh and λβc leads to a reduction of the work extracted by the
indistinguishable spins, illustrating that enhancements are not
systematic and require careful analysis. Importantly, we also
show in Appendix G that indistinguishability-enhanced work
extraction is not limited to h̄ω|β0| � 1. Even for moderate
or small value of |β0|, indistinguishability-induced enhance-
ments can still be obtained.

As an illustration, we consider the largest enhancements,
obtained for h̄ωβh � 1 � h̄ω|β0|. Figure 9 presents the plots
of |W coh| − |W inc| (normalized by (1 − λ)nsh̄ω) as a function
of λβc, for βh = 0. The plot Fig. 9(a) contains the curves
for n = 4 and s = 1/2, 3/2, and 9/2. The plot Fig. 9(c)
contains the curves for s = 1/2 and n = 2, 6, 9, and 100.
The maximum of the curves, corresponding to the maximal
difference of work extraction between indistinguishable and
distinguishable spins, is attained for λβc = βl , and we have

|W coh| − |W inc|
1 − λ

→
ns�1

h̄ωns (51)

[see also Figs. 9(a) and 9(c)]. Interestingly, the trade-off
between efficiency (determined by λ) and the engine’s power
is also illustrated in Figs. 9(a) and 9(c). In particular, for
λ going to 0 the engine’s power decrease slower for in-
distinguishable spins, and in the regime of larger λβc, in-
creasing the efficiency (i.e., decreasing λ) can increase the
indistinguishability-induced enhancement.

Furthermore, using (29) one can show that the ratio of the
two extracted works tends to

W coh

W inc
→

h̄ωβc�1

ns + 1

s + 1
, (52)

which appears also in Figs. 9(b) and 9(d). Note that in-
creasing both n or s increase the indistinguishability-induced
enhancement. Additionally, one can see from Fig. 9 that for
βh = 0, any value of βc leads to indistinguishability-induced
enhancements. However, for βh > 0, the range of βc yielding
enhancements is finite. In particular, still for βh > 0, there is a
threshold for the value of ns beyond which indistinguishabil-
ity leads only to smaller work extractions, showing again that
indistinguishability-induced enhancements are not systematic
and require a detailed analysis.

One should note that we did not mention and study
equilibration speed-up emerging from collective effects [95].
Taking into consideration the reduction of time period of
each cycle one can obtain additional power increases. We
also did not consider baths with negative temperatures (as in
Ref. [77]). A hot bath with negative temperature is expected
to bring larger enhancements.

Additionally, we mention that using the same cyclic ma-
chine but with different parameter (namely λ � βh/βc), simi-
lar enhancements as the one presented above can be obtained
for refrigeration operations.
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FIG. 9. Plots of (a) |W coh| − |W inc| (normalized by (1 − λ)nsh̄ω)
and (b) W coh/W inc as functions of h̄ωλβc, for βh = 0 and ensembles
of n = 4 spins of size s = 1/2 (orange curve), 3/2 (red curve),
and 9/2 (purple curve). Plots of (c) |W coh| − |W inc| (normalized by
(1 − λ)nsh̄ω) and (d) W coh/W inc as functions of h̄ωλβc, for βh = 0
and ensembles containing n = 2 (orange curve), 6 (red curve), 9
(purple curve), and 100 (blue curve), spins of size s = 1/2. All
the curves corresponds to ensembles of spins (or two-level atoms)
initially in a thermal state at inverse temperature β0 before the engine
started to operate.

1 2 3−1−2−3
B

S[ ( B)]−S[ (0)]

FIG. 10. Plots of the entropy difference S[ρ∞
β0

(βB)] − S[ρ∞
β0

(0)]
(full lines) and S[ρ th (βB)] − S[ρ th (0)] (dotted lines) as functions of
h̄ωβB for h̄ω|β0| � 1 and for ensembles containing n = 2 (orange
curve), 6 (red curve), 9 (purple curve), and 100 (clue curve) spins
s = 1/2. For a given n, the combined mitigation effects lead to an
overall amplification of the baths’ action when βh and βc are both in
the region where the full curve is below the dotted curve.

We can formalized the claim of effective amplification of
the baths effect emerging from combined mitigation effects.
The free energy variation per cycle is

	F coh
cyc =

(
1

βc
− 1

βh

){
S
[
ρ∞

β0
(βh)

] − S
[
ρ∞

β0
(λβc)

]}
� 0,

(53)

for collective coupling, and

	F inc
cyc =

(
1

βc
− 1

βh

)
{S[ρ th(βh)] − S[ρ th(λβc)]} � 0,

(54)

for independent coupling. Then, the combined action of the
baths results in an amplified action when |	F coh

cyc | > |	F inc
cyc |,

which happens for

S
[
ρ∞

β0
(βh)

] − S
[
ρ∞

β0
(λβc)

]
> S[ρ th(βh)] − S[ρ th(λβc)].

(55)

In a similar way as for the steady-state energy, one can see
analytically through (42) and (43) or graphically in Fig. 10
that the later condition (55) is always verified for βh and βc

small enough.
The core mechanism of these indistinguishability-induced

enhancements stems from the strong dependence of magni-
tude of the mitigation effects on the bath temperature. Even
though the steady-state energy of both isochoric strokes is
reduced (mitigation effects), the magnitude of the reduction
at the end of the second stroke (driven by the cold bath) can
be much larger than the magnitude of the reduction of the
end of the first isochoric stroke (driven by the hot bath). This
results in an enhanced energy difference yielding an enhanced
extracted work. Thus the fact that the cycle goes through
two different steady states ρ1 and ρ2 is essential. It is not
obvious how this indistinguishability-induced enhancement
would survive in a continuous engine architecture where the
working medium interacts simultaneously with both hot and
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cold bath and tends to a (single) steady state [13]. This is
an indication that the mechanism presented here is different
in nature from the one in place in Ref. [13]. Moreover, the
power enhancement suggested here stems from a steady-state
effect, which is itself related to bath-induced coherences (in
the local basis) as shown in Ref. [6] for a pair of two-level
systems and extended in Appendixes H, I, and J for ensemble
of n spins of size s. Thus, it is not obvious whether such
phenomena have a classical analog (see also discussion in
the next Sec. VIII B). By contrast, the result from Ref. [13]
stems from superradiance, which is a dynamical effect. More-
over, classical analogues of superradiance can be found (for
instance several classical emitters in phase) [2,100]. In con-
clusion, this suggests that indistinguishability-induced power
enhancement relies on mechanisms unexploited so far and
with probably no classical analog.

B. More applications

In addition to the application detailed in the previous sec-
tion, we mention briefly other operations which might benefit
from the mitigation and amplification effects introduced in
Secs. V–VII.

First, the energetic amplification effect described in Sec. V
can yield a precious enhancement in a context of storing work
in an ensemble of quantum batteries. Indeed, from Figs. 3(b)
and 4(b) one can expect an increase of up to 100% of stored
energy when using an ensemble of quantum batteries made
indistinguishable from the point of view of the baths (typically
two baths in order to realize an effective negative temperature
bath [79,80]). This phenomenon can be investigated in more
details using for instance the versatile framework introduced
in Ref. [80]. Note that this is different from the design detailed
in the previous section where it was the working medium itself
which was composed of many subsystems. We also expect
promising applications in the slightly different context of
quantum battery charging [101–103] (via unitary operations).

