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Linear-scaling algorithm for rapid computation of inelastic transitions in the presence
of multiple electron scattering
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Strong multiple scattering of the probe in scanning transmission electron microscopy (STEM) means image
simulations are usually required for quantitative interpretation and analysis of elemental maps produced by
electron energy-loss spectroscopy (EELS). These simulations require a full quantum-mechanical treatment
of multiple scattering of the electron beam, both before and after a core-level inelastic transition. Current
algorithms scale quadratically and can take up to a week to calculate on desktop machines even for simple
crystal unit cells and do not scale well to the nanoscale heterogeneous systems that are often of interest to
materials science researchers. We introduce an algorithm with linear scaling that typically results in an order of
magnitude reduction in computation time for these calculations without introducing additional error and discuss
approximations that further improve computational scaling for larger-scale objects with modest penalties in
calculation error. We demonstrate these speedups by calculating the atomic resolution STEM-EELS map using
the L-edge transition of Fe, for a nanoparticle 80 Å in diameter, in 16 hours, a calculation that would have taken
at least 80 days using a conventional multislice approach.
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I. INTRODUCTION

The presence of even small numbers of dopant atoms in
a material can have a disproportionate effect on that ma-
terial’s properties and thus characterization techniques that
perform nanoscale chemical and elemental mapping are im-
portant investigative tools in materials science. Furthermore,
the presence of extended nonperiodic defects, interfaces, and
nanoscale precipitate phases either naturally occurring or
engineered for functionality requires quantitative atomic res-
olution analysis of fields of view that are substantially larger
than crystal unit cells [1–6]. In scanning transmission electron
microscopy (STEM), a focused probe, which can be smaller
than the width of an atom in state-of-the-art instruments, is
raster scanned across a material and there are a number signals
that are commonly used for elemental mapping. In high-
angle annular dark-field (HAADF) STEM, electrons that have
been scattered to high angles, predominantly by excitation
of phonons within the specimen, are recorded to form an
image that is approximately proportional to the square of
the atomic number Z2 and thus useful for elemental com-
position mapping [7]. In cases where the specimen contains
elements of similar atomic number or atomic columns contain
mixtures of elements, spectral methods that rely on signals
resulting from ionization processes unique to given elements
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such as energy dispersive x ray [8] or electron energy-loss
spectroscopy (EELS) are appropriate [9]. In STEM EELS the
energy-loss spectrum is recorded for each scan position of
the probe. Integrating regions of the spectra that correspond
to energy losses characteristic of ionization of a particular
atomic element allows for mapping the positions and con-
centrations of elements within the specimen [9]. Additionally,
analysis of the fine structure of the energy-loss spectrum can
reveal a modified valence state of the elements due to bonding
[2,10,11].

A complicating factor for STEM-EELS interpretation is
that strong multiple scattering of the electron probe before and
after exciting an ionization event means that for quantitative
work, such as measuring chemical concentrations, STEM-
EELS results often need to be interpreted by performing
forward simulations of an assumed structure [12]. The simula-
tions typically combine either multislice or Bloch wave sim-
ulations with inelastic-scattering cross sections for different
elements of interest [12–15]. Currently, STEM-EELS image
simulations of simple crystalline structures can require up to a
week of calculation time, even using graphical processing unit
accelerated simulation codes [16,17]. Algorithms with much
faster runtimes that scale better with system size are required
to simulate large objects, or those with more heterogenous
chemical properties than simple crystals, such as samples
containing dopants, extended defects, interfaces, or entire
nanoparticles. Recent improvements in the readout speed of
electron spectrometers add additional impetus to efforts to
speed up STEM-EELS simulations, as faster spectrometers
allow for more routine imaging of much larger systems in
STEM EELS at atomic resolution.

A recent innovation in the field of electron micro-
scope image simulation is the development of the plane-
wave reciprocal-space interpolated scattering matrix (PRISM)
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algorithm [18]. Instead of the traditional approach of calcu-
lating the propagation of the beam for each scan position in
a STEM raster independently, the PRISM method uses the
multislice algorithm to calculate the scattering matrix for a
particular electron microscope experiment and stores it in
memory. The scattering matrix, which propagates components
of the electron illumination through the imaging object, can
then be rapidly applied to the illumination wave function for
each scan position to compute the output wave [19].

In this paper we extend the PRISM algorithm to the prob-
lem of STEM-EELS image simulation and demonstrate sub-
stantial speedup in calculation time. This paper is structured
as follows. In Sec. II the underlying physics of STEM-EELS
simulation are reviewed and we discuss both the scattering
matrix operator and the multislice algorithm for numerical
simulation of STEM images. In Sec. III we detail algorithmic
implementation of both the conventional multislice approach
and our PRISM approach to STEM-EELS calculation and
discuss the predicted scaling of the runtime of both algorithms
with different parameters such as simulation grid size and
specimen thickness. Section IV shows results simulated using
our method and compares accuracy and speedup relative to the
conventional multislice approach. Two further optimizations
are discussed in this section: evaluating inelastic transitions
on a cropped grid and using an inverse multislice operation to
economize on the total number of multislice operations. These
optimizations are shown to typically induce minimal errors
while offering substantial reductions in computation time.
This section is concluded with a calculation of the STEM-
EELS image for an illustrative large heterogeneous object, in
this case a FePt nanoparticle roughly 80 Å in diameter [20].

II. THEORY

In this section we briefly review the underlying physical
theories behind the simulation of a relativistic electron propa-
gating through a specimen of condensed matter. We introduce
the transition potential to simulate the inelastic scattering of
the probe electron due to the ionization of an electron bound to
an atom within the specimen. Existing methods calculate the
propagation of the electron probe to the plane of ionization
and subsequent propagation of each inelastically scattered
wave separately for each scan position and each inelastic
transition of interest. We outline how we can calculate and
store the scattering matrix operator that performs all of these
steps and then rapidly apply it to all probes in the STEM raster.

We begin with the Schrödinger equation in reciprocal space
for a fast electron interacting with the electrostatic potential of
a specimen of condensed matter [21],

dψ̂g(z)

dz
= −iπλg2ψ̂g(z) +

∑
h

iσV̂g−hψ̂h(z). (1)

The ψ̂g(z) are Fourier coefficients of the fast electron wave
function as a function of depth z in the specimen and Fourier
space coordinates g (magnitude g) and h in the plane per-
pendicular to the direction of propagation. The Fourier coef-
ficients of the electrostatic potential are denoted by V̂g. The
interaction constant σ = 2πmeeλ/h2, where me and λ are
the (relativistically corrected) mass and wavelength of the

electron, e is the electron charge, and h is Planck’s constant.
Equation (1) is a set of coupled linear equations for which the
solution can be written as the matrix-vector product

ψ(z) =
∑

h

e−iπλzg2δgh+iσV̂g−hzψ̂h(0) ≡ S (z)ψ(0), (2)

where δgh is the Kronecker delta and the bold ψ is a vector
containing the Fourier coefficients of the illumination ψ̂h.
For STEM the illumination is a coherent focused probe with
functional form

ψ̂ (g, 0) = A(g)e−iχ (g). (3)

Here A(g) is the aperture function, a top-hat function with
radius equal to the convergence semiangle of the probe, and
χ (g) is the aberration function which takes into account
probe aberrations such as defocus, spherical aberration, and
astigmatism [22].

Efficient numerical calculation of Eq. (2) typically pro-
ceeds through diagonalization of the scattering matrix S (the
Bloch wave method [23,24], which is not used in this paper
and only discussed here for context) or through a split-step
evaluation of the action of S on ψ, with the specimen first split
into n slices in the beam direction and the operator involving
the propagation matrix elements −πλg2δghz/nz and that in-
volving the specimen interaction matrix elements σV̂g−hz/nz

applied in alternating sequence:

ψ(z) = [
e−iπλzg2δgh/nz+iσV̂g−hz/nz

]nz
ψ(0)

≈ [
e−iπλzg2δgh/nz eiσV̂g−hz/nz

]nz
ψ(0). (4)

This is called the multislice method in the electron microscopy
literature [21] and has become the most popular method of
evaluation of Eq. (2). This is because the eiσV̂g−hz/nz operator
(referred to as the transmission function) is diagonal in real
space and a fast Fourier transform (FFT), which we represent
with the symbol F̂r→g and its inverse operation as ˆF−1

g→r,1

can be used to efficiently transform between real and recipro-
cal space,

ψ(z) ≈ [
e−iπλz/nzg2δghF̂r→heiσV (r)z/nz F̂−1

g→r

]nz
ψ(0). (5)

The two-dimensional FFT has a favorable 2N2 ln N scaling,
where N is the number of Fourier coefficients g included in the
simulation. For brevity, we will define the following operator
as shorthand for a single multislice iteration:

M(�z) ≡ e−iπλz/nzg2δghF̂r→heiσV (r)z/nz F̂−1
g→r. (6)

By comparison, the Bloch wave approach, which solves
Eq. (2) through diagonalization of a matrix operator contain-
ing the coefficients within the exponent of Eq. (2), has the
less favorable N3 scaling [25]. An additional benefit of the
multislice algorithm, which will be taken full advantage of
to simulate more heterogenous objects in Sec. IV D, is that
the specimen need not be periodic in the beam direction as is

1We use the following convention: A forward Fourier transform
is given by ψ̂ (g) = F̂r→gψ (r) = ∫

ψ (r)e−2π ir·gdr and an inverse
Fourier transform is given by ψ (r) = F̂−1

g→rψ̂ (r) = ∫
ψ̂ (g)e2π ir·gdr.
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FIG. 1. Diagrammatic representation of the PRISM algorithm for STEM-EELS simulation that is encapsulated in Eq. (10). The first
scattering matrix maps points in the probe-forming aperture (a) to complex output in the plane of the ionization (b). At this plane the output is
multiplied by the ionization transition potentials of interest Hn0 which are shown in (c) and then by the output of the second scattering matrix
(d) which propagates the resulting inelastically scattered wave to reciprocal space points inside the EELS aperture (e).

implicitly assumed by the Bloch wave model. A more in-depth
explanation of the multislice algorithm with details on its
implementation may be found in Ref. [22].