In addition to that, there is an active debate [13,41–43]
around whether performance enhancements stemming from
collective effects are genuinely quantum or not. We believe
our results can give a valuable contribution to this debate.
In particular, the mitigation and amplification of the bath’s
effects introduced here rely on bath-induced coherences in the
local basis as mentioned in the previous Sec. VIII A. More-
over, whereas constructive interferences of classical emitters
can reproduce some aspects of superradiance [2,100], it is not
obvious how such interference effects would affect the steady-
state energy of the emitters. Therefore one crucial question
is whether the bath amplification and mitigation can have a
classical analog.

Regarding the reduction of irreversibility shown in
Sec. VII, it can be of great value to reduce the entropy pro-
duction of dissipative processes, but also of thermal machines,
which is expected to lead to an increase of performances (effi-
ciency and power) [57–63,104–106]. Additionally, it suggests
that similar benefits stemming from collective effects could
also happen for driven systems, opening interesting perspec-
tives to reduce unwanted entropy production and frictions
in diverse situations. Moreover, it rises the question of the
role of coherences between degenerate energy levels in the

production of entropy. It would be interesting also to have
a closer look at how this is related to coherence-induced
reversibility reported in Ref. [10].

The amplified cooling happening when the spin ensemble
is initially in an inverse temperature β0 < −βB (with βB � 0)
can lead to a reduction of the steady-state energy and entropy
by a factor up to 1/n. If ensembles of large number n of
spins can be made indistinguishable, this amplified cooling
can become a valuable cooling technique. It might also be
of interest in algorithmic cooling [107] and recent extensions
[108].

Furthermore, we also showed that the mitigation of the bath
effects becomes stronger when the number of spins increases.
Then, an other interesting application can be to maintain a spin
ensemble (much) colder than the bath, essential in many fields
like quantum error correction and computation. Assuming for
instance that the ensemble is initially in a state colder than the
bath, the mitigation effect can maintain it in an energy and
entropy up to n times smaller than the thermal equilibrium
energy and entropy.

Other applications might come up in other thermody-
namical problems, light-harvesting devices [17–27] using
for instance superabsoption [28], but also possibly in quan-
tum biology [35], particularly in light-harvesting complexes
[20,31,34–38]. The nonthermality of the local states (for s�1)
shown in Sec. V D is a valuable resource [51,80] which
can find interesting applications in some thermodynamic or
computational tasks.

Finally, one can draw an interesting parallel with the con-
clusions of Ref. [47]. Let us consider a system A initially in a
state ρA that we want to bring to a state ρA′ and having for that
access to an ancillary system M and a thermal bath (using the
notation of Ref. [47]). One of the conclusions of Ref. [47]
is that allowing correlations between A and M to build up
reduces the constraints on energy (work) that must be invested
in order to realize a given transformation. Here, we can see a
similar effects. Within the spin ensemble, we single out one
spin that we consider our “main system” of interest A while
the remaining spins are considered as an ancillary system M.
If, for instance, A is initially in an inverted population state and
one is interested in cooling A using a cold thermal bath, the
simple fact of allowing correlations between A and M to build
up increases the performance of the cooling, or alternatively
relaxes the requirements on the cold bath. In this sense, the
bath-induced coherences can be seen as catalysts [47,65].
Moreover, similarly as in Ref. [47], the larger the ancillary
system M, the larger the benefit. It would be interesting to
continue this comparison and to see if our results could bring
new aspects related to coherences to the results of Ref. [47].

IX. CONCLUDING REMARKS

The phenomenon of collective dissipation relies on the
indistinguishability of the subsystems (here spins or two-
level atoms) from the point of view of the bath [6]. Such
indistinguishability is in general not present naturally but can
be engineered [13,69,71], for instance by introducing an an-
cillary system between the spin ensemble and the bath (like an
optical cavity [67,68,70,72]), erasing part of the information
“seen” by the bath.
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The requirement of noninteracting spins can be lifted for
a pair of spins as in this situation the interactions do not
break the spin-exchange symmetry. For larger ensemble, there
is typically a trade-off between noninteraction which can be
obtained by dilution (spins far apart) and indistinguishabil-
ity. As just mentioned, bath engineering, by introducing for
instance an ancillary system, can help in overcoming this
trade-off. Moreover, the experiments [70–72] are indications
that the effects reported throughout this study could indeed
be achieved experimentally. Alternatively, if the spins are
spatially arranged so that the coupling between each pair of
spin is the same (for instance, in ring configuration [2]), there
is no symmetry breaking and our results should still hold.
Additionally, we show in Appendix K that weak perturba-
tions (spin inhomogeneities or spin-spin interactions much
smaller than the bath coupling) do not prevent the emergence
of mitigation and amplification effects. However, for long
times, such weak perturbations are expected to destroy these
effects. This is not an issue for most applications envisioned
in Sec. VIII as long as the mitigation and amplification effects
emerge, even if temporarily. These predictions on the impact
of weak perturbations coincide with the mathematical analysis
done in Ref. [109]. For stronger imperfections, involving
energies at least of the order of g2τc (where τc stands for the
bath correlation time), the treatment in Appendix K is not
valid. Alternative methods should be used to investigate the
survival of the mitigation and amplification effects. This is left
for future research.

Note additionally that the above phenomena are not limited
to spins. One can expect similar results for ensemble of har-
monic oscillators. However, ensembles of indistinguishable
harmonic oscillators do not seem to be common, limiting the
applications.

Finally, this study provides an overview of some stunning
consequences of collective dissipation, analyzing the effects
on the main thermodynamical quantities, including energy,
entropy, free energy variation and entropy production. The
studied systems are ensembles containing an arbitrary number
n of spins of arbitrary size s (or of two-level atoms), which
are assumed to be initially in a thermal state, arguably the
most widespread and experimentally accessible state. From
the point of view of the spin ensemble energy, the collective
dissipation results in an amplification (β0/βB < −1, where β0

is the initial inverse temperature of the ensemble, and by βB

the bath inverse temperature) or mitigation (β0/βB > −1) of
the bath’s action. This can be understood as a consequence

of bath-induced coherences in the local basis (as detailed
in Appendix H). These amplification and mitigation effects
grow with the number of spins in the ensemble, attaining
considerable levels (see Figs. 3 and 4), and the size of the
spins boost these effects. By contrast, in terms of entropy,
free energy variation and entropy production, the action of
the bath is always mitigated. Still, the combination of two
baths at different temperatures can result in an overall am-
plification of their action while their individual action is
mitigated. The emergence of such effective amplification in
cyclic thermal machines can bring very large power enhance-
ments (by a factor up to (ns + 1)/(s + 1) in ideal conditions,
see Sec. VIII A).

Potential additional applications (detailed in Sec. VIII)
stemming from these mitigation and amplification effects
include mainly collective work extraction, quantum batteries
charging, cooling operations, and state protection. It also rises
interesting questions around the production of entropy and its
interplay with coherences.

We hope our results will incentivise more research around
the consequences and potential beneficial effects of collective
interaction and indistinguishability, striving for realisable,
scalable and sustainable quantum technologies.
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APPENDIX A: STEADY STATE

As mentioned in the main text, each eigenspace of J 2 is
stable under J±. Consequently, assuming no initial correlation
between eigenspaces of J 2, the dynamics remains confined in
each eigenspace.