A recent innovation in STEM image simulation is the
PRISM algorithm, in which only the rows of the matrix
operator S (z), from Eq. (2), corresponding to the Fourier co-
efficients present in the illumination vector ψg are calculated
using the multislice algorithm Eq. (5) and stored in memory.
As will be explained in the next section, this approach can
be used to accelerate the calculation of STEM-EELS images
because the wave functions for the inelastically scattered
electron can be rapidly propagated to the exit surface with
the stored operator. This is instead of having to perform
the multislice operation separately for each separate probe
position and inelastic scattering event in the conventional
multislice approach.

For an inelastic transition at depth z, the scattered wave
function ψn(r, z), where n is shorthand for an excited quantum
state, is given by the product of the elastic wave function
ψ0(r, z) and an inelastic transition potential for ionization
Hn0(r⊥, z) [26,27],

ψn(r⊥, z) = Hn0(r⊥)ψ0(r⊥, z). (7)

The inelastic transition potential is given by Ref. [28],

Hn0(r⊥) =
∫ �z/2

−�z/2
e2π i(k0−kn )z

×
∫

u∗
n(κ, r′)

e2

4πε0|r − r′|u0(r′)dr′dz, (8)

where u0(r′) is the wave function of an electron in a bound
state of the specimen and un(κ, r′) is the wave function of that
electron excited to a continuum (free) state with wave vector
κ. The quantity �z is the slice thickness of the multislice

algorithm, over which the kernel is projected, and k0 and kn are
the wave number (reciprocal of the wavelength) of the probe
electron before and after undergoing inelastic scattering. The
wave function in the continuum state is typically expanded in
a spherical harmonic basis

un(κ, r) = 4π

2κr

∞∑
�′=0

i�
′
eiδ�′ uκ�′ (r)

×
�′∑

ml′=−�′
Y ∗

�′,m�′
(κ̂)Y�′,m�′ (r̂), (9)

where the Y�′,m�′ are spherical harmonic functions; �, m�, �′,
and m�′ are the angular momentum and azimuthal angular
momentum quantum numbers of the bound and continuum
states, and δ�′ is a phase factor determined by fitting to
an asymptotic form of the free state [28,29]. To a good
approximation, only a small number of the different possible
(�′, m�′ ) need be included in a converged calculation [17]. The
kernel in Eq. (8) is the Coulomb potential, which mediates
interactions between the fast electron and the sample, and ε0

is the permittivity of free space. Calculations of Eq. (8) used in
this paper are based on a solution using an angular momenta
basis for u0 and un which is derived in Ref. [28], the numerical
implementation of which is discussed in Ref. [29].

We may simulate a STEM-EELS image by then propagat-
ing the wave function for the inelastically scattered electron,
ψn from Eq. (8), to the exit surface using Eq. (2). We represent
this process mathematically

ψn(r, t ) = S1FHn0F−1S2ψ0(0) (10)

≡ Snψ0(0). (11)

Here Hn0 is a matrix containing the values of Hn0(r⊥) on
its diagonals and the matrix operator Sn we have defined
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in Eq. (11) for imaging of a single inelastic transition.
Equation (10) must be solved for each inelastic transition of
interest. Figure 1 is a diagrammatic representation of Eq. (11):
Fig. 1(a) shows how S1 maps Fourier coefficients of the probe
wave function to wave functions at the depth of the inelastic
transition [Fig. 1(b)], where we multiply these wave functions
by the ionization transition potentials in Fig. 1(c) and then
propagate them using S2 [Fig. 1(d)] to points within the EELS
aperture in Fig. 1(e).

III. ALGORITHMS

In this section we outline the details of the implementation
of the simulation algorithms and write down estimates for
the runtimes of each algorithm. We start with the algorithm
for calculating STEM-EELS images using the multislice
method.

Loop over probe positions
for x = 1 to nx do

for y = 1 to ny do
Initialize illumination wave function
ψ (g, 0) = A(g)e−2π i(x,y)·k

Loop over slices of specimen
for iz = 1 to nz − 1do

Loop over inelastic transitions within slice iz

for n = 1 to nstates,i do
Calculate inelastically scattered electron
wave function
ψn(r⊥, iz) = Hn0(r⊥)ψ0(r⊥, iz)
Propagate ψn to exit surface of specimen
for i′z = iz to nz do

Multislice to advance ψn one slice
ψn(g, iz′) = M(�z)ψn(h, iz′ − 1)

end for
Integrate wave function over detector function
D(g) and add contribution to STEM image
I (x, y) = I (x, y) + ∫ |ψn(g, nz )|2D(g)dg

end for
Multislice to advance ψ0 one slice
ψ (g, iz + 1) = M(�z)ψ (h, iz)

end for
end for

end for

Assuming a constant number of inelastic transitions nstates

at each slice, which is not true in general but is a useful
assumption for estimating the computational complexity of
the above algorithm, this algorithm requires

Nms =
nz−1∑
iz=0

[nstates(nz − iz )] + nz (12)

= nstatesnz(nz − 1)/2 + nz (13)

multislice operations for each probe position. The arithmetic
sum identity

∑n−1
i=0 i = n(n − 1)/2 has been invoked in the

above equation.
In our proposed PRISM STEM-EELS algorithm, we calcu-

late two scattering matrices at each slice, the first to propagate
the probe wave function to the slice of the inelastic transition

and the second to propagate the wave function for the inelas-
tically scattered electron to the exit surface.

Initialize scattering matrices
S1 = I
S2 = [MT (�z)]nz

for iz = 1 to nz do
Loop through transitions within slice iz

for n = 1 to nstates,iz do
Calculate Eq. (11)
Sn,iz = S2FHn0F−1S1

Apply Sn,iz to each illumination vector in the
raster scan and add the resulting amplitude to the
STEM image
I (x, y) = I (x, y) + |Sn,iz ψ (g, x, y)|2

end for
Advance S1 one slice S1(iz+1) = M(�z)S1(iz )
Recalculate S2, S2 = [MT (�z)]nz−izI

end for

An important point to note is that, as defined here, the rows
of S1 correspond to points in reciprocal space within the probe
forming aperture and the columns correspond to real-space
points in the specimen plane, so S1 is generally a nonsquare
matrix due to the different sampling of these two planes. Each
column can be calculated by using a multislice to propagate
the plane-wave components that fall within the probe forming
aperture through the specimen, as shown in Fig. 1 [18].
Conversely, the rows of S2 correspond to real-space points
in the specimen plane and the columns correspond to points
within the EELS detector. The most efficient way to calculate
S2 is to propagate plane-wave components with transverse
momenta within the EELS acceptance aperture back through
the specimen. This is formally the transpose of the multislice
operation defined in Eq. (6), which is represented by a super-
script T in the above algorithm description, and is given by

MT (�z) ≡ F̂r→heiσV (r)�zF̂−1
g→re−iπλ�zg2δgh . (14)

The PRISM STEM-EELS algorithm requires nz[N1 +
N2(nz + 1)] multislice operations, where N1 is the number of
rows in matrix S1, which correspond reciprocal-space points
in the illumination, and N2 is the number of columns in matrix
S2, which correspond to reciprocal-space points in the EELS
detector. Since the PRISM STEM-EELS simulation algorithm
is typically more economical with the required number of
multislice iterations, the matrix multiplication step, evaluating
Eq. (10), tends to be the rate limiting step. This means
that although the calculation time is technically quadratic in
nz, in many cases runtime scaling is instead predominantly
determined by the number of unique transitions. If we fur-
ther assume that the number of transitions in each slice is
roughly constant, then the scaling will be roughly linear with
the number of slices nz. In Sec. IV C we will introduce an
approximation that makes the scaling truly linear with nz.

Comparing the runtime of the PRISM STEM-EELS al-
gorithm to the conventional multislice approach requires ac-
counting for the relative speed of FFTs to array multipli-
cation. To explore this question we make the approxima-
tion that the computation time of a two-dimensional FFT
can be parametrized as TFFT = AN2 ln N , that of an array
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FIG. 2. Scaling of the FFT, array multiplication, and addition
operations in MATLAB with the side length (pixels) of the square grid.
The fitted scalings for these operations are plotted with dashed lines
and the coefficients of the fit are given in the text.

multiplication (as used in the multislice operation) can be
parametrized as Tmult = BN2, and that of an array multiplica-
tion and summation step (as would occur in a step of a matrix
multiplication where a single row and column are multiplied
and added to the final result) can be parametrized as Taddmult =
CN2. Here A, B, and C are constants and N is the size of the
(square) grid using in computation. Measurements of TFFT,
Tmult, and Taddmult for the computer used in this investigation,
which had dual Intel(R) Xeon(R) E5-2603 v4 CPUs with a
total of 16 threads, with different values of N for MATLAB,
are plotted in Fig. 2 for which values of A = 1.0 × 10−9, B =
9.0 × 10−9, and C = 3.8 × 10−9 were fitted (fitted functions
are plotted with dashed lines). However, for the most accurate
estimates of the runtime of calculations at a specific pixel
grid size N , in the examples provided in this paper we will
simply measure TFFT, Tmult, and Taddmult at that pixel grid size
N . We also note that the platform and compiler can impact the
relative speeds of different algorithms.