Therefore, within each eigenspace of J 2, the correspond-
ing dynamics is the same as the relaxation of a nonde-
generate system of 2J + 1 levels. The well-known equilib-
rium state is a thermal distribution (namely weighted by the
Boltzmann factors) of the energy (here Jz) eigenstates [73].
One can see it directly from the master equation (1), which
yields for the dynamics of the populations and coherences
ρm,m′ := i〈J, m|ρ|J, m′〉i,

ρ̇m,m′ = −[�(ω)(J + m)(J − m + 1) + �∗(ω)(J + m′)(J − m′ + 1)

+�(−ω)(J − m)(J + m + 1) + �∗(−ω)(J − m′)(J + m′ + 1)]ρm,m′

+ G(ω)
√

(J − m)(J + m + 1)(J − m′)(J + m′ + 1)ρm+1,m′+1

+ G(−ω)
√

(J + m)(J − m + 1)(J + m′)(J − m′ + 1)ρm−1,m′−1, (A1)

with G(ω) := �(ω) + �∗(ω). One can verify that the steady state is given

ρ∞
m,m′ = 0, if m �= m′,

ρ∞
m,m = e−mh̄ωβBρ0,0 = e−h̄(J+m)h̄ωβBρ−J,−J , (A2)
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where βB is the inverse temperature (or inverse apparent
temperature) of the bath, which can be of arbitrary sign as
mentioned in the main text after the master equation Eq. (1).
Since the sum of the populations is constant,

∑J
m=−J ρ̇m,m =

ṗJ,i = 0 [as one can verifies directly from (A1)], the steady-
state populations can be rewritten as

ρ∞
m,m = pJ,ie

−mh̄ωβB/ZJ (βB), (A3)

where

ZJ (βB) :=
J∑

m=−J

e−mh̄ωβB

= eJh̄ωβ 1 − e−(2J+1)h̄ωβ

1 − e−h̄ωβ
, (A4)

and pJ,i := ∑J
m=−J i〈J, m|ρ0|J, m〉i. Then, the steady state

restricted to the eigenspace J, i is

pJ,iρ
th
J,i(βB) = pJ,iZJ (βB)−1

J∑
m=−J

e−mh̄ωβB |J, m〉i〈J, m|,

(A5)

as announced in (7) so that the steady state of the spin en-
semble is ρ∞(βB) := ∑J

J=J0

∑lJ
i=1 pJ,iρ

th
J,i(βB) as announced

in (9) of the main text.

APPENDIX B: GENERALISATION OF EQ. (9)

We assume here that the spin ensemble is initially in an
arbitrary state. As mentioned in the main text, this initial state
can be decomposed onto the collective basis {|J, m〉i}, J0 �
J � ns, −J � m � J , 1 � i � lJ . The following reasoning
is based on an unraveling view of the dissipation process,
where the ensemble follows a quantum trajectory composed
of jumps corresponding to absorption and emission of exci-
tations. Each time there is an excitation absorbed from the
bath or emitted to the bath, all components of the initial state
gain or lose one excitation. Components with m = ±J cannot
absorb or lose excitations and thus disappear. We “follow”
the trajectory of a coherence between two arbitrary states
|J, m〉i and |J ′, m′〉′i. The coherence is initially preserved for
the first absorptions and emissions if m �= ±J and m′ �= ±J
since both states gain or lose excitations simultaneously. After
a few absorptions/emissions, our pair of states reaches a stage
where one of the two states cannot absorb/emit anymore while
the other can (if J �= J ′). Then, if the absorption/emission
happens, one of the two states gains/loses an excitation but the
other disappears, and the coherence is destroyed. Similarly,
if one considers a coherence between two levels |J, m〉 and
|J, m′〉, with both m and m′ in the interval [−J + 1; J − 1] and
m �= m′, the same reasoning shows that the coherence will be
destroyed by the bath interaction, which coincides with the
well-known and established fact that a spin J relaxes to the
thermal state when interacting with a thermal bath. However,
the above reasoning is not valid for coherences between de-
generate spin components like |J, m〉i and |J, m〉i′ with i �= i′.
It is therefore possible that such kind of coherences survive
the dissipation and affect the steady states. Such situation is
left for further research.

APPENDIX C: DERIVATIVE OF E∞
β0

(βB)

In this section, we determine the sign of the derivative of
E∞

β0
(βB) with respect to β0 depending on the value of β0 and

βB. We have,

∂

∂β0
E∞

β0
(βB) =

ns∑
J=J0

lJ
∂

∂β0
pJ (β0)eJ (βB). (C1)

One can easily verify that

∂

∂β0
pJ (β0) = −pJ (β0)[eJ (β0) − E th(β0) + h̄ωns] (C2)

so that

∂

∂β0
E∞

β0
(βB)

= −
ns∑

J=J0

lJ pJ (β0)[eJ (β0) − E th(β0) + h̄ωns]eJ (βB)

(C3)

= −
ns∑

J=J0

lJ pJ (β0)

×
{

eJ (β0) −
ns∑

J ′=J0

lJ ′ pJ ′ (β0)eJ ′ (β0)

}
eJ (βB) (C4)

= −
ns∑

J=J0

ns∑
J ′=J0

lJ lJ ′ pJ (β0)pJ ′ (β0)[eJ (β0) − eJ ′ (β0)]eJ (βB)

(C5)

= −
ns∑

J>J ′
lJ lJ ′ pJ (β0)pJ ′ (β0)

× [eJ (β0) − eJ ′ (β0)][eJ (βB) − eJ ′ (βB)], (C6)

where we used (20) from (C3) to (C4) and the identity∑ns
J ′=J0

lJ ′ pJ ′ (β0) = 1 from (C4) to (C5). We need to deter-
mine the sign of [eJ (β ) − eJ ′ (β )] depending on the value of
β. This can be done through the identity

eJ (β ) − eJ ′ (β ) = − ∂

∂β
ln

ZJ (β )

ZJ ′ (β )
. (C7)

From the expression (8) we obtain ZJ (β )
ZJ′ (β ) = sinh(J+1/2)ωβ

sinh(J ′+1/2)ωβ

which, for J > J ′, is a strictly decreasing function of β on the
interval ] − ∞; 0[ and strictly increasing function on ]0; +∞[
(the derivative canceling at the point β = 0). Therefore, we
deduce that eJ (β ) − eJ ′ (β ) is strictly positive for β ∈] −
∞; 0[, strictly negative for β ∈]0; +∞[, and equal to 0 for
β = 0. Consequently, the derivative ∂

∂β0
E∞

β0
(βB) is strictly

negative if and only if β0βB > 0, strictly positive if and only
if β0βB < 0, and equal to zero if and only if β0βB = 0.