We assume a simulation object measuring L × L in the
plane perpendicular to beam propagation and of thickness z,
which we divide into nz = z/�z slices. This object would
require a STEM scan with a Nyquist sampling of (4Lα)2

probe positions, where α is the probe forming aperture in
units of inverse length [16]. Assuming a constant number of
ionization states at each slice, which is not true in general,
as atoms of the element of interest might not be uniformly
dispersed throughout the sample, but a useful approximation
for the current timing estimates, the computation time for the
conventional multislice approach will be given by

Tms ≈ 2(4Lα)2[nstatesnz(nz − 1)/2 + nz]

× (AN2 ln N + BN2). (15)

The speed of the PRISM STEM-EELS calculation will
depend on the size of the matrices used. For matrix S1, the
number of rows will be depend on the sampling of the probe
forming aperture function A(q) in Eq. (3) which covers a

reciprocal space area of πα2 Å
−2

. A simulation cell size of
L implies a natural reciprocal space sampling of L pixels per
unit of inverse length for the illumination [22], though this
can be further reduced to L/ f by using a PRISM interpolation
factor of f , an optimization described in detail in Ref. [18].
The number of rows in the scattering matrix will then be given

by πα2L2/ f 2. By similar reasoning, the second scattering S2

matrix, which propagates the inelastically scattered electrons
from the plane of ionization to the EELS aperture, will have
a number of columns equal to πβ2L2/ f 2, where β is the
diffraction space size of the EELS aperture. The time required
for multislice iterations necessary for the PRISM algorithm is
therefore given by

TPRISM,multislice = 2[πα2 + 2 ∗ (nz − 1)πβ2]L2/ f 2

× nz(AN2 ln N + BN2). (16)

The number of columns in S1 and the number of rows in
S2 will be given by the square of half the total number of
pixels in the simulation cell (N/2)2. These matrices need only
have a side length of N/2 since the output from a multislice
calculation is bandwidth limited to either either 1/2 (as in
the implementation used for this investigation) or 2/3 of the
total array size and only spatial frequencies within this band
limit need to be kept in the scattering matrix. For more detail
on the need for this bandwidth limiting approach the reader
is referred to Sec. 6.8 of Ref. [22]. With reference to the
STEM-EELS simulation using scattering matrices, we must
sum the computation times of the multislice iterations and the
matrix multiplications,

TPRISM ≈ B(N/2)2πα2L2/ f 2 + C(N/2)2π2α2β2L4/ f 6

+ 4Cπ2α4β2L6/ f 6, (17)

where the first term is the time required to calculate the
matrix multiplication of S1Hn0 in Eq. (10), the second term
is the time required to do the second matrix multiplication
(S1Hn0)S2 in Eq. (10), and the third term is the time required
to do the matrix multiplication Sn� for each probe ψ in the
STEM raster in Eq. (11). In the following section we discuss
a MATLAB implementation of the STEM-EELS simulation al-
gorithms discussed, showing that the above expressions (15)–
(17) are correct estimators of the runtime of these calculations.

Memory requirements for both algorithms also merit dis-
cussion. At a minimum, the multislice algorithm requires only
arrays containing the Fresnel free-space propagator, trans-
mission function, probe, and ionization transition potential,
so four N × N complex valued arrays. If there is sufficient
memory, as is the case for most simulations, the transmission
functions for all the slices will also be stored rather than
calculated on the fly, an additional nz N × N complex arrays.
The PRISM STEM-EELS algorithm adds the requirement
that two scattering matrices be stored in memory, an addi-
tional πα2/ f 2 + πβ2/ f 2 arrays of size N/2 × N/2. By way
of example, we discuss the requirements for simulation of
the nanoparticle performed in Sec. IV D. The object was
sampled on a 1836 × 1836 grid and partitioned depthwise
into 45 slices. The minimum of four single-precision complex
floating-point arrays for the conventional multislice approach
would take up 107 MB of memory. Storing the transmission
functions takes up a further 1.21 GB. The number of columns
in the first scattering matrix S1 and the number of rows in
the second scattering matrix S2 are both 325. Each of these
S-matrix rows and columns has size equal to a 918 × 918 grid,
so approximately 4.38 GB is required to store both matrices.
This is a substantially greater amount of memory than is the
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FIG. 3. Scaling of computation time for standard multislice and
PRISM approaches to the STEM-EELS image simulation with thick-
ness for a SrTiO3 sample; calculation details are given in the text.

case for the equivalent multislice calculation, though we note
that with current technology most high-end graphics cards
have 8 GB or greater of memory and this example calculation
is for a larger simulation cell than typically used.

IV. RESULTS AND DISCUSSION

A. Implementation of a scattering-matrix-based STEM-EELS
simulation method

In this section we report results from a MATLAB imple-
mentation of the conventional multislice algorithm and our
PRISM algorithm. This implementation is included in the
Supplemental Material [30]. It is included here to provide an
accessible demonstration of the two algorithms introduced in
Sec. II; the code does not calculate the inelastic transition
potentials Hn0 given by Eq. (10) but uses a single calcu-
lated Hn0 outputted from the μSTEM code [14]. As a test
case we calculate STEM-EELS images of a single transition
(� = 0, m� = 0) → (�′ = 1, m′

� = 1) for ionization of the O
1s orbital (the K edge) using both the conventional multislice
method (red solid line) and our PRISM approach (blue solid
line) for thicknesses between 10 and 100 Å. A 2 × 2 tiling

of the SrTiO3 unit cell (measuring 7.81 × 7.81 Å
2
) specimen

and a 160 × 160 pixel grid were used, parameters which are
likely to result in somewhat unconverged calculations but
result in faster runtimes for both algorithms and so allow a
rapid comparison of results. For the purposes of simplifying
the comparison of conventional multislice and PRISM-EELS
results, thermal vibrations of the atoms were turned off for
this calculation. The actual timings for each algorithm are
compared in Fig. 3 with the relevant estimates from Eq. (15)
for the multislice case using measured TFFT, Tmult, and Taddmult

for a 160 × 160 pixel grid (red dashed line) and the sum
of Eqs. (16) and (17) for the PRISM case (blue dashed
line) showing that these equations give reasonable estimates
of computation time for these simulations. Images for the

TABLE I. Percentage error of the PRISM calculation relative to
the multislice calculation for each thickness in Fig. 3.

Thickness (Å) Total error εT (%) Site error εS (%)

20 0.00207 0.00186
50 0.00654 0.00855
80 0.00779 0.00783
100 0.01040 0.01580

PRISM and conventional multislice calculations are shown
for thicknesses 10, 50, and 80 Å. We compare differences in
the images using the following normalized root mean sum of
squares error percentage error metric:

ε = 1

100

√√√√
[ ∑

IMS(R) − IPRISM
]2

[∑
IMS(R)

]2 . (18)

These are tabulated in Table I, both for the total image (total
error εT ) and in a 6 × 6 pixel window centered on the Ti-O
column (site error εS). The total error εT is typically less than
0.01% and the site error εS is between 0.001% and 0.02%.
This low a discrepancy confirms that both the PRISM and
conventional multislice approaches indeed encapsulate the
same scattering physics. The PRISM method is faster for all
thicknesses and exhibits the pseudolinear scaling predicted for
this algorithm, while the scaling of the conventional multislice
method is quadratic with thickness.

B. Algorithm speedups: Calculating inelastic transitions
on a cropped grid

Further speedups, with a modest penalty to accuracy, can
be achieved by only evaluating the matrix multiplication in
Eq. (11) in a fraction of the grid centered about the site
location of the transition event Hn0(r⊥) rather than over the
whole simulation grid. To demonstrate this optimization we
simulate STEM-EELS images of a single Mn dopant occupy-
ing an Sr site midway through a 50-Å-thick SrTiO3 crystal. An
L-shell transition for Mn is shown in Fig. 4, where Eq. (11)
is evaluated over the full grid (which has a side length of
approximately 8 Å) [Fig. 4(a)] and in cropped regions with
side lengths measuring approximately 4 Å [Fig. 4(b)] and
2 Å [Fig. 4(c)]. The size of these windows relative to the
transition potential Hn0(r⊥) is indicated in Fig. 4(d). Only
the transitions (� = 1, m� = 1) → (�′ = 2, m′

� = 2) and (� =
1, m� = −1) → (�′ = 2, m′

� = −2) for energy losses of 1 eV
over the ionization threshold were included for the purpose
of this demonstration. The percentage errors, relative to the
image in Fig. 4(a), are written in the images in Figs. 4(b) and
4(c). Both the total image error εT and the error for the atomic
site εS , which is evaluated only for a 1-Å window around the
Mn atomic position, are indicated. The site error εS is the most
relevant metric for our purposes since elemental concentration
mapping would typically proceed by integrating the STEM-
EELS signal in a window centered on the atomic site and then
relating the result to a precomputed look-up table. A site error
of 0.2%, as in Fig. 4(b), is likely acceptable, though a site
error of 11.4%, as in Fig. 4(b) is likely too high, suggesting the
cropping window chosen was too aggressive. Inspection of a
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FIG. 4. The STEM-EELS image for a single L-shell transition
for a dopant Mn atom within a 100-Å-thick SrTiO3 crystal is calcu-
lated using different grids of side length (a) 8 Å (b) 4 Å, and (c) 2 Å
to evaluate Eq. (11). The size of these windows is shown relative to
the complex Hn0(r⊥) transition potential in (d). (e) Line scan through
the center of the image, indicated with a red arrow in (c), shows
differences in the tails of the image. (f) Time required to calculate
Eq. (11) for each of the images in (a)–(c).