APPENDIX D: LOCAL STATE

In this section, we show that the local state of each spin,
denoted by ρLoc, is not a thermal state for ensembles with local
spins s larger or equal to 1. Since the local state of each spin is
the same we consider in the following the local state of the
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“first” spin. We denote by pLoc(m1) := 1〈s, m1|ρLoc|s, m1〉1

the population of the local state of the first spin with m1 ∈
[−s; s] (and |s, m1〉1 is the eigenstate of the local operator jz,1
associated to the eigenvalue h̄m1). We have

pLoc(m1) =
s∑

m2,...mn=−s

〈m1, m2, . . . , mn|

× ρ∞
β0

(βB)|m1, m2, . . . , mn〉. (D1)

The local state ρLoc is a thermal state if and only if

pLoc(m1 + 1)

pLoc(m1)
= pLoc(m1)

pLoc(m1 − 1)
(D2)

for any m1 ∈ [−s + 1; s − 1]. The general expression of
pLoc(m1) is to complex to conclude on the validity or invalidity
of (D2). Therefore we consider the limit h̄ω|β0| � 1 in which

the steady state is simplified to

ρ∞
β0

(βB) →
h̄ω|β0|�1

ρ∞
β0=±∞(βB)

= Z−1
ns (βB)

ns∑
m=−ns

e−h̄ωmβB |ns, m〉〈ns, m|. (D3)

The states |ns, m〉 are Dicke states [1,2] which can be ex-
pressed in terms of the local basis as

|ns, m〉 = 1√
Im

∑
m1+m2+···+mn=m

|m1, m2, . . . , mn〉, (D4)

where Im = ∑ns
J=|m| lJ (represents the dimension of the

eigenspace of Jz associated to the eigenvalue h̄m, or equiva-
lently the number of combinations of m1, m2,...,mn which sum
up to m). Consequently,

〈m1, . . . , mn|ns, m〉〈ns, m|m1, . . . , mn〉 = 1

Im
δm,m1+···+mn , (D5)

where δ denotes the Kronecker delta (equal to 1 if m = m1 + · · · + mn and 0 otherwise). The expression of pLoc(m1) is simplified
to

pLoc(m1) =
s∑

m2,...,mn=s

Z−1
ns (βB)

ns∑
m′=−ns

e−h̄ωm′βB
1

Im′
δm′,m1+···+mn

= Z−1
ns (βB)

(n−1)s∑
m=−(n−1)s

∑
m2+···+mn=m

ns∑
m′=−ns

e−h̄ωm′βB
1

Im′
δm′,m1+m

= Z−1
ns (βB)

(n−1)s∑
m=−(n−1)s

∑
m2+···+mn=m

e−h̄ω(m+m1 )βB

Im+m1

= Z−1
ns (βB)

(n−1)s∑
m=−(n−1)s

Km
e−h̄ω(m+m1 )βB

Im+m1

, (D6)

where Km denotes the number of combinations of m2,...,mn, summing up to m (the same as Im but for combinations of n − 1
integers). Then, the condition from thermality (D2) is equivalent to

pLoc(m1 + 1)pLoc(m1 − 1) − p2
Loc(m1) = Z−2

ns (βB)
(n−1)s∑

m,m′=−(n−1)s

KmKm′e−h̄ω(2m1+m+m′ )βB

(
1

Im+m1+1Im′+m1−1
− 1

Im+m1 Im′+m1

)
= 0.

(D7)

Since this should hold for any βB, it means that (D2) is
equivalent to

∑
m+m′=q

KmKm′

(
1

Im+m1+1Im′+m1−1
− 1

Im+m1 Im′+m1

)
= 0

(D8)

for all q in [−2(n − 1)s; 2(n − 1)s]. In particular, for q =
2(n − 1)s, implying that m = m′ = (n − 1)s, and for m1 =
s − 1 (remembering that we assumed s � 1), the fulfillment

of (D8) leads to

InsIns−2 = I2
ns−1. (D9)

However the equality (D9) is not true since Ins = 1, Ins−1 = n,
and Ins−2 = (n

2

) = n(n + 1)/2 (for any s � 1). Therefore (D2)
is not satisfied and the local state ρLoc is not a thermal state.

APPENDIX E: STEADY-STATE ENTROPY

In this section, we show that ∂
∂β0

S[ρ∞
β0

(βB)] is strictly
positive for all βB and for all β0 < 0 and strictly negative for
all βB and all β0 > 0. We start re-writing the entropy in the
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following form S[ρ∞
β0

(βB)] = ∑ns
J=J0

lJ pJ (β0)[S[ρ th
J (βB)] − ln pJ (β0)]. Using the identity (C2) one obtains

∂

∂β0
S
[
ρ∞

β0
(βB)

] = −
ns∑

J=J0

lJ pJ (β0)
{
[eJ (β0) − E th(β0) + h̄ωns]

[
S
[
ρ th

J (βB)
] − ln pJ (β0)

] + [eJ (β0) − E th(β0) + h̄ωns]
}

= −
ns∑

J=J0

lJ pJ (β0)
{
[eJ (β0) − E th(β0) + h̄ωns]

[
S
[
ρ th

J (βB)
] − ln pJ (β0)

]}
, (E1)

where the simplification is due to the identity (20). In a similar way as in Appendix C, one can rewrite the derivative in the
following symmetrical form using again the identities (20) and

∑ns
J ′=J0

lJ ′ pJ ′ (β0) = 1:

∂

∂β0
S
[
ρ∞

β0
(βB)

] = −
ns∑

J=J0

lJ lJ ′ pJ (β0)pJ ′ (β0)[eJ (β0) − eJ ′ (β0)]
[
S
[
ρ th

J (βB)
] − ln pJ (β0)

]
= −

∑
J>J ′

lJ lJ ′ pJ (β0)pJ ′ (β0)[eJ (β0) − eJ ′ (β0)]
[
S
[
ρ th

J (βB)
] − S

[
ρ th

J ′ (βB)
] − ln pJ (β0) + ln pJ ′ (β0)

]

= −
∑
J>J ′

lJ lJ ′ pJ (β0)pJ ′ (β0)[eJ (β0) − eJ ′ (β0)]

[
ln

ZJ (βB)

ZJ ′ (βB)
+ βB[eJ (βB) − eJ ′ (βB)] − ln

ZJ (β0)

ZJ ′ (β0)

]
. (E2)

Identity (34) was used to obtain the last line. Remembering the identity (C7), one can observe that βB[eJ (βB) − eJ ′ (βB)] =
−βB

∂
∂βB

ln ZJ (βB )
ZJ′ (βB ) . Finally, using ZJ (β )

ZJ′ (β ) = sinh(J+1/2)ωβ

sinh(J ′+1/2)ωβ
, one can show that ∂2

∂β2
B

ln ZJ (βB )
ZJ′ (βB ) is positive for all βB and J > J ′ [i.e.,

ln ZJ (βB )
ZJ′ (βB ) is a convex function]. Consequently, the following inequality holds for all βB (still with J > J ′),

ln
ZJ (βB)

ZJ ′ (βB)
+ βB[eJ (βB) − eJ ′ (βB)] � ln

ZJ (0)

ZJ ′ (0)
. (E3)

It follows that

ln
ZJ (βB)

ZJ ′ (βB)
+ βB[eJ (βB) − eJ ′ (βB)] − ln

ZJ (β0)

ZJ ′ (β0)
� ln

ZJ (0)

ZJ ′ (0)
− ln

ZJ (β0)

ZJ ′ (β0)
< 0, (E4)

for all β0 �= 0 since ln ZJ (β0 )
ZJ′ (β0 ) is strictly decreasing on ] − ∞; 0[ and strictly increasing on ]0; +∞[ (as already mentioned in

Appendix C). Finally, since for J > J ′, eJ (β0) − eJ ′ (β0) > 0 for β0 < 0 and eJ (β0) − eJ ′ (β0) < 0 for β0 > 0, one concludes as
announced in the beginning of the Appendix: ∂

∂β0
S[ρ∞

β0
(βB)] is strictly positive for all βB and for all β0 < 0 and strictly negative

for all βB and all β0 > 0.