line scan in Fig. 4(e) shows that in the image from Fig. 4(c) the
long tails of the Mn transition potential Hn0 have been cropped
out. Figure 4(f) details the significant speedup benefits of this
approach. The speedups are quadratic, which is consistent
with the array multiplication scaling quadratically with grid
pixel size, as the calculation time of Eq. (11) is observed to
roughly quarter with each halving of the window in Fig. 4(a).
For this particular transition potential a cropping box with a
side length of 4 Å gives the best balance between calculation
time speedup and loss of accuracy.

C. Algorithm speedups: Inverse multislice

In the PRISM STEM-EELS algorithm described in
Sec. IV A, the scattering matrix S2, which propagates the
inelastically scattered electron wave ψn from the depth at
which ionization occurred to the exit surface, is calculated
from scratch for each thickness iz. This is a duplication of
work, since S2 was at some point calculated for all thicknesses
in the initialization step S2 = (MT )nz . One approach would
be to store S2 for each slice, which is not practical for most
calculations given the size of the scattering matrix (a com-
plex numbered array of size πα2L2/ f 2 × N × N). A second

TABLE II. Percentage errors in the PRISM STEM EELS cal-
culations with the inverse multislice optimization relative to con-
ventional multislice calculations as well as the percentage speedup
relative to PRISM STEM-EELS calculations without the inverse
multislice optimization.

Thickness Total error εT Site error εS Speed up
(Å) (%) (%) (%)

20 0.17 0.31 2.61
50 0.72 1.28 16.0
80 0.97 1.56 24.4
100 1.00 1.53 21.3

approach, which sacrifices some accuracy at the expense of
calculation time, would be to perform the inverse of the
multislice operation (M−1) to retreat the scattering matrix S2

a single slice. The inverse multislice operation is defined

M−1(�z) ≡ F̂h→re−iσV (r)�zF̂r→geiπλ�zg2δgh . (19)

Relative to the forward multislice operation defined in Eq. (6),
the order of FFT, multiplication, inverse FFT, and propa-
gation steps has been reversed and the complex conjugate
of the transmission function and propagation operators is
used instead. This can introduce some error since a forward
multislice iteration can cause electrons to scatter to high
angles outside the bandwidth limit of the calculation and these
electrons will not be recovered with an inverse operation.
For the simulation of the SrTiO3 in Sec. IV A, we report
the percentage errors, both total error εT and site error εS ,
in Table II. For this case, the errors relative to conventional
multislice calculations are found to be around 1%, which is
small, while the speedup is around 20% relative to PRISM
calculations for some of the thicker cases considered without
the inverse multislice optimization.

D. Calculations for heterogeneous nanometer scale objects

In Sec. IV A we showed that using the PRISM approach
for STEM-EELS simulations resulted in computation times
that scale more favorably with specimen thickness and that
calculation time can be further reduced by evaluating the
inelastic scattering cross section (11) only in a fraction of
the calculation grid centered on the transition of interest and
using the inverse multislice optimization. In this section we
demonstrate how these improvements, taken together, allow
much faster calculations of very large objects, in this case a
Fe-Pt nanoparticle that is approximately 80 Å in diameter. The
atomic coordinates for this nanoparticle were reconstructed
from a STEM-HAADF tomography tilt series in Ref. [20] and
the object contains 6569 Fe atoms and 16 627 Pt atoms. The
projected potential of the nanoparticle is plotted in Fig. 5(a)
with the Pt potential shown in blue and Fe atoms shown red.
The potential resulting from only the Fe atoms is plotted sep-
arately in Fig. 5(b). Both potentials have been convolved with
a Gaussian function (σ = 2 pixels) to make viewing easier.