APPENDIX F: MITIGATION OF THE FREE ENERGY VARIATION

The free energy variation for collective coupling is 	F∞
β0

(βB) := F [ρ∞
β0

(βB)] − F [ρ th(β0)] while its counterpart for indepen-
dent coupling is 	F th(βB) := F [ρ th(βB)] − F [ρ th(β0)]. A quick calculation using (35) shows that the difference of free energy
variations can be expressed as

	F th(βB) − 	F∞
β0

(βB) = 1

βB

∑
J=J0

lJ pJ (β0) ln
pJ (βB)

pJ (β0)
. (F1)

The sign of the above quantity is not so obvious since the probabilities pJ (β ) are in general nonmonotonic. We therefore compute
its derivative with respect to β0 and find

∂

∂β0
βB

ns∑
J=J0

lJ pJ (β0) ln
pJ (βB)

pJ (β0)
(F2)

= −βB

ns∑
J=J0

lJ pJ (β0)[eJ (β0) − E th(β0) + h̄ωns] ln
pJ (βB)

pJ (β0)
+ βB

ns∑
J=J0

lJ pJ (β0)[eJ (β0) − E th(β0) + h̄ωns] (F3)

= −βB

ns∑
J=J0

ns∑
J ′=J0

lJ lJ ′ pJ (β0)pJ ′ (β0)[eJ (β0) − eJ ′ (β0)] ln
pJ (βB)

pJ (β0)

= −βB

ns∑
J>J ′

lJ lJ ′ pJ (β0)pJ ′ (β0)[eJ (β0) − eJ ′ (β0)]

[
ln

pJ (βB)

pJ (β0)
− ln

pJ ′ (βB)

pJ ′ (β0)

]
(F4)

= −βB

ns∑
J>J ′

lJ lJ ′ pJ (β0)pJ ′ (β0)[eJ (β0) − eJ ′ (β0)]

[
ln

ZJ (βB)

ZJ ′ (βB)
− ln

ZJ (β0)

ZJ ′ (β0)

]
, (F5)
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where we used (C2) from (F2) to (F3), and the definition of
pJ (β0) := ZJ (β0)/Z (β0) from (F4) to (F5). We saw in Ap-
pendix C that for J > J ′, ZJ (β )

ZJ′ (β ) is a strictly decreasing function
on ] − ∞; 0[ and strictly increasing on ]0; +∞[. Therefore,
using the property ZJ (−β ) = ZJ (β ), one can conclude that,
for βB > 0, ∂

∂β0
βB

∑ns
J=J0

lJ pJ (β0) ln pJ (βB )
pJ (β0 ) is strictly negative

for β0 > βB and −βB < β0 < 0, and strictly positive on 0 <

β0 < βB and β0 < −βB. Since βB
∑ns

J=J0
lJ pJ (β0) ln pJ (βB )

pJ (β0 ) is
equal to zero when β0 = ±βB, we reach the conclusion that

	F th(βB) < 	F∞
β0

(βB) (F6)

for all β0 �= ±βB and for all βB > 0. Conversely, for βB < 0,

	F th(βB) > 	F∞
β0

(βB) (F7)

for all β0 �= ±βB. Finally, since the variation of free energy
is always negative for βB > 0 and always positive for βB < 0,
we obtain that the absolute value of the free energy variation is

always strictly smaller for collective coupling (for β0 �= ±βB)∣∣	F∞
β0

(βB)
∣∣ < |	F th(βB)|. (F8)

APPENDIX G: EFFECTIVE AMPLIFICATION

In this section, we show that we can have |W coh| > |W inc|
for a large range of bath temperatures βh, βc, and initial
temperatures β0 of the spin ensemble. Using the expressions
of −W coh and −W inc in (49) and (50), respectively, one can
see the work extracted by indistinguishable particles is larger
than the one extracted by distinguishable particles if

E∞
β0

(βh) − E∞
β0

(λβc) > E th(βh) − E th(λβc), (G1)

which happens if and only if the function E th(β ) − E∞
β0

(β )
is a strictly growing function of β for at least some intervals
within [βh, λβc]. To see when it can happen, we compute the
derivative,

∂

∂β

[
E th(β ) − E∞

β0
(β )

] =
ns∑

J=J0

pJ (β0)lJ
∂

∂β
[nes(β ) − eJ (β )]

= h̄2ω2

4 sinh2 x

ns∑
J=J0

pJ (β0)lJ

[
n(2s + 1)2 sinh2 x

sinh2(2s + 1)x
− n − (2J + 1)2 sinh2 x

sinh2(2J + 1)x
+ 1

]
, (G2)

where we defined x := h̄ωβ/2 for convenience. The function sinh2 x
sinh2(2J+1)x

is monotonic decreasing for x ∈ [0; +∞[ (and

monotonic increasing for x ∈] − ∞; 0]), taking the value (2J + 1)−2 in x = 0 and going to 0 for increasing x. Therefore the
derivative (G2) is always negative for |x| � 1. However, for |x| � 1,

∂

∂β

[
E th(β ) − E∞

β0
(β )

] = h̄2ω2

3

ns∑
J=J0

pJ (β0)lJ (J2 + J − ns2 − ns) + O(h̄2ω2β2) (G3)

which can become strictly positive for |β0| large enough. Indeed, for ω|β0| � 1, pJ (β0) tends to 0 for J < ns and to 1 for J = ns
so that the above derivative (G3) is strictly positive for any n � 2 and any s. Furthermore, the positivity of the derivative (G3) is
not limited to large value of |β0|. One can see that for n � 1, the quantity J2 + J − ns2 − ns is positive for J ∈ [

√
ns(s + 1); ns],

so that for h̄ω|β0| � 1 or even h̄ω|β0| � 1 the derivative (G3) can remain strictly positive. This shows that the work extracted
by indistinguishable spins can be strictly larger than the work extracted by distinguishable spins for a large range of initial
temperatures β0 (ultimately determined by n and s).

In the following, aiming to analyze how large can be the indistinguishability-enhanced extracted work, we consider the most
favourable situation which is h̄ω|β0| � 1. In this limit, E∞

β0
(β ) tends to ens(β ), so that the derivative (G2) becomes

∂

∂β

[
E th(β ) − E∞

β0
(β )

] = h̄2ω2

4 sinh2 x

[
n(2s + 1)2 sinh2 x

sinh2(2s + 1)x
− n − (2ns + 1)2 sinh2 x

sinh2(2ns + 1)x
+ 1

]
, (G4)

which is positive for all β ∈ [0; βl ], where βl is strictly posi-
tive and such that ∂

∂β
[E th(β ) − E∞

β0
(β )]|βl = 0. The analytical

expression of βl is challenging to obtain in general, but
one can estimate it graphically. For any βh and λβc (such
that λβc > βh) belonging to the interval [0; βl ], we have
E∞

β0
(βh) − E∞

β0
(λβc) > E th(βh) − E th(λβc) and consequently

|W coh| > |W inc|. In particular, the largest indistinguishability-
induced enhancement is obtained for βh = 0 and λβc = βl ,
leading to

max[|W coh| − |W inc|] = (1 − λ)[E th(βl ) − E∞
+ (βl )]. (G5)

Thus, βl corresponds to the point where the curves of E th(βB)
and E∞

+ (βB) are the most far apart, see Figs. 3 and 9.

APPENDIX H: ROLE OF THE BATH-INDUCED
COHERENCES

In the previous study on a pair of two-level systems [6],
it was possible to explicitly relates the steady-state energy
to the amount of bath-induced coherences in the local basis.
In the present situation however such direct relation is much
more complex to exhibit. Nevertheless, one can still pinpoint
bath-induced coherences (between states of the local basis)
as responsible for the dramatic alteration of the steady-state
energy. Note that we are not claiming that coherences between
degenerate energy levels contribute directly to the internal
energy of the spin ensemble, but instead that such coherences
prevent the ensemble from reaching the thermal equilibrium
energy. This is the aim of this Section.
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As shown in Sec. IV, the steady states reached under
collective dissipation are convex combinations of highly
coherent states. Indeed, all eigenstates |J, m〉i (expect
|J = ns, m = ±ns〉) are coherent superpositions of the local
basis states |m1, . . . , mn〉. Then, expect for very particular
initial conditions, namely, β0 = βB, the steady state ρ∞

β0
(βB)

contains coherences (in the local basis). These coherences are
global in the sense that locally each spin remains in a diagonal
state. This can be seen in the following way. We denote by
ρ1 := Tr2...nρ

∞
β0

(βB) the reduced density operator of the spin
1, where Tr2...n stands for the partial trace over all other spins,
from 2 to n. One can see that for m1 �= m′

1 there is no local
coherence between |m1〉 and |m′

1〉,
〈m1|ρ1|m′

1〉
=

∑
m2,...,mn

〈m1, m2, . . . , mn|ρ∞
β0

(βB)|m′
1, m2, . . . , mn〉

= 0. (H1)

We use the fact that ρ∞
β0

(βB) is a mixture of states |J, m〉i〈J, m|
which contain components only in the eigenspace m (subspace
spanned by the eigenstates of Jz associated to the eigenvalue
m), whereas |m1, m2, . . . , mn〉 and |m′

1, m2, . . . , mn〉 do not
belong to the same eigenspaces. This implies that the co-
herences contained in the steady state are global and can
be seen alternatively as correlations between spins since the
global state of the spin ensemble cannot be written as a tensor
product of local density operators.

At first sight it might appear contradictory that global
coherences (or correlations) could be responsible for the alter-
ation of the steady-state energy—since they do not contribute
to the spins energy. How does it work? As a preliminary
observation, the heat exchanges between the spin ensemble
in a nondark state ρ and the reservoir are characterized by the
apparent temperature [64] of the spin ensemble defined by

T := ω

(
ln

TrJ−J+ρ

TrJ+J−ρ

)−1

. (H2)

We recall that if the spin ensemble is in a dark state it does not
interact with the bath and therefore there is no heat flow and no
apparent temperature can be defined. Moreover, a necessary
condition for the spin ensemble to be in a steady state is to
have an apparent temperature equal to the bath temperature
1/βB (otherwise the heat flow is not null). Indeed, one can
verify (Appendix I) that all states of the form (9) have an
apparent temperature equal to 1/βB (they are all steady states
of specific initial conditions).

When the spin ensemble is initially in a thermal state at ex-
treme temperatures h̄ω|β0| � 1, the distribution pJ (β0) tends
to be concentrated in J = ns (as already mentioned in Sec. V),
pJ=ns(β0) �

h̄ω|β0|�1
1 and pJ<ns(β0) �

h̄ω|β0|�0
1. In other words

the steady state ρ∞
β0

(βB) is mostly made of the eigenstates
{|J = ns, m〉}−ns�m�ns, which are Dicke states [1,2] (totally
symmetric states). Such states contains only positive global
coherences, or correlations. As shown in Ref. [64], positive
correlations increase the apparent temperature of ensembles
when the underlying diagonal state (in the natural basis) has
a positive apparent temperature, and decrease the apparent
temperature otherwise. Then, one can conclude that the posi-

tive correlations contained in the steady state ρ∞
β0

(βB) increase
the apparent temperature of the spin ensemble when βB > 0,
while they decrease the apparent temperature when βB < 0.
For this reason, when |β0| > βB > 0 (−|β0| < βB < 0) the
spin ensemble is able to reach an apparent temperature equal
to 1/βB while having lower (higher) populations of high
energy levels than ρ th(βB), implying lower (higher) energy
than the thermal energy E th(βB). To strengthen this argument
we show explicitly in Appendix J that, for βB > 0 (βB < 0),
the apparent temperature of the steady state without coher-
ences, denoted by ρ∞

β0|D (βB), is strictly lower (larger) than the
apparent temperature of ρ∞

β0
(βB) (equal to 1/βB), confirming

that the coherences within ρ∞
β0

(βB) increase (decrease) the
apparent temperature. Therefore the bath-induced coherences
appear as a crucial ingredient for the emergence of steady
states with energy different from the thermal energy E th(βB).

We show for ω|β0| � 1 that the core mechanism for the
alteration of the steady-state energy is the bath-induced coher-
ences. The demonstration for arbitrary β0 is more involved.
It requires in particular to compute sums with the Clebsch-
Gordan coefficients [81] related to the sum of n spins s.
This is a challenging task that we left for further research.
Nevertheless, we can give some qualitative explanations for
finite β0. Roughly speaking, when |β0| decreases, the decom-
position of the steady state ρ∞

β0
(βB) onto the global basis

contains less and less components from the Dicke states
{|J = ns, m〉}−ns�m�ns and more and more from components
from states of lower J . Such states |J, m〉 with J < ns contains
less positive coherence than the Dicke states, and can even
contain negative coherences. Therefore, when |β0| decreases,
the coherence of the steady state together with the deviation
from the thermal equilibrium energy decrease. When the
point |β0| = |βB| is reached, the distribution of |J, m〉i〈J, m|
contained in the steady state becomes balanced (in terms of J ,
for fixed m)

ns∑
J=|m|

pJ (β0 = βB)
e−h̄ωmβB

ZJ (βB)
|J, m〉i〈J, m|

= e−h̄ωmβB

Z (βB)

ns∑
J=|m|

|J, m〉i〈J, m|, (H3)

and all coherences cancel out, implying that the steady-state
energy is equal to the thermal equilibrium energy. Beyond
this point, when |β0| < |βB|, the coherences within the steady
state are negative. This has the opposite impact on the energy,
namely the steady-state energy is lowered for βB > 0 and
increased for βB > 0.