We consider the (� = 1, m� = 0) → (�′ = 2, m′
� = 1),

(� = 1, m� = 0) → (�′ = 2, m′
� = −1), (� = 1, m� = 1) →

(�′ = 2, m′
� = 2), and (� = 1, m� = −1) → (�′ = 2, m′

� =
−2) transitions, which account for just over 90% of total
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(g) (h)

FIG. 5. (a) Projected electrostatic potential for the FePt nanoparticle reconstructed in Ref. [20] with Pt atoms indicated in blue and Fe
atoms in red; the Fe projected potential is shown separately in (b). The STEM-EELS simulation of the structure in (c), which is corrected
by dividing by an incoherent bright-field image in (d) as suggested in Ref. [31]. (e) Annular dark-field and (f) incoherent bright-field images.
(g) and (h) Plots of the relationship between the Fe projected potential and STEM-EELS intensity, averaged in 5× pixel windows, for (c)
and (d), respectively.

transitions for energy losses of 1 eV over the ionization thresh-
old Fe L edge. For the PRISM-EELS calculation, we use a
PRISM interpolation factor of 9 (such that each individual

probe will be effectively calculated on a 10 × 10 Å
2

grid) and
a probe step of 0.246 Å (Nyquist sampling) and evaluate the

inelastic scattering cross section [Eq. (11)] on a 4 × 4 Å
2

grid
(which was seen to give the best trade-off between calculation
speed and accuracy in Fig. 4). Then Eqs. (16) and (17)
estimate the runtime of such a calculation to be 2 days on
our 16-thread dual Intel(R) Xeon(R) E5-2603 v4 CPU device.
The results of this PRISM STEM-EELS simulation, which in
reality took 16 hours, are shown in Fig. 5(c). We also estimate
the computation time of a conventional multislice simulation
using Eq. (15) for the full nanoparticle with the same probe
step size and 2-Å slices along the beam direction. If further
approximations are made to use only 1/9 of the grid for probe
propagation and only evaluating transitions within 4 Å of the
probe, i.e., those that we deem to have a reasonable chance
of being excited, multislice simulation could be run in about
87 days for a single frozen phonon pass.2

The simulated image in Fig. 5(c) is qualitatively similar
to the Fe potential in Fig. 5(b), but artifacts due to strong
scattering of the beam are evident. In particular, the center of
the nanoparticle has a lower intensity than would be expected
from the density of Fe, due to the strong high-angle scattering
of the electron beam from the heavier Pt atoms [12,31,32].

2A full multislice calculation without these additional approxima-
tions is estimated to take 170 years for one frozen phonon pass.

Close inspection of many of the Fe columns in this region
reveals small regions of lower intensity, giving rise to a
“doughnut” or “volcano” structure which is evident in the
region shown in the close-up in the bottom left-hand corner
of Fig. 5(c). These features result from inelastic scattering
of beam electrons by the heavier Pt atoms, and to a smaller
extent by the Fe atoms, to high angles outside the acceptance
angle of the EELS detector when the beam is scanned atop
an atomic column. Even if these scattered electrons do cause
the ionization of an Fe atom, they are unlikely to finally
contribute toward the final STEM-EELS image. A detailed
explanation of this phenomenon can be found in Ref. [31]
along with a strategy to obtain an image more amenable to
direct interpretation: dividing by a simultaneously recorded
STEM incoherent bright-field image with a detector of equal
angular extent to the EELS aperture. This image is displayed
in Fig. 5(d), which is indeed observed to be a more faithful
representation of the projected electrostatic potential due to Fe
in Fig. 5(b). The STEM annular dark-field image, formed with
a detector of an inner angle of 60 mrad, and the incoherent
bright-field image are shown in Figs. 5(e) and 5(f), respec-
tively, for reference.

STEM-EELS simulations of objects of this size allow sta-
tistical analysis of STEM-EELS images as shown in Fig. 5(g),
which plots the integrated potential just for the Fe atoms (a
proxy for the projected Fe density) against the STEM-EELS
intensity for each 5 × 5 pixel2 region in the image. The color
of each point in the scatter plot corresponds to the total
projected potential from both Fe and Pt with reference to
the color bar in the figure. The relationship between STEM-
EELS intensity and projected Fe density is approximately
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linear. However, there are noticeable systematic deviations
with points falling below the trend line, tending to be those
with a higher total projected potential, a clear demonstration
of how strong elastic and inelastic scattering of the beam
complicates direct interpretation of the STEM-EELS maps.
These systematic errors are mostly remedied by the divi-
sion of the incoherent bright-field image, which gives an
improvement in the Pearson correlation score from 0.935
to 0.976. This correlation value measures the quality of the
fitted trend line, showing that there is less systematic devi-
ation from the linear relationship of Fe density and EELS
intensity after applying the incoherent bright-field step. This
insight demonstrates how our faster STEM-EELS algorithm,
by virtue of its better scalability to larger simulation grids, can
give valuable insight into the interpretation of heterogenous
nanoscale STEM-EELS maps.

V. CONCLUSION

We have developed an algorithm for simulating STEM-
EELS results that economizes on the number of multislice

iterations required. This algorithm should run faster in general
as the calculation time typically scales linearly with specimen
thickness, while the conventional algorithm scales quadrati-
cally with specimen thickness. We have shown that with some
penalty to accuracy, even faster calculation times are possible.
Finally, we have also shown that our algorithm can be used to
simulate large nanoscale objects.
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