APPENDIX I: APPARENT TEMPERATURE
OF THE STEADY STATES

In this section, we show that all states of the form (9) have
an apparent temperature equal to the bath temperature 1/βB.
We recall that the apparent temperature of the spin ensemble

in a nondark state ρ is defined by (H2), T := ω(ln TrJ−J+ρ

TrJ+J−ρ
)
−1

as introduced in [64] (if the spin ensemble is in a dark state
it does not interact with the bath and therefore no apparent
temperature can be defined). We first show that all states
ρ th

J,i(βB) defined in (7) have indeed an apparent temperature
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equal to 1/βB. We start with

Trρ th
J,i(βB)J+J−

= ZJ (βB)−1
J∑

m=−J

e−h̄ωmβB
i〈J, m|J+J−|J, m〉i

= ZJ (βB)−1
J∑

m=−J

e−h̄ωmβB (J + m)(J − m + 1)

= ZJ (βB)−1
J−1∑

m=−J−1

e−h̄ω(m+1)βB (J + m + 1)(J − m)

= ZJ (βB)−1e−h̄ωβB

J−1∑
m=−J

e−h̄ωmβB (J + m + 1)(J − m)

= ZJ (βB)−1e−h̄ωβB

J∑
m=−J

e−h̄ωmβB (J + m + 1)(J − m)

= e−h̄ωβB Trρ th
J,i(βB)J−J+, (I1)

which once inserted in the expression of the apparent temper-
ature (H2) yields an apparent temperature equal to 1/βB for
ρ th

J,i(βB) (if Trρ th
J,i(βB)J+J− �= 0, namely, if ρ th

J,i(βB) is not a

dark state). Inserting the identity (I1) in the expression of the
apparent temperature for ρ∞(βB), we have

T ∞ := h̄ω

(
ln

TrJ−J+ρ∞(βB)

TrJ+J−ρ∞(βB)

)−1

= h̄ω

(
ln

∑ns
J=J0

∑lJ
i=1 pJ,iTrJ−J+ρ th

J,i(βB)∑ns
J=J0

∑lJ
i=1 pJ,iTrJ+J−ρ th

J,i(βB)

)−1

= h̄ω

(
ln

∑ns
J=J0

∑lJ
i=1 pJ,iTrJ−J+ρ th

J,i(βB)∑ns
J=J0

∑lJ
i=1 pJ,ie−h̄ωβB TrJ−J+ρ th

J,i(βB)

)−1

= 1/βB, (I2)

which is the result announced in Appendix H.

APPENDIX J: APPARENT TEMPERATURE
WITHOUT BATH-INDUCED COHERENCES

In this section, we explicitly show that for h̄ω|β0| � 1,
the apparent temperature of ρ∞

β0|D (βB), the steady state without
coherences in the local basis (obtained from ρ∞

β0
(βB) by can-

celing all nondiagonal elements in the local basis), is strictly
lower than the bath temperature 1/βB if βB > 0, and strictly
larger than 1/βB if < βB < 0. We recall that

ρ∞
β0

(βB) →
h̄ω|β0|�1

ρ∞
β0=±∞(βB) = Z−1

ns (βB)
ns∑

m=−ns

e−h̄ωmβB |ns, m〉〈ns, m|. (J1)

As already mention in Appendix D, the states |ns, m〉 are Dicke states [1,2] which can be expressed in terms of the local basis as

|ns, m〉 = 1√
Im

∑
m1+m2+···+mn=m

|m1, m2, . . . , mn〉, (J2)

where Im = ∑ns
J=|m| lJ . In the following, we simplify slightly the notation by using ρ∞

+ (βB) := ρ∞
β0=±∞(βB). We have

ρ∞
β0|D (βB) →

h̄ω|β0|�1
ρ∞

+|D (βB) := ρ∞
β0=±∞|D (βB)

=
s∑

m1=−s

· · ·
s∑

mn=−s

〈m1, . . . mn|ρ∞
+ (βB)|m1, . . . , mn〉|m1, . . . , mn〉〈m1, . . . , mn|

=
h̄ω|β0|�1

s∑
m1=−s

· · ·
s∑

mn=−s

ns∑
m=−ns

e−h̄ωmβB

Zns(βB)
〈m1, . . . mn|ns, m〉〈ns, m|m1, . . . , mn〉|m1, . . . , mn〉〈m1, . . . , mn|

= Z−1
ns (βB)

ns∑
m=−ns

∑
m1+···+mn=m

e−h̄ωmβB

Im
|m1, . . . , mn〉〈m1, . . . , mn|. (J3)

In order to obtain the apparent temperature of the state ρ∞
+|D (βB) we need to calculate TrJ+J−ρ∞

+|D (βB) and TrJ−J+ρ∞
+|D (βB),

which can be done as follows:

TrJ+J−ρ∞
+|D (βB) = Z−1

ns (βB)
ns∑

m=−ns

e−h̄ωmβB

Im

∑
m1+m2+....+mn=m

〈m1, m2, . . . , mn|J+J−|m1, m2, . . . , mn〉. (J4)

We can identify

∑
m1+m2+....+mn=m

〈m1, m2, . . . , mn|J+J−|m1, m2, . . . , mn〉 (J5)
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as the trace of J+J− restricted to the eigenspace m (eigenspace of Jz associated to the eigenvalue h̄m). Therefore the trace does
not depend on the choice of the basis and can be calculated alternatively in the basis {|J, m〉i}|m|�J�ns,1�i�lJ , yielding

TrJ+J−ρ∞
+|D (βB) = Z−1

ns (βB)
ns∑

m=−ns

e−h̄ωmβB

Im

ns∑
J=|m|

lJ∑
i=1

i〈J, m|J+J−|J, m〉i

= Z−1
ns (βB)

ns∑
m=−ns

e−h̄ωmβB

Im

ns∑
J=|m|

lJ (J + m)(J − m + 1)

= Z−1
ns (βB)

ns∑
J=J0

J∑
m=−J

e−h̄ωmβB

Im
lJ (J + m)(J − m + 1). (J6)

Using a similar procedure, we obtain

TrJ−J+ρ∞
+|D (βB) = Z−1

ns (βB)
ns∑

J=J0

J∑
m=−J

e−h̄ωmβB

Im
lJ (J − m)(J + m + 1), (J7)

which can be rewritten as [following the same steps as in (I1)]

TrJ−J+ρ∞
+|D (βB) = Z−1

ns (βB)
ns∑

J=J0

J+1∑
m=−J+1

e−h̄ω(m−1)βB

Im−1
lJ (J − m + 1)(J + m)

= eh̄ωβB Z−1
ns (βB)

ns∑
J=J0

J∑
m=−J

e−h̄ωmβB

Im−1
lJ (J + m)(J − m + 1). (J8)

Then, one can see that unless Im−1 = Im for all m in [−ns + 1; ns], TrJ−J+ρ∞
+|D (βB) �= eh̄ωβB TrJ+J−ρ∞

+|D (βB). Since lJ=ns = 1
and lJ=ns−1 = n − 1, we have that Ins = 1 and Ins−1 = n, which confirms that for any ensemble of at least 2 spins the apparent
temperature TD = h̄ω(ln [TrJ−J+ρ∞

+|D (βB)/TrJ+J−ρ∞
+|D (βB)])−1 of ρ∞

+|D (βB) is different from 1/βB. We can go further and show
that TD is strictly smaller (larger) than 1/βB for βB > 0 (βB < 0). This is equivalent to

eh̄ω/TD =
〈J−J+〉ρ∞

+|D (βB )

〈J+J−〉ρ∞
+|D (βB )

> eh̄ωβB

⇔ 〈J−J+〉ρ∞
+|D (βB ) − eh̄ωβB〈J+J−〉ρ∞

+|D (βB ) > 0

⇔
ns∑

J=J0

J∑
m=−J+1

e−h̄ωmβB lJ (J + m)(J − m + 1)

(
1

Im−1
− 1

Im

)
> 0. (J9)

We can see explicitly that the above inequality is always verified for βB > 0 by making the transformation m → −m in the last
line of (J9), so that the above condition becomes,

ns∑
J=J0

J−1∑
m=−J

eh̄ωmβB lJ (J − m)(J + m + 1)

(
1

I−m−1
− 1

I−m

)
> 0

⇔
ns∑

J=J0

J∑
m=−J+1

eh̄ω(m−1)βB lJ (J − m + 1)(J + m)

(
1

I−m
− 1

I−m+1

)
> 0. (J10)

Now we sum together (J9) and (J10), and using the symmetry property I−m = Im one obtains the following condition:

ns∑
J=J0

lJ

J∑
m=−J+1

(J + m)(J − m + 1)

(
1

Im−1
− 1

Im

)
(e−h̄ωmβB − eh̄ω(m−1)βB ) > 0, (J11)

which is always verified for βB > 0 since Im = ∑ns
J=|m| lJ so that Im−1 = Im + lm−1 > Im for m � 1 and Im−1 < Im = Im−1 + lm

for m � 0.
For βB < 0, the inequality (J11) is inverted so that the apparent temperature TD is strictly larger than 1/βB. Note that for

βB = 0, TD = 1/βB = ∞.
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APPENDIX K: INHOMOGENEITIES AND INTERACTIONS
BETWEEN SUBSYSTEMS

In this section, we analyze the impact of small defects like
homogeneities rising for instance from unequal subsystems or
local disorder and variation of the subsystems’ surrounding
[110,111]. We also consider small interactions between the
subsystems. Then, the Hamiltonian of the ensemble of spins
or two-level atoms is

HA := H0 + Hinh + Hint (K1)

where H0 = ∑
k h̄ω jz,k = h̄ωJz is the noiseless Hamiltonian

considered throughout the paper, Hinh = ∑
k h̄δk jz,k repre-

sents the contributions from the inhomogeneities which result
in different energy splitting h̄(ω + δk ) for each subsystem k,
and Hint = ∑

k>l h̄�k,l ( j+,k j−,l + j−,k j+,l ) is the interaction
Hamiltonian between the subsystems of the ensemble, where
j±,k := jx,k ± i jy,k are the local ladder operators of each sub-
system. For atomic ensembles, Hint represents the Van der
Waals interaction [2,112].

Intuitively, one can consider that for small inhomogeneities
and small interactions, the contributions of both Hinh and
Hint manifests itself only for very long times. Then, if the
dissipative dynamics induced by the bath happens on a smaller
timescale (meaning that the bath coupling involves larger
energies), the ensemble reaches its steady state before the
appearance of inhomogeneities and interactions effects. Then,
for larger times, inhomogeneities and interactions might affect
the steady state (which is therefore not anymore the real
steady state). Note that for most applications detailed in
Sec. VIII (and in particular for the “effective amplification”
Sec. VIII A) the crucial point is to reach, even temporarily,
the steady state ρ∞

β0
(ηB). In the following, we show rigorously

that the above considerations indeed hold.
The global evolution of the ensemble plus bath is given

by the unitary evolution Ut := e−i(HA+V +HB )t/h̄. Using operator
calculus formulas [113] one can rewritten the operator evolu-
tion as

Ut = e−iHintt/h̄e− i
h̄ T

∫ t
0 du[H0+H̃inh (u)+Ṽ (u)+HB] (K2)

where Õ(u) := eiHintu/h̄Oe−iHintu/h̄ for any operator O. Note
that the form of the chosen interactions preserve the energy of
the ensemble, [H0, Hint] = 0, so that H̃0(u) = H0. Since Hint

is Hermitian, it can be diagonalized. We denote by χi and |χi〉
its eigenvalues and eigenstates, respectively, so that we can re-
write the interaction Hamiltonian as Hint = ∑sn

i=1 h̄χi|χi〉〈χi|.
This leads to

Õ(u) =
∑
i, j

ei(χi−χ j )u|χi〉〈χ j |Oi, j (K3)

where Oi, j := 〈χi|O|χ j〉. Then, if we consider only times t
much smaller than |χi − χ j |−1 for all i, j, we can safely write
Õ(t ) = O and therefore,

Ut = e−iHintt/h̄e−i[H0+Hinh+V +HB]t/h̄. (K4)

The eigenvalues χi are functions of the coupling constant
�k,l so that χi is of the order of magnitude of the �k,l

(more precisely, of the order of magnitude of �k,l times the
average number of interacting neighbours each subsystem
has). Denoting by � the order of magnitude of the interaction

strength between subsystems, the above equality (K4) holds
only for t � �−1. We can repeat a similar operation with the
Hamiltonian Hinh,

Ut = e−iHintt/h̄e−iHinht/h̄e− i
h̄ T

∫ t
0 du[H0+V̄ (u)+HB], (K5)

where V̄ (u) := eiHinhu/h̄Ve−iHinhu/h̄. One can proceed in a sim-
ilar way as for Hint, or alternatively exploit the simple form
of Hinh as follows. Having the bath coupling of the form
V = ∑

k g( j+,k + j−,k )OB (see also Sec. II of the main text),
we obtain

V̄ (u) =
∑

k

g(eiδhu j+,k + e−iδk u j−,k )OB. (K6)

Thus, for times t such that t � �−1 and t � δ−1 (δ denoting
the order of magnitude of the inhomogeneities), we have
simply

Ut =
t��−1,δ−1

e−iHintt/h̄e−iHinht/h̄e−i[H0+V +HB]t/h̄. (K7)

The conclusion of these manipulations is that for times
smaller than �−1 and δ−1 the effects of spins interactions and
inhomogeneities are decoupled from the bath’s action. In the
rotating picture with respect to Hint and Hinh we recover the
dynamics (1) considered throughout the paper. If � and δ are
much smaller than |�(ω)| � g2τc, where τc denotes the bath
correlation time, the steady state ρ∞

β0
(βB) is reached before

the effects of spin interactions and inhomogeneities start
appearing. Similar behavior was obtained under a rigorous
mathematical analysis in Ref. [109] for a quasi-degenerate
three-level system. In particular, it was pointed out that, when
the energy difference between the quasi degenerate levels is
smaller than the coupling with the bath, the system reaches a
quasi-stationary manifold [corresponding here to the family of
states ρ∞

β0
(βB)] before converging to the thermal equilibrium

state on a long time scale (given by the inverse of the energy
gap between the quasi-degenerate levels).

Looking now at the energy of the ensemble Et =
TrH0Utρ0U

†
t , since [H0, Hint] = [H0, Hinh] = 0, we have Et =

TrH0ρ
R
t , where ρR

t denotes the density operator of the ensem-
ble in the rotating picture with respect to Hint and Hinh. Et

tends to E∞
β0

(βB) (Sec. V) if ρ0 is a thermal state at inverse
temperature β0. Therefore, under the conditions � � g2τc

and δ � g2τc, the mitigation and amplification effects still
happen. However, for times much larger than �−1 and δ−1,
spins interactions and inhomogeneities might start affecting
these phenomena.

Note that we did not take into account the equilibration
speed-up emerging form collective effects [95]. This implies
that our rough estimate of the equilibration timescale (g2τc)−1

is probably overestimating the actual equilibration time. This
might relax the above conditions � � g2τc and δ � g2τc

under which mitigation and amplification effects survive.
Summarising, taking into account small imperfections, the

mitigation and amplification of the bath’s action survive, at
least temporarily, which is enough for most envisioned appli-
cations of Sec. VIII. For stronger imperfections, of the order
of at least g2τc, the above treatment is not valid. Alternative
methods have to be used to investigate the behavior of the
mitigation and amplification effects. This is left for future
research.
